
5-1

(25 March 2000)

Section 5 - Programmer's Reference

This section describes features of the GAMESS implementation which
are true for all machines.  See the section 'hardware specifics' for
information on each machine type.  The contents of this section are:

• Installation overview (sequential mode) 5-2

• Files comprising the GAMESS distribution 5-3

• Running distributed data parallel GAMESS.
parallelization history
DDI process/memory schematic
memory allocations and check jobs
transport protocols and installation
representative performance examples
a very few programming details

• Altering program limits 5-17

• Names of source code modules 5-18

• Programming conventions 5-21

• Parallel broadcast identifiers

• Disk files used by GAMESS 5-24

• Contents of DICTNRY master file 5-25



5-2

Installation overview
 

GAMESS will run on a number of different machines under FORTRAN 77 compilers. 
However, even given the F77 standard there are still a number of differences between various
machines.  For example some machines have 32 bit word lengths, requiring the use of double
precision, while others have 64 bit words and are used in single precision.

Although there are many types of computers, there is only one (1) version of GAMESS.

This portability is made possible mainly by keeping machine dependencies to a minimum
(that is, writing in F77, not vendor specific language extensions).  The unavoidable few
statements which do depend on the hardware are commented out, for example, with "*IBM" in
columns 1-4.  Before compiling GAMESS on an IBM machine, these four columns must be
replaced by 4 blanks.  The process of turning on a particular machine's specialized code is
dubbed "activation".

A semi-portable FORTRAN 77 program to activate the desired machine dependent lines is
supplied with the GAMESS package as program ACTVTE.  Before compiling ACTVTE on your
machine, use your text editor to activate the very few machine dependent lines in ACTVTE before
compiling it. Be careful not to change the DATA initialization!

The task of building an executable form of GAMESS is this:
activate compile l ink

*.SRC ---> *.FOR - - - > *.OBJ  ---> *.EXE
source FORTRAN object executable
code code code image

where the intermediate files *.FOR and *.OBJ are discarded once the executable has been linked. 
It may seem odd at first to delete FORTRAN code, but this can always be reconstructed from the
master source code using ACTVTE.

The advantage of maintaining only one master version is obvious.  Whenever any
improvements are made, they are automatically in place for all the currently supported
machines.  There is no need to make the same changes in a plethora of other versions.

The control language needed to activate, compile, and link GAMESS on your brand of
computer is probably present on the distribution tape.  These files should not be used without
some examination and thought on your part, but should give you a starting point.

There may be some control language procedures for one computer that cannot be duplicated
on another.  However, some general comments apply:  Files named COMP will compile a single
module.  COMPALL will compile all modules.  LKED will link together an executable image.
RUNGMS will run a GAMESS job, and RUNALL will run all the example jobs.

The first step in installing GAMESS should be to print the manual.  If you are reading this,
you've got that done!  The second step would be to get the source code activator compiled and
linked (note that the activator must be activated manually before it is compiled).  Third, you
should now compile all the source modules (if you have an IBM, you should also assemble the
two provided files). Fourth, link the program.  Finally, run all the short tests, and very
carefully compare the key results shown in the 'sample input' section against your outputs. 
These "correct" results are from a IBM RS/6000, so there may be very tiny (last digit)
precision differences for other machines.  That's it!



5-3

Before starting the installation, you should read the pages decribing your computer in the
'Hardware Specifics' section of the manual.  There may be special instructions for your
machine.

Files for GAMESS

*.DOC These are the TEXT versions of the manual you are reading now.   Since
you have presumably already printed out the PostScript version there is
no need to print these out, but they are useful for searching online with a
text editor like VI or EMACS...

*.SRC source code for each module
*.ASM IBM mainframe assembler source
*.C C code used by some UNIX systems.
EXAM*.INP 29 short test jobs (see TESTS.DOC).

These are files related to some utility programs:

ACTVTE.CODE Source code activator.  Note that you must use a text editor to
MANUALLY activate this program before using it.

MBLDR.* model builder (internal to Cartesian)
CARTIC.* Cartesian to internal coordinates
CLENMO.* cleans up $VEC groups

There are files related to X windows graphics. See the file INTRO.MAN for their names.

The remaining files are command language for the various machines.

*.COM VAX command language.  PROBE is especially useful for persons learning
GAMESS.

*.MVS IBM command language for MVS (dreaded JCL).
*.CMS IBM command language for CMS.  These should be copied to filetype EXEC.
*.CSH UNIX C shell command language.  These should have the "extension"

omitted, and have their mode changed to executable.



5-4

Running Distributed Data Parallel GAMESS

It is difficult to write a description of the parallel nature of GAMESS that separates what is
important for the installer of GAMESS or programmers of GAMESS from the end user.  Users of
GAMESS should read most of this section, skipping only the most technical parts, in order to be
able to effectively run this program.

Efficient use of GAMESS requires an understanding of three critical issues:  The first is the
difference between two types of memory (replicated MEMORY and distributed MEMDDI) and how
these relate to the physical memory of the computer which you are using.  Second, you must
understand to some extent the degree to which each type of computation scales so that the proper
number of nodes is selected. Finally, most systems run two copies of GAMESS on each processor,
and if you read on you will find out why this is so.

Since all code needed to implement the Distributed Data Interface (DDI) is provided with the
GAMESS source code distribution, the program compiles and links ready for parallel execution
on all machine types.  Of course, you may choose to run on only one processor, in which case
GAMESS will behave as if it is a sequential code, and the full functionality of the program is
available.

Below you will find the following topics:
parallelization history
DDI process/memory schematic
memory allocations and check jobs
transport protocols and installation
representative performance examples
a very few programming details

* * *

We began to parallelize GAMESS in 1991 as part of the joint ARPA/Air Force piece of the
Touchstone Delta project.  Today, nearly all ab initio methods run in parallel, although some of
these still have a step or two running sequentially only.  Only the MP2 energy for MCSCF, and
RHF CI gradients have no parallel method coded.  We have not parallelized the semi-empirical
MOPAC runs, and probably never will.  Additional parallel work is in progress under a DoD
CHSSI software initiative which "kicked off" in 1996.  This has already led to the DDI-based
parallel MP2 gradient program, after development of the DDI programming toolkit itself.

In 1991, the parallel machine of choice was the Intel Hypercube although small clusters of
workstations could also be used as a parallel computer.  In order to have the best blend of
portability and functionality, we chose in 1991 to use the TCGMSG message passing library
rather than one of the early vendor's specialized libraries.  As the major companies began to
market parallel machines, and as MPI version 1 emerged as a standard, we began to use MPI on
some equipment in 1996, while still using the very resilient TCGMSG library on everything
else.  However, in June 1999, we retired our old friend TCGMSG when the message passing
library used by GAMESS changed to the Distributed Data Interface, or DDI.  We will discuss
later the low level message transports which DDI relies on: SHMEM, TCP/IP sockets, or MPI-1.
Two people have been extremely influential upon the current parallel methodology.  Theresa
Windus, a graduate student in the early 1990s, created the first parallel versions.  Graham
Fletcher, a postdoc in the late 1990s, is responsible for the addition of distributed data
programming concepts.

* * *



5-5

DDI contains the usual parallel programming calls, such as initialization/closure, point to
point messages, and the collective operations global sum and broadcast.  These simple parts of
DDI support all parallel methods developed in GAMESS from 1991-1999, which were based on
replicated storage rather than distributed data.  However, DDI also contains additional routines
to support distributed memory usage.

DDI attempts to exploit the entire machine in a scalable way.  While our early work
concentrated on exploiting the use of p processors and p disks, it required that all data in
memory be replicated on every one of the p nodes.  The use of memory also becomes scalable
only if the data is distributed across the aggregate memory of the parallel machine.  The concept
of distributed memory is contained in the Remote Memory Access portion of MPI version 2, but
so far MPI-2 is not available from American computer vendors.  The original concept of
distributed memory was implemented in the Global Array toolkit of Pacific Northwest National
Laboratory (see http://www.emsl.pnl.gov/pub/docs/global).

Basically, the idea is to provide three subroutine calls to access memory on remote nodes:
PUT, GET, and ACCUMULATE. These give access to a class of memory which is assumed to be
slower than local memory, but faster than disk:

<--- fastest slowest --->
registers cache(s) local_memory remote_memory disks tapes

<--- smallest biggest --->

Because DDI accesses memory on other nodes by means of an explicit subroutine call, the
programmer is aware that a message must be transmitted.  This awareness of the access
overhead should encourage algorithms that transfer many data items in a single message.  Use of
a subroutine call to reach remote memory is a recognition of the non-uniform memory access
(NUMA) nature of parallel computers.  In other words, the Distributed Data Interface (DDI) is
an explicitly message passing implementation of global shared memory.

In order to have one node pass data items to a second node when the second node needs them,
without any significant delay, the computing job on the first node must interrupt its
computation briefly to furnish the data.  This type of communication is referred to as "one sided
messages" or "active messages" since the first node is an unwitting participant in the process,
which is driven entirely by the requirements of the second node.

The Cray T3E has a library named SHMEM to support this type of one sided messages (and
good hardware support for this too) so, on the T3E, GAMESS runs as a single process per CPU. 
Its memory image looks like this:



5-6

                      node 0           node 1
                        p=0              p=1
                  ---------------   ---------------
                  |    GAMESS   |   |    GAMESS   |
                  |   quantum   |   |   quantum   |
                  |  chem code  |   |  chem code  |
                  ---------------   ---------------
                  |  DDI code   |   |  DDI code   |   Input keywords:
                  ---------------   ---------------
                  |  replicated |   | replicated  |       <-- MEMORY
                  |  data       |   | data        |
              -----------------------------------------
              |   |             |   |             |   |   <-- MEMDDI
              |   |  distributed|   | distributed |   |
              |   |  data       |   | data        |   |
              |   |             |   |             |   |
              |   |             |   |             |   |
              |   |             |   |             |   |
              |   ---------------   ---------------   |
              -----------------------------------------

where the box drawn around the distributed data is meant to imply that a large data array is
residing in the memory of all nodes, in this example, half on one and half on the other.  At the
present time, the DDI routines support only two dimensional FORTRAN arrays, organized so that
columns are kept on a single node's memory.  Up to 10 matrices may be distributed in this
fashion.

Note that the input keyword MEMORY gives the amount of storage used to duplicate small
matrices on every node, while MEMDDI gives the -total- distributed memory required by the
job.  Thus, if you are running on p nodes, the memory that is used on any given node is

total on any 1 node = MEMORY + MEMDDI/p

Since MEMDDI is very large, its units are in millions of words.  The keyword MEMORY is in
units of words (64 bit quantity) and so you must either convert units carefully or use the
MWORDS synonym for MEMORY (for which the units are also millions of words).  Since good
execution speed requires that you not exceed the physical memory belonging to your nodes, it is
important to understand that when MEMDDI is large, you will need to choose a sufficiently large
number of nodes to keep the memory on any 1 node reasonable.

To repeat, the DDI philosophy is to add more processors not just for their compute
performance or extra disk space, but also to aggregate a very large total memory.  Bigger
problems will require more nodes to obtain sufficiently large total memories!  We will give an
example of how you can estimate the number of nodes a little ways below.

If the GAMESS task running as process p=1 in the above example needs some values
previously computed, it issues a call to DDI_GET.  The DDI routines in process p=1 then figure
out where this "patch" of data in the big rectangular distributed storage actually resides. 
Suppose this is on process p=0.  The DDI routines in p=1 send a message to p=0 to interupt its
computations, after which p=0 sends a bulk data message to process p=1's buffer.  This buffer
resides in part of the replicated storage of p=1, where computations can occur.  Thus
distributed data is accessed only by DDI_GET, DDI_PUT (its counterpart for storage of data
items), and DDI_ACC (which accumulates new terms into the distributed data).  Note that the



5-7

quantum chemistry layer of process p=1 was sheltered from most of the details regarding which
node owned the patch of data that process p=1 wanted to obtain.  These details are managed by the
DDI layer.  It is the programmer's responsibility to minimize the number of GET/PUT/ACC
calls, and to design algorithms that maximize the chance that the patches of data are actually
within the local node's portion of the distributed data. Note that with the exception of DDI_ACC's
simple addition, no arithmetic is done directly upon the distributed data. Instead, DDI_GET and
DDI_PUT should be thought of as analogous to the FORTRAN READ and WRITE statements that
transfer data between disk storage and local memory where computations may occur.

Since MPI-2 is unavailable, and vendor specific "one sided messaging" libraries such as the
T3E's SHMEM are scarce, all other platforms adopt the following strategy.  It involves two
GAMESS processes running on every node:

                      node 0           node 1
                        p=0              p=1
                  ---------------   ---------------
                  |    GAMESS  X|   |    GAMESS  X|        compute
                  |   quantum   |   |   quantum   |       processes
                  |  chem code  |   |  chem code  |
                  ---------------   ---------------
                  |  DDI code   |   |  DDI code   |   Input keyword:
                  ---------------   ---------------
                  |  replicated |   | replicated  |       <-- MEMORY
                  |  data       |   | data        |
                  ---------------   ---------------

                        p=2              p=3
                  ---------------   ---------------
                  |    GAMESS   |   |    GAMESS   |         data
                  |   quantum   |   |   quantum   |       servers
                  |  chem code  |   |  chem code  |
                  ---------------   ---------------
                  |  DDI code  X|   |  DDI code  X|
                  ---------------   ---------------
              -----------------------------------------  Input keyword:
              |   |             |   |             |   |   <-- MEMDDI
              |   |  distributed|   | distributed |   |
              |   |  data       |   | data        |   |
              |   |             |   |             |   |
              |   |             |   |             |   |
              |   |             |   |             |   |
              |   ---------------   ---------------   |
              -----------------------------------------

The first half of the processes do quantum chemistry, and the X indicates that they spend most of
their time executing some sort of chemistry.  Hence the name "compute process".  Soon after
execution, the second half of the processes call a servicing DDI routine which consists of an
infinite loop to deal with GET, PUT, and ACC requests until such time as the job ends.  The X
shows that these "data servers" execute only DDI support code.  This makes the data server's
quantum chemistry routines the equivalent of the human appendix.  The whole problem of
interupts is now in the hands of the operating system, as the data servers are distinct processes. 
To follow the same example as before, when the compute process p=1 needs data that turns out to
reside on node 0, a request is sent to the data server p=2 to transfer information back to the
compute process p=1.  The compute process p=0 is completely unaware that such a transaction
has occurred.



5-8

The formula for the memory required by any single node is unchanged, if p is the total
number of nodes used, total on any 1 node = MEMORY + MEMDDI/p.

* * *

At present, only closed shell MP2 gradients, and the ZAPT open shell MP2 energy take
advantage of the new distributed memory options.  We expect to adapt other methods to use this
technique of memory aggregation, but currently all other types of jobs run with MEMDDI=0 and
therefore use only replicated storage.  In this case the data server processes still run, but are
dormant because no distributed memory access is attempted.  For example, in an SCF
computation (no hessian or MP2 follow on) the memory needed is on the order of the square of
the basis set size, for such quantities as the orbital coefficients, density, Fock, overlap
matrices, and so on.  These are simply duplicated on every node in the MEMORY region.

Check runs (EXETYP=CHECK) need to run quickly, and the fastest turn around always comes
on one node only.  Runs which do not currently exploit MEMDDI distributed storage will
formally allocate their MEMORY needs, and feel out their storage needs while skipping almost
all of the real work.  Since MEMORY is replicated, the amount that is needed on 1 node remains
unchanged if you later do the true computation on more than 1 node.

Check jobs which involve MEMDDI storage are a little bit trickier.  As noted, we want to run
on only 1 node to get fast turn around.  However, MEMDDI is typically a large amount of
memory, and this is unlikely to be available on a single node.  The solution is that the data
server process does not actually allocate the MEMDDI storage, instead it just remembers what
you gave as input and checks to see if this will be adequate.  So, you can input MEMDDI=1000
(1000 million words is equal to 1,000 * 1,000,000 * 8 = 8 GBytes and run this check job on
a computer with only 256 MB of RAM.

Of course, the actual computation will have to run on a large number of such processors.  Let
us continue with this example of a run requiring 8 GBytes of distributed data on 256 MB nodes. 
Suppose that MEMORY is 2500000 in this case (when MEMDDI is used, MEMORY is typically
just a few million words).  We need to reserve some memory for the operating system (16
MBytes, say) and for the GAMESS program and local storage (approx 16 MB, it is a big
program, and the compute processes should be swapped into memory).  Thus our hypothetical
256 MB node has 224 MB available, assuming no one else is running.  The rest of the
computations proceed in million/mega words, so the available memory per node is 224/8 = 28. 
We must choose the number of processors p to satisfy needed <= available MEMORY +
MEMDDI/p <= free physical memory 2.5 + 1000/p <= 28 so this example requires p >= 39
compute processes.

One more subtle point about CHECK runs with MEMDDI is that since you are running on 1
node only, the code does not know that you wish to run the parallel MP2 algorithm instead of the
sequential algorithm.  You must force the CHECK job into the parallel section of the program by
$system parall=.true. $End  There's no harm leaving this line in for the true runs, as any job
with more than one compute process is parallel regardless of the input value PARALL.

* * *

The next section deals with compilation and execution of GAMESS.  If someone else has
already figured these things out for you, you may skip ahead to the section that illustrates how
the code's performance scales.



5-9

The purpose of this section is to describe only how the choices for low level message passing
to support the DDI subroutines impact upon installation.  More explicit directions for the
compiling process can be found in the first two sections of this chapter, in the readme.unix         
file, and notes on your machine and its compilers are to befound in the IRON.DOC chapter and in
the 'comp' script.  This section has the best explanation available of how to execute the program.

The message traffic generated by DDI calls is sent by SHMEM on the Cray T3E, by MPI-1 on
large parallel computers, and by TCP/IP sockets on networks of workstations.  We cover each of
these three classes of machines next.

- - -

The Cray T3E's SHMEM library affords a single process implementation of GAMESS.  The
T3E's message passing is contained in DDIT3E.SRC, and selecting the T3E target when compiling
will use only this file and link against the SHMEM library.  The 'rungms' script has a special
target to permit execution using this library.

In general we expect a large vendor supplied parallel computer such as the IBM SP, SGI
Origin, and large systems from companies such as Fujitsu, NEC, and Hitachi to have a MPI-1
library available.  It is furthermore reasonable to assume that an expensive machine in this
class has a budget sufficient to purchase the vendor's MPI library.  Therefore the compute
process/data server model outlined above will activate *MPI lines in the source file DDI.SRC,
and link with the MPI-1 library.  Each requires a special target in the 'rungms' execution
script.  Execution will require the vendor's "kickoff" routine to start two processes on each
node, the second half of these will automatically become the data servers.

Since DDI is fairly new, we have MPI control language in the scripts 'compall', 'comp',
'lked', and 'rungms' for the IBM SP and SGI Origin only.  Other machines with MPI-1 libraries
should be easy to port to, needing only that you write control language for, as there is no reason
to doubt the MPI-1 messaging code, since it functions on more than one machine already.

- - -

The third class of machines are technical workstations running Unix.  In this category we
include the IBM RS/6000,  Compaq AXP (yours may say Digital on the front), Sun, HP, and SGI
workstations, and also Intel-based Linux systems.  These are characterized by low cost,
implying that even if a vendor offers MPI-1 on these systems, the software may not have been
purchased.  However, all of these have the TCP/IP socket library that has been in Unix for
decades now.  Chances are that a vendor MPI-1 runs over sockets on this class equipment
anyway, so DDI might just as well talk directly to sockets.  The socket code was written with
frequent reference to the original TCGMSG source code, and consequently is programmed in a
similar fashion.

The DDI socket code consists of C language routines to open socket connections and transmit
data through them, in the file DDISOC.C.  Higher level concepts such as global communications
are written in FORTRAN, as the *SOC lines in DDI.SRC.  Besides these two files which link into
the GAMESS executable, we need a way to fire up the compute processes and data servers.  This
is DDIKICK.C which is referred to as the "kickoff program".

The compiling and linking scripts 'compall', 'comp', and 'lked' have targets for each kind of
workstation, as their compilers have various options.  When the compiling and linking is done
you should have two programs, namely ddikick.x and gamess.01.x.  The latter can be run on one
or more CPUs, as it is sequential if you run on one node, and parallel whenever you run on more
than one.  The execution script 'rungms' has a common target of 'sockets' since all six machines



5-10

we have mentioned used ddikick.x to start processes.  This script has more details about how to
run, but we will describe here what the arguments to the kickoff program are.

The command in 'rungms' to fire up GAMESS is 
% ddikick.x Inputfile Exepath Exename Scratchdir \ 
Nhosts Hostname_0 Hostname_1 ... Hostname_N-1
The Inputfile name is not actually used, but it will be displayed by the 'ps' command so you can
tell what is actually being run.  Exepath is the name of the directory that contains the program
to be executed.  Exename is the name of the GAMESS executable (which might have a different
"version number" than 01).  The best situation is to have Exepath in an NFS mounted partition
that all nodes can access, so that you have only one copy of the big GAMESS executable.  However,
you could carefully FTP a copy to all nodes using always exactly the same file name, such as
/usr/local/bin/gamess.01.x.

Note that since only one executable name is specified, only one vendor's computers can be
used at a time.  This limitation arises from a lack of XDR calls in the DDI layer to convert data
types from one internal representation of numeric data to another machine's.

Scratchdir is the name of a large working disk space, such as /scr/mike, in which all
temporary files are placed. These files should be automatically deleted by the execution script as
the job ends.  If the nodes do not happen to have the same scratch area name, you can make it
"feel like" they do with soft links such as "ln -s /actualname /scr".  Under no circumcumstance
should you make Scratchdir an NFS partition, as serious I/O happens to this directory.  Ideally
Scratchdir is a striped multi-disk Ultra-2-wide partition, with 9+ GBytes free space per node. 
However, the GAMESS output (stdout) and two supplemental ASCII output files PUNCH and
IRCDATA can and probably should be sent over NFS to the user's permanent disk space on a file
server.  This serves the purpose of allowing the user to monitor the simulation as it runs, and
gets the results to a place where it can be backed up once in a while.  The files written into
Scratchdir should be erased by the 'rungms' script upon normal exit.

Individual file names are set by the 'rungms' script's setenv commands.  Some of the files
are written to only by the master process running on node 0 (stdout and PUNCH are good
examples of this), but other files are distributed across all node's Scratchdirs (scalable disk
usage).  The atomic integrals AOINTS is a good example of this.  The rungms setenv's will define
this file as xxx.F08 on node 0, where xxx is the name of the input file, and the rest of the name
comes from its being FORTRAN unit 8 internally. On other nodes the file name will have the node
number appended, xxx.F08.001, xxx.F08.002, and so on.  Obviously, only the compute
processes own disk files.

Nhosts is the number of compute processes to be run. If you want to run sequentially, just
ensure Nhosts is 1. Hostname_0 is the "master node", which handles reading the one input file,
and writing the one output file.  This host must be the same host that is executing the 'rungms'
script, or else the environment variables that define the files don't get properly accepted. 
Supply a total of Nhosts Hostnames.  One compute process will be started on each of these
(process IDs 0,1,...Nhosts-1), and then one data server will be run on each as well (for a total
of 2 times Nhosts processes).  If you have SMP systems, such as a four processor machine, set
Nhosts=4, and repeat its Hostname 4 times.

Execution is by a direct system call if the process is to run on the host running 'rungms' and
which is therefore also running 'ddikick.x'.  Remote hosts are reached by the command 'rsh', so
users will need to use a .rhosts file to authenticate themselves (unless your system is using
some replacement for this such as Kerberos).  The .rhosts file needs to be in your home
directory, and looks like this:

si.fi.ameslab.gov  mike



5-11

ga.fi.ameslab.gov  mike
ge.fi.ameslab.gov  mike
...and so on...

except your user name is probably not 'mike'.  Note that ddikick.x has no mechanism to support
the user name on one of the machines being 'schmidt' instead of 'mike'.

Assuming that all goes well, the job will terminate orderly by each compute process telling
its local data server to cease execution.  Upon the successful suicide of the data server, the
compute process reports to the dormant (but still running) ddikick.x that it is ready to end. 
When all compute processes have checked in, the kickoff program informs each that it is OK to
stop, and following this ddikick.x exits.

Abnormal terminations are of course less predictable.  However, when ddikick.x is informed
by the system that one of its children has died, it tries to send a kill command to all its other
children, and so hopefully all processes are then eliminated.  However, depending on the exact
circumstances in which the abnormal end occurs, the system may have a few processes left over
for manual termination.  If you decide that a GAMESS job should be killed, use the Unix 'kill'
command to take out either the compute or data server process on the master node, or one of the
'rsh' processes that have launched GAMESS onto the remote nodes.  Do not kill ddikick.x directly,
instead stop any of these child processes, so that ddikick.x will terminate all the other processes
for you.

Before ending this section on DDI over TCP/IP sockets on workstation class machines, we
should comment on the network requirements.  It is not reasonable to run jobs that use MEMDDI
distributed memory on 10 megabit/second Ethernet since the bandwidth is just too small. 
However, if you use only the replicated MEMORY storage you should be able to get by on this old
network cable.  As will be shown below, a switched Fast Ethernet is capable of decent
performance on such 100 megabit/second cables.  Both the host adapters and the switch itself
are now inexpensive. Gigabit ethernet (1000 mbit/sec) is pricy, and although the bandwidth is
good, the latency remains too large.

* * *

This section describes the way in which the various quantum chemistry computations run in
parallel, and shows some typical performance data.  This should give you as the user some idea
how many nodes can be efficiently used for various SCFTYP and RUNTYP jobs.  There's a
different subsection for 4 different kinds of runs, followed by a summary.

Many of the performance data you will see below were obtained on a 16 node Intel Pentium II
Linux (Beowulf-type) cluster costing $49,000, of which $3,000 went into the switched Fast
Ethernet component.  512 MB/node means this cluster has an aggregate memory of 8 GB.  For
more details, see

http://www.msg.ameslab.gov/GAMESS/page/not/written/yet

- - -

The HF wavefunctions can be evaluated in parallel using either conventional disk storage of
the integrals, or via direct recomputation of the integrals.  Assuming the I/O speed of your
system is good, direct SCF is *always* slower than disk storage.  Some experimenting will show
which is more effective on your hardware.  As an example of the scaling performance of RHF,
ROHF, UHF, or GVB jobs that involve only computation of the energy or its gradient, we include
here a timing table from the 16 node PC cluster. The molecule is luciferin, which together with
the enzyme luciferase is involved in firefly light production.  The chemical formula is
C11N2S2O3H8, and RHF/6-31G(d) has 294 atomic orbitals.  There's no molecular symmetry. 



5-12

The run is done as direct SCF because the total amount of AO integrals is 3.8 GBytes, and Linux
does not permit files to exceed 2 GBytes (of course use of 2 or more nodes can be run
conventional as this disk file will be distributed across all available disks).  The CPU timing
data is

                          p=1  p=2  p=3  p=4  p=8 p=12 p=16
           1e- ints       1.6  0.8  0.6  0.4  0.3  0.3  0.1
           Huckel guess    22   18   16   14   14   12   12
           15 RHF iters  5536 2802 1891 1436  753  519  406
           properties     7.5  7.3  7.3  7.3  7.8  7.0  7.0
           1e- gradient  11.5  5.7  4.1  2.7  1.4  1.0  0.8
           2e- gradient  1339  658  437  328  105  110   83
                         ---- ---- ---- ---- ---- ---- ----
           total CPU     6917 3491 2357 1790  941  649  509 seconds
           total wall    6924 3540 2408 1820  979  696  559 seconds

Note that direct SCF should run with the wall time very close to the CPU time as there is
essentially no I/O and not that much communication (MEMDDI storage is not used by this kind of
run).  Wall clock speedup from 1 to 16 nodes is 12.4, and for this type of run we frequently use
8, 16, or 32 nodes depending on availability.

An idea of the variation in time with basis set size can be gained from the following runs
made by Johannes Grotendorst, Juelich, Germany, on a Cray T3E or Intel Paragon, using 32
nodes on either.  These data were collected in about 1996, pre-DDI days, and as you can see,
before all the Paragons were unplugged.  The data is still representative.  Each molecule is an
asymmetric organic compound, computing the RHF energy and gradient, using the 6-31G(d)
basis set:

                                          T3E    Paragon
          taxol,    1032 AOs, CPU TIME = 546.8      --  minutes
          cAMP,      356 AOs, CPU TIME =  14.6    106.4
          luciferin, 294 AOs, CPU TIME =   8.9     67.2
          nicotine,  208 AOs, CPU TIME =   3.8     26.1
          thymine,   149 AOs, CPU TIME =   1.5     12.2
          alanine,   104 AOs, CPU TIME =   0.5      5.2
          glycine,    85 AOs, CPU TIME =   0.3      3.2

If you are interested in an explanation of how the parallel SCF is implimented, see the main
GAMESS paper, M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen,
S.Koseki, N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery
J.Comput.Chem.  14, 1347-1363(1993)

- - -

For the next type of computation, we discuss the MP2 correction.  For UHF + MP2, only the
second order energy can be computed, and the parallization strategy is similar to the replicated
MEMORY code used by the MCSCF program. This is described below.  The MCSCF + MP2 code does
not run parallel, unfortunately.  So here we are describing the closed shell RHF + MP2 energy
or gradient, or the ROHF + ZAPT-type MP2 energy.  These two types of computations make use
of the MEMDDI distributed data region.

The example is a benzoquinone precursor to hongconin, a cardioprotective natural product. 
The formula is C11O4H10, and 6-31G(d) has 245 AOs.  There are 39 valence orbitals included
in the MP2 treatment, and 15 core orbitals.  MEMDDI must be 156 million words, so the same
type of memory computation that was used above tells us that our 512 MB/node PC cluster must



5-13

have at least three processors to aggregate the required MEMDDI.  MOREAD was used to provide
converged RHF orbitals, so only 3 RHF iterations are performed.  The timing data are CPU and
wall times (seconds) in the 1st/2nd lines:

                          p=3      p=4      p=8     p=12     p=16
            RHF iters     208      157       83       58       46
                          214      163       91       68       55
            MP2 step    8,935    6,966    3,417    2,283    1,724
                       12,529   10,046    5,763    4,013    3,056
            2e- grad    2,181    1,712      838      552      420
                        2,490    1,981      991      677      499
            total CPU  11,335    8,846    4,347    2,902    2,199
            total wall 15,248   12,206    6,859    4,772    3,624

                                 3-->12  4-->16
                 CPU speedup      3.91    4.02
                 wall speedup     3.20    3.37

On a T3E machine with 600 MHz nodes and 256 MB/node, we should have been able to run on as
few as 6 nodes, but the available data for the same calculation starts from 8:

                              p=8  p=32 p=128
                total CPU    3108   814   282
                total wall   3154   850   340

Wall clock performance is considerably better as you would expect on a machine where very
good communications exist. Wall speedup for a 4x or 16x increase in node number is 3.7 and
9.3.  Larger molecules which still have some computation left at 128 nodes do better than this. 
We often use 64 or 128 nodes for this type of run.

As noted, the number of nodes is more influenced by a need to aggregate the necessary total
MEMDDI, more than by concerns about scalability.  MEMDDI is typically large for MP2 parallel
runs, as it is proportional to the number of occupied orbitals squared times the number of AOs
squared.

For more details on the distributed data parallel MP2 program, see
G.D.Fletcher, A.P.Rendell, P.Sherwood, Mol.Phys. 91, 431-438(1997)
G.D.Fletcher, M.W.Schmidt, M.S.Gordon, Adv.Chem.Phys. 110, 267-294 (1999)
G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon, Comput.Phys.Commun.  submitted

The latter has additional explanations of the ideas behind distributed memory programming.

- - -

The next type of computation we will consider is the analytic computation of the hessian for
RHF, ROHF, or GVB wavefunctions.  The current implementation of the response equations is in
the MO basis, and since the solver is not parallelized, so when this stage of the computation is
reached, work is done only by process 0 while the other processes sit idle.  This is a sequential
bottleneck.  The integral transformation is parallelized according to the same strategy as
described below for MCSCF jobs.  Thus our early paper on analytic hessians which ran a
sequential transformation no longer correctly describes the program.  Thus the total scalability
is better than was shown in

T.L.Windus, M.W.Schmidt, M.S.Gordon, Chem.Phys.Lett.  216, 375-379(1993)

The example we will consider is the same SbC4O2NH4 test that was used in this early paper. 



5-14

We use the 3-21G* basis (110 AOs, 2 million words used).  The hardware is the same PC Linux
cluster.  Table 1 of the reference should be:

                                p=1     p=2     p=3     p=4
               1e- ints        0.15    0.09    0.09    0.07 seconds
               Huckel          4.23    3.97    4.05    4.15
               2e- ints       14.84    7.26    4.89    3.68
               RHF iters      35.17   19.29   13.89   10.84
               properties      0.39    0.40    0.38    0.42
               dupl.2e- ints   N/A    14.75   14.71   14.78
               int.transf.   232.89  123.91   85.01   68.20
               1e- hess        4.47    2.84    2.04    1.21
               2e- hess      668.13  334.60  225.50  168.31
               CPHF          224.48  210.80  206.21  192.29
                            -------  ------  ------  ------
               total CPU     1185.0   718.1   557.0   464.2
               total wall    1188     733     600     494

Clearly, the final response equation (CPHF) step is a sequential bottleneck, as is the fact that
the orbital hessian in this step is stored entirely on the disk space of node 0.  Since the integral
transformation is run in replicated MEMORY rather than distributing this, and since it also
needs a duplicated AO integral file be stored on every node, the code is clearly not scalable to
very many processors.  Typically we would not request more than 3 or 4 processors for an
analytic hessian job.

- - -

As the final example, we turn to MCSCF energy/gradient runs.  The parallelization of the
integral transformation was done before the introduction of the distributed data concept, and
hence this kind of job uses only replicated MEMORY at present.  In addition, the determinant CI
step is not yet converted to parallel execution, so if you run on more than one node, MCSCF jobs
must use $MCSCF CISTEP=GUGA.

Our work on parallization of MCSCF was described in the paper
T.L.Windus, M.W.Schmidt, M.S.Gordon,  Theoret.Chim.Acta  89, 77-88(1994).

This points out that MCSCF has many bottlenecks, of which the most important are the integral
transformation, the optimization of the CI coefficients, and the optimization of the orbital
coefficients.  The amount of time spent in each depends on the number of atomic orbitals, and the
size of the active space, and the number of filled MOs. Since this parallelization paper came out,
we have added a new converger for MCSCF, namely SOSCF, and here we will show the
performance of this default converger on a fairly large example.  Before doing so, we point out
again that our new CI optimization step over determinants is faster on one node, but it will
refuse to run in parallel, so the data shown use the older GUGA CSF program.

The integral transformation step is run in replicated MEMORY, using "passes" over the
occupied orbitals.  The different passes involve different occupied orbitals so the work is
trivially distributed across all nodes.  A better description of this can be found in the reference
given.  Basically the same approach is currently being used during analytic hessians or UHF
MP2.  The method distributes CPU time fairly well, but it does not make efficient use of memory
as every node must have the same memory is required to run on 1 node (order of the basis set
cubed).

There are two strategies to govern the placement of AO integrals, each of which has to be
available on every node.  One is to store the file on the disks in a distributed fashion, and as each
node reads its subset, to broadcast these on the communication channel to all other nodes. This is



5-15

AOINTS=DIST in the $TRANS or $MP2 input, and is appropriate only for machines with good
communications. When disk I/O is faster than the communications, such as is likely for
workstation clusters, the entire 2e- AO integral file is duplicated on every node
(AOINTS=DUP).  This is not scalable either in generation of integrals, or in their disk storage,
but it takes pressure off the communications channel.  You may want to experiment with the
AOINTS keyword to see if the default for your machine is well chosen.

The example we choose is at a transition state for the water molecule assisted proton
transfer in the first excited stat of 7-azaindole.  The formula is C7N2H6(H2O), there are 190
active orbitals, and the active space is the 10 pi electrons in 9 pi orbitals of the azaindole
portion.  There are 5,292 CSFs.  See Figure 6 of G.M.Chaban, M.S.Gordon  J.Phys.Chem.A 103,
185-189(1999) if you are interested in this chemistry.  The timing data (seconds) from our
PC Linux cluster are

                           p=1     p=2      p=3      p=4
          dup. 2e- ints  373.2   381.2    381.4    389.9
          DRT              0.4     0.4      0.4      0.4
          transform.     448.0   237.4    181.3    139.1
          Hamilton.        3.1     2.5      2.4      2.3
          diag. H         27.4    15.1     11.1      9.1
          2e- dens.        2.4     2.3      2.2      2.2
          orb. update     60.1    56.7     56.2     56.4
          iters 2-16    6723.3  4429.9   3554.2   2885.7
          1e- grad         6.2     2.6      3.2      1.4
          2e- grad       912.3   463.9    327.3    242.8
                        ------  ------   ------   ------
          total CPU     9485.1  5599.1   4526.9   3736.1
          total wall    15,703   9,537    7,763    6,192

The first iteration is broken down into its primary steps from the integral transformation to
the orbital update, inclusive.  Typically we would not use more than 4 to 8 processors for a
parallel MCSCF job.

- - -

In summary, most ab initio computations will run in less time on more than one node. 
However, some things can be run only on 1 node, namely semi-empirical runs determinant
based MCSCF MCQDPT2 perturbation correction to MCSCF RHF+CI gradient PCM solvation model
Several steps run with little or no speedup, and thus represent sequential bottlenecks that limit
scalability.  They do not prevent jobs from running, but restrict the total number of nodes that
can be effectively used:

HF: solution of SCF equations
HF analytic hessians: the coupled Hartree-Fock
MCSCF: orbital improvement steps
MCSCF/CI: Hamiltonian and 2e- density matrix
energy localizations: the orbital localization step
transition moments/spin-orbit: the final property step

Future versions of GAMESS will address these bottlenecks.

A short summary of the useful number of nodes (based on data like the above) would be
approximately

RHF, ROHF, UHF, GVB energy and/or gradient 16-32+
analytic hessians for these 3-4
RHF + MP2 gradient, ZAPT energy 64-128+
UHF + MP2 energy 8-16



5-16

GUGA CI or MCSCF 4-8

                                  * * *

The final section of this description of DDI is a very sketchy introduction to programming. 
At this point, if you are interested only in using the program, you may cease reading.

DDI has subroutine calls to do ordinary message passing parallel programming.  These are
calls to initialize and terminate the various processes, point to point send and receive, and
collective operations like global sum and the broadcast.  Not necessarily every routine one would
expect is included, as we just programmed what we needed in GAMESS.  In addition we have calls
for distributed data manipulation, which include creation and destruction of the arrays, the put,
get, and accumulation operations mentioned above, and a routine to query what part of the
distributed array is stored locally.

The full API for DDI is in comments in the beginning of the source file DDI.SRC, and you can
then look at the individual routines to see what the calling arguments do.  The source code in
DDI.SRC, and calls to it from GAMESS are what serves as documentation for use of DDI at the
present.  Every DDI routine is a subroutine, not a function, and each begins with "DDI_" so you
can easily locate all parallel constructs in GAMESS by a search for "CALL DDI_".

We don't really intend for DDI to be a general parallel programming library, rather it's a
part of GAMESS.  For example, we need to link a small program using DDI against some GAMESS
objects to have memory management code, and so forth.  These are ddi.o, ddisoc.o, unport.o, and
zunix.o and maybe a timing routine.

We close with a simple (and not very useful) program that broadcasts information to all
nodes.  It illustrates the proper initialization and closure of the DDI library, requests
replicated MEMORY but not distributed MEMDDI, and so does not illustrate distributed data
programming.  The idea was to keep it a one-pager.

                program bcast
                implicit double precision(a-h,o-z)
                parameter (maxmsg=500000)
                real tarray(2)
                common /fmcom / xx(1)
                data exetyp/8hRUN     /
          c        open DDI, tell it integer word length is 32 bit
                nwdvar=2
                call ddi_pbeg(nwdvar)
          c        request allocation of only replicated memory
                memrep=maxmsg
                memddi=0
                call ddi_memory(memrep,memddi,exetyp)
                call setfm(memrep)
          c        start a clock so we can time this
                xstart = etime(tarray)
          c        learn which of the processes I am
                call ddi_nproc(nproc,me)
                master=0
                if(me.eq.master) write(iw,9000) nproc
          c        dynamically allocate a replicated array
                call valfm(loadfm)
                lbuff = loadfm + 1
                last  = lbuff  + maxmsg
                need = last - loadfm - 1



5-17

                call getfm(need)
          c        fill it up with nothing but ones
                if(me.eq.master) then
                   do i=1,maxmsg
                      xx(lbuff-1+i) = 1.0d+00
                   end do
                end if
          c        send it to all the other compute processes
                call ddi_bcast(102,'F',xx(lbuff),maxmsg,master)
          c        we are now done with the replicated storage
                call retfm(need)
          c        so, all we've done is time a broadcast.
                xstop = etime(tarray)
                write(6,9010) me,xstop-xstart
          c        close the DDI library gracefully
                istat=0
                call ddi_pend(istat)
                stop
           9000 format(1x,'running',i4,' processes.')
           9010 format(1x,'node',i4,' total job time between',
               *          ' pbeg/pend is',f7.2)
                end

Altering program limits

Almost all arrays in GAMESS are allocated dynamically, but some variables must be held in
common as their use is ubiquitous.  An example would be the common block which holds the
basis set.  The following Unix script, which we call 'mung', changes the PARAMETER statements
that set various limitations:

          #!/bin/csh
          #       automatically change GAMESS' built-in dimensions
         chdir /u3/mike/gamess/source
         foreach FILE (*.src)
             set FILE=$FILE:r
             echo ===== redimensioning in $FILE =====
             echo "C 01 JAN 98 - SELECT NEW DIMENSIONS" \
                       > $FILE.munged
             sed -e "/MXATM=500/s//MXATM=100/" \
                 -e "/MXFRG=50/s//MXFRG=1/" \
                 -e "/MXDFG=5/s//MXDFG=1/" \
                 -e "/MXPT=100/s//MXPT=1/" \
                 -e "/MXAOCI=768/s//MXAOCI=768/" \
                 -e "/MXRT=100/s//MXRT=100/" \
                 -e "/MXSP=100/s//MXSP=1/" \
                 -e "/MXTS=2500/s//MXTS=1/" \
                 -e "/MXSH=1000/s//MXSH=1000/" \
                 -e "/MXGSH=30/s//MXGSH=30/" \
                 -e "/MXGTOT=5000/s//MXGTOT=5000/" \
                 $FILE.src >> $FILE.munged
             mv $FILE.munged $FILE.src
          end
          exit



5-18

In this script,
MXATM = max number of atoms
MXFRG = max number of effective fragment potentials
MXDFG = max number of different effective fragments
MXPT  = max number of effective fragment points
MXAOCI= max number of basis functions in CI/MCSCF
MXRT  = max number of CI roots saved by $GUGDIA
MXSP  = max number of spheres (sfera) in PCM
MXTS  = max number of tesserae in PCM
MXSH  = max number of symmetry unique shells
MXGSH = max number of Gaussians per shell
MXGTOT= max number of symmetry unique Gaussians

The script shows how to -minimize- memory use, by a a small decrease in the number of
atoms, and turning off the effective fragment and PCM dimensioning.  Little can be saved by
reducing the other adjustable parameters. Of course, the 'mung' script shown above could also
be used to increase the dimensions...



5-19

Names of source code modules
 

The source code for GAMESS is divided into a number of sections, called modules, each of
which does related things, and is a handy size to edit.  The following is a list of the different
modules, what they do, and notes on their machine dependencies.

module description machine dependency

ALDECI Ames Lab determinant full CI code 1
BASECP SBKJC and HW valence basis sets
BASEXT DH, MC, 6-311G extended basis sets
BASHUZ Huzinaga MINI/MIDI basis sets to Xe
BASHZ2 Huzinaga MINI/MIDI basis sets Cs-Rn
BASN21 N-21G basis sets
BASN31 N-31G basis sets
BASSTO STO-NG basis sets
BLAS level 1 basic linear algebra subprograms
COSMO conductor-like screening model
CPHF coupled perturbed Hartree-Fock 1
CPROHF open shell/TCSCF CPHF 1
DDI message passing library interface code 9
DDIT3E message passing code (used on T3E only) 9
DELOCL delocalized coordinates
DFT grid-free DFT drivers 1
DFTAUX grid-free DFT auxiliary basis integrals
DFTINT grid-free DFT integrals 1
DFTFUN grid-free DFT functionals
DMULTI Amos' distributed multipole analysis
DRC dynamic reaction coordinate
ECP pseudopotential integrals
ECPDER pseudopotential derivative integrals
ECPHW Hay/Wadt effective core potentials
ECPLIB initialization code for ECP
ECPSBK Stevens/Basch/Krauss/Jasien/Cundari ECPs
EIGEN Givens-Householder, Jacobi diagonalization
EFDRVR fragment only calculation drivers
EFELEC fragment-fragment interactions
EFGRD2 2e- integrals for EFP numerical hessian
EFGRDA ab initio/fragment gradient integrals
EFGRDB "    "       "        "        "
EFGRDC "    "       "        "        "
EFINP effective fragment potential input
EFINTA ab initio/fragment integrals
EFINTB "    "       "        "
EFPAUL effective fragment Pauli repulsion
EFPCOV EFP style QM/MM boundary code
FFIELD finite field polarizabilities
FRFMT free format input scanner
GAMESS main program, single point energy and energy gradient drivers, misc.
GRADEX traces gradient extremals
GRD1 one electron gradient integrals
GRD2A two electron gradient integrals 1
GRD2B specialized sp gradient integrals
GRD2C general spdfg gradient integrals
GUESS initial orbital guess



5-20

GUGDGA Davidson CI diagonalization 1
GUGDGB            "    "        " 1
GUGDM 1 particle density matrix
GUGDM2 2 particle density matrix 1
GUGDRT distinct row table generation
GUGEM GUGA method energy matrix formation 1
module description machine dependency
GUGSRT sort transformed integrals 1
GVB generalized valence bond HF-SCF 1
HESS hessian computation drivers
HSS1A one electron hessian integrals
HSS1B   "         "           "           "
HSS2A two electron hessian integrals 1
HSS2B   "        "            "           "
INPUTA read geometry, basis, symmetry, etc.
INPUTB    "         "             "           "
INPUTC    "         "             "           "
INT1 one electron integrals
INT2A two electron integrals 1
INT2B   "        "             "
IOLIB input/output routines,etc. 2
LAGRAN CI Lagrangian matrix 1
LOCAL various localization methods 1
LOCCD LCD SCF localization analysis
LOCPOL LCD SCF polarizability analysis
MCCAS FOCAS/SOSCF MCSCF calculation 1
MCQDPT multireference perturbation theory 1
MCQDWT weights for MR-perturbation theory
MCQUD QUAD MCSCF calculation 1
MCSCF FULLNR MCSCF calculation 1
MCTWO two electron terms for FULLNR MCSCF 1
MOROKM Morokuma energy decomposition 1
MP2 2nd order Moller-Plesset 1
MP2DDI distributed data parallel MP2
MPCDAT MOPAC parameterization
MPCGRD MOPAC gradient
MPCINT MOPAC integrals
MPCMOL MOPAC molecule setup
MPCMSC miscellaneous MOPAC routines
MTHLIB printout, matrix math utilities
NAMEIO namelist I/O simulator
ORDINT sort atomic integrals 1
PARLEY communicate to other programs
PCM Polarizable Continuum Model setup
PCMCAV PCM cavity creation
PCMDER PCM gradients
PCMDIS PCM dispersion energy
PCMPOL PCM polarizabilities
PCMVCH PCM repulsion and escaped charge
PRPEL electrostatic properties
PRPLIB miscellaneous properties
PRPPOP population properties
QMMM temporary dummy routines
RESC relativistic elim. small component



5-21

RHFUHF RHF, UHF, and ROHF HF-SCF 1
RXNCRD intrinsic reaction coordinate
RYSPOL roots for Rys polynomials
SCFMI molecular interaction SCF code
SCFLIB HF-SCF utility routines, DIIS code
SCRF self consistent reaction field
SOBRT full Breit-Pauli spin-orbit compling
SOFFAC spin-orbit matrix element form factors
SOZEFF 1e- spin-orbit coupling terms
STATPT geometry and transition state finder
SURF PES scanning
SYMORB orbital symmetry assignment
SYMSLC orbital symmetry assignment
TDHF time-dependent Hartree-Fock NLO 1
TRANS partial integral transformation 1
TRFDM2 two particle density backtransform 1
TRNSTN CI transition moments
TRUDGE nongradient optimization
UNPORT unportable, nasty code 3,4,5,6,7,8
VECTOR vectorized version routines 10
VIBANL normal coordinate analysis
VSCF anharmonic frequencies
ZHEEV complex matrix diagonalization
ZMATRX internal coordinates

UNIX versions use the C code ZUNIX.C for dynamic memory.  Most UNIX versions use
DDISOC.C to talk to TCP/IP sockets, and DDIKICK.C to load GAMESS for execution.

The IBM mainframe version uses the following assembler language routines:  ZDATE.ASM,
ZTIME.ASM.
 

The machine dependencies noted above are:
1) packing/unpacking 2) OPEN/CLOSE statments
3) machine specification 4) fix total dynamic memory
5) subroutine walkback 6) error handling calls
7) timing calls 8) LOGAND function
9) message passing calls.  DDI.SRC has both socket calls (*SOC) and MPI-1 calls (*MPI) 

programmed.
10) vector library calls



5-22

Programming Conventions

The following "rules" should be adhered to in making changes in
GAMESS.  These rules are important in maintaining portability,
and should be strictly adhered to.

Rule 1. If there is a way to do it that works on all computers, do it that way.  Commenting
out statements for the different types of computers should be your last resort.  If
it is necessary to add lines specific to your computer, PUT IN CODE FOR ALL
OTHER SUPPORTED MACHINES. Even if you don't have access to all the types of
supported hardware, you can look at the other machine specific examples found in
GAMESS, or ask for help from someone who does understand the various
machines.  If a module does not already contain some machine specific statements
(see the above list) be especially reluctant to introduce dependencies.

Rule 2. a) Use IMPLICIT DOUBLE PRECISION(A-H,O-Z) specification statements
throughout. 

b) All floating point constants should be entered as if they were in double precision. 
The constants should contain a decimal point and a signed two digit exponent.  A
legal constant is 1.234D-02.  Illegal examples are 1D+00, 5.0E+00, and 3.0D-
2.

c) Double precision BLAS names are used throughout, for example DDOT instead of
SDOT.

The source code activator ACTVTE will automatically convert these
double precision constructs into the correct single precision
expressions for machines that have 64 rather than 32 bit words.

Rule 3. FORTRAN 77 allows the use of generic functions.  Thus the routine SQRT should
be used in place of DSQRT, as this will automatically be given the correct
precision by the compilers.  Use ABS, COS, INT, etc.  Your compiler manual will
tell you all the generic names.

Rule 4. Every routine in GAMESS begins with a card containing the name of the module
and the routine.  An example is "C*MODULE xxxxxx  *DECK yyyyyy".  The second
star is in column 18.  Here, xxxxxx is the name of the module, and yyyyyy is the
name of the routine. Furthermore, the individual decks yyyyyy are stored in
alphabetical order.  This rule is designed to make it easier for a person
completely unfamiliar with GAMESS to find routines.  The trade off for this is
that the driver for a particular module is often found somewhere in the middle of
that module.

Rule 5. Whenever a change is made to a module, this should be recorded at the top of the
module.  The information required is the date, initials of the person making the
change, and a terse summary of the change.

Rule 6. No lower case characters, no more than 6 letter variable names, no imbedded
tabs, statements must lie between columns 7 and 72, etc.  In other words, old
style syntax.

                                 * * *



5-23

The next few "rules" are not adhered to in all sections of GAMESS. 
Nonetheless they should be followed as much as possible, whether
you are writing new code, or modifying an old section.

Rule 7. Stick to the FORTRAN naming convention for integer (I-N) and floating point
variables (A-H,O-Z).  If you've ever worked with a program that didn't obey
this, you'll understand why.

Rule 8. Always use a dynamic memory allocation routine that calls the real routine.  A
good name for the memory routine is to replace the last letter of the real routine
with the letter M for memory.

Rule 9. All the usual good programming techniques, such as indented DO loops ending on
CONTINUEs, IF-THEN-ELSE where this is clearer, 3 digit statement labels in
ascending order, no three branch GO TO's, descriptive variable names, 4 digit
FORMATs, etc, etc.

The next set of rules relates to coding practices which are
necessary for the parallel version of GAMESS to function sensibly. 
They must be followed without exception!

Rule 10. All open, rewind, and close operations on sequential files must be performed with
the subroutines SEQOPN, SEQREW, and SEQCLO respectively.  You can find these
routines in IOLIB, they are easy to use.

Rule 11. All READ and WRITE statements for the formatted files 5, 6, 7 (variables IR, IW,
IP, or named files INPUT, OUTPUT, PUNCH) must be performed only by the
master task.  Therefore, these statements must be enclosed in "IF (MASWRK)
THEN" clauses.  The MASWRK variable is found in the /PAR/ common block, and
is true on the master process only.  This avoids duplicate output from the other
processes.  At the present time, all other disk files in GAMESS also obey this
rule.

Rule 12. All error termination is done by means of "CALL ABRT" rather than a STOP
statement.  Since this subroutine never returns, it is OK to follow it with a STOP
statement, as compilers may not be happy without a STOP as the final executable
statment in a routine.



5-24

List of parallel broadcast identifiers
 

GAMESS uses DDI calls to pass messages between the parallel processes.  Every message is
identified by a unique number, hence the following list of how the numbers are used at present. 
If you need to add to these, look at the existing code and use the following numbers as guidelines
to make your decision.  All broadcast numbers must be between 1 and 32767.

20 Parallel timing
100 -  199 DICTNRY file reads
200 -  204 Restart info from the DICTNRY file
210 -  214 Pread
220 -  224 PKread
225 RAread
230 SQread
250 -  265 Nameio
275 -  310 Free format
325 -  329 $PROP group input
350 -  354 $VEC group input
400 -  424 $GRAD group input
425 -  449 $HESS group input
450 -  474 $DIPDR group input
475 -  499 $VIB group input
500 -  599 matrix utility routines
800 -  830 Orbital symmetry
900 ECP 1e- integrals
910 1e- integrals
920 -  975 EFP and SCRF integrals
980 -  999 property integrals
1000 - 1025 SCF wavefunctions
1030 - 1040 broadcasts in DFT
1050 Coulomb integrals
1200 - 1215 MP2
1300 - 1320 localization
1495 - 149 reserved for Jim Shoemaker
1500 One-electron gradients
1505 - 1599 EFP and SCRF gradients
1600 - 1602 Two-electron gradients
1605 - 1620 One-electron hessians
1650 - 1665 Two-electron hessians
1700 - 1750 integral transformation
1800 GUGA sorting
1850 - 1865 GUGA CI diagonalization
1900 - 1910 GUGA DM2 generation
2000 - 2010 MCSCF
2100 - 2120 coupled perturbed HF
2300 - 2399 spin-orbit jobs



5-25

Disk files used by GAMESS

These files must be defined by your control language for executing GAMESS.  For example, on
UNIX the "name" field shown below should be set in the environment to the actual file name to be
used.  Most runs will open only a subset of the files shown below, with only files 5, 6, 7, and 10
existing in every run.  Only files 4, 5, 6, and 7 contain formatted data.

unit name contents
4 IRCDATA archive results punched by IRC runs, restart data for numerical

HESSIAN runs, summary of results for DRC.
5 INPUT Namelist input file. This MUST be a disk file, as GAMESS rewinds this

file often.
6 OUTPUT Print output (FT06F001 on IBM mainframes) If not defined, UNIX

systems will use the standard output for this file.
7 PUNCH Punch output. A copy of the $DATA deck, orbitals for every geometry

calculated, hessian matrix, normal modes from FORCE, properties
output, IRC restart data, etc.

8 AOINTS Two e- integrals in AO basis
9 MOINTS Two e- integrals in MO basis
10 DICTNRY Master dictionary, for contents see below.
11 DRTFILE Distinct row table file for -CI- or -MCSCF-
12 CIVECTR Eigenvector file for -CI- or -MCSCF-
13 CASINTS semi-transformed ints for FOCAS/SOSCF MCSCF                         

scratch file during spin-orbit coupling
14 CIINTS Sorted integrals for -CI- or -MCSCF-
15 WORK15 GUGA loops for Hamiltonian diagonal; ordered two body density matrix

for MCSCF; scratch storage during GUGA Davidson diag; Hessian update
info during 2nd order SCF; [ia|jb] integrals during MP2 gradient

16 WORK16 GUGA loops for Hamiltonian off-diagonal;
unordered GUGA DM2 matrix for MCSCF;
orbital hessian during MCSCF;
orbital hessian for analytic hessian CPHF;
orbital hessian during MP2 gradient CPHF;
two body density during MP2 gradient

17 CSFSAVE CSF data for state to state transition runs.
18 FOCKDER derivative Fock matrices for analytic hess
20 DASORT Sort file for various -MCSCF- or -CI- steps; also used by SCF level

DIIS
21 DFTINTS four center overlap ints for grid-free DFT
23 JKFILE J and K "Fock" matrices for -GVB-; Hessian update info during SOSCF

MCSCF; orbital gradient and hessian for QUAD MCSCF
24 ORDINT sorted AO integrals; integral subsets during Morokuma analysis
25 EFPIND electric field integrals for EFP
26 PCMDATA gradient and D-inverse data for PCM runs
27 PCMINTS normal projections of PCM field gradients
30 DAFL30 direct access file for FOCAS MCSCF's DIIS; form factor sorting for

Breit spin-orbit

files 50-63 are used primarily for MCQDPT runs.
files 51-54 are also used during spin-orbit runs.

50 MCQD50 Direct access file for MC-QDPT, its contents are documented in source
code.



5-26

51 MCQD51 One-body coupling constants <I/Eij/J> for CAS-CI and other routines
52 MCQD52 One-body coupling constants for perturb.
53 MCQD53 One-body coupling constants extracted from MCQD52
54 MCQD54 One-body coupling constants extracted further from MCQD52
55 MCQD55 Sorted 2-e integrals
56 MCQD56 Half transformed 2-e integral
57 MCQD57 Sorted half transformed 2-e integral of the (ii/aa) type
58 MCQD58 Sorted half transformed 2-e integral of the (ei/aa) type
59 MCQD59 2-e integral in MO basis of the (ii/ii), (ei/ii), (ei/ei) types
60 MCQD60 2-e integral in MO basis arranged for perturbation calculations
61 MCQD61 One-body coupling constants between state and CSF <Alpha/Eij/J>
62 MCQD62 Two-body coupling constants between state and CSF <Alpha/Eij,kl/J>
63 MCQD63 canonical Fock orbitals  (FORMATTED)
64 MCQD64 Spin functions and orbital configuration functions (FORMATTED)

Contents of the direct access file 'DICTNRY'
 

1. Atomic coordinates
2. various energy quantities in /ENRGYS/
3. Gradient vector
4. Hessian (force constant) matrix

5-6. not used
7. PTR - symmetry transformation for p orbitals
8. DTR - symmetry transformation for d orbitals
9. FTR - symmetry transformation for f orbitals

10. GTR - symmetry transformation for g orbitals
11. Bare nucleus Hamiltonian integrals
12. Overlap integrals
13. Kinetic energy integrals
14. Alpha Fock matrix (current)
15. Alpha orbitals
16. Alpha density matrix
17. Alpha energies or occupation numbers
18. Beta Fock matrix (current)
19. Beta orbitals
20. Beta density matrix
21. Beta energies or occupation numbers
22. Error function interpolation table
23. Old alpha Fock matrix
24. Older alpha Fock matrix
25. Oldest alpha Fock matrix
26. Old beta Fock matrix
27. Older beta Fock matrix
28. Oldest beta Fock matrix
29. Vib 0 gradient for FORCE runs
30. Vib 0 alpha orbitals in FORCE
31. Vib 0 beta  orbitals in FORCE
32. Vib 0 alpha density matrix in FORCE
33. Vib 0 beta  density matrix in FORCE
34. dipole derivative tensor in FORCE.
35. frozen core Fock operator
36. Lagrangian multipliers
37. floating point part of common block /OPTGRD/



5-27

int 38. integer part of common block /OPTGRD/
39. ZMAT of input internal coords

int 40. IZMAT of input internal coords
41. B matrix of redundant internal coords
42. not used.
43. Force constant matrix in internal coordinates.
44. SALC transformation
45. symmetry adapted Q matrix
46. S matrix for symmetry coordinates
47. ZMAT for symmetry internal coords

int 48. IZMAT for symmetry internal coords
49. B matrix
50. B inverse matrix
51. overlap matrix in Lowdin basis, temp Fock matrix storage for ROHF
52. genuine MOPAC overlap matrix
53. MOPAC repulsion integrals
54. exchange integrals for screening
55. orbital gradient during SOSCF MCSCF
56. orbital displacement during SOSCF MCSCF
57. orbital hessian during SOSCF MCSCF
58. Reserved for Pradipta
59. Coulomb integrals in Ruedenberg localizations
60. exchange integrals in Ruedenberg localizations
61. temp MO storage for GVB and ROHF-MP2
62. temp density for GVB
63. dS/dx matrix for hessians
64. dS/dy matrix for hessians
65. dS/dz matrix for hessians
66. derivative hamiltonian for OS-TCSCF hessians
67. partially formed EG and EH for hessians
68. MCSCF first order density in MO basis
69. alpha Lowdin populations
70. beta Lowdin populations
71. alpha orbitals during localization
72. beta orbitals during localization
73. alpha localization transformation
74. beta localization transformation
75. fitted EFP interfragment repulsion values

76 -77. not used
78. "Erep derivative" matrix associated with F-a terms
79. "Erep derivative" matrix associated with S-a terms
80. EFP 1-e Fock matrix including induced dipole terms
81. not used
82. MO-based Fock matrix without any EFP contributions
83. LMO centroids of charge
84. d/dx dipole velocity integrals
85. d/dy dipole velocity integrals
86. d/dz dipole velocity integrals
87. unmodified h matrix during SCRF or EFP
88. not used
89. EFP multipole contribution to one e- Fock matrix
90. ECP coefficients

int 91. ECP labels
92. ECP coefficients



5-28

int 93. ECP labels
94. bare nucleus Hamiltonian during FFIELD runs
95. x dipole integrals, in AO basis
96. y dipole integrals, in AO basis
97. z dipole integrals, in AO basis
98. former coords for Schlegel geometry search
99. former gradients for Schlegel geometry search

100. not used

records 101-248 are used for NLO properties

101. U'x(0) 149. U''xx(-2w;w,w) 200.  UM''xx(-w;w,0)
102. y 150. xy 201. xy
103. z 151. xz 202. xz
104. G'x(0) 152. yy 203. yz
105. y 153. yz 204. yy
106. z 154. zz 205. yz
107. U'x(w) 155. G''xx(-2w;w,w) 206. zx
108. y 156. xy 207. zy
109. z 157. xz 208. zz
110. G'x(w) 158. yy 209. U''xx(0;w,-w)
111. y 159. yz 210. xy
112. z 160. zz 211. xz
113. U'x(2w) 161. e''xx(-2w;w,w) 212. yz
114. y 162. xy 213. yy
115. z 163. xz 214. yz
116. G'x(2w) 164. yy 215. zx
117. y 165. yz 216. zy
118. z 166. zz 217. zz
119. U'x(3w) 167. UM''xx(-2w;w,w) 218. G''xx(0;w,-w)
120. y 168. xy 219. xy
121. z 169. xz 220. xz
122. G'x(3w) 170. yy 221. yz
123. y 171. yz 222. yy
124. z 172. zz 223. yz
125. U''xx(0) 173. U''xx(-w;w,0) 224. zx
126. xy 174. xy 225. zy
127. xz 175. xz 226. zz
128. yy 176. yz 227. e''xx(0;w,-w)
129. yz 177. yy 228. xy
130. zz 178. yz 229. xz
131. G''xx(0) 179. zx 230. yz
132. xy 180. zy 231. yy
133. xz 181. zz 232. yz
134. yy 182. G''xx(-w;w,0) 233. zx
135. yz 183. xy 234. zy
136. zz 184. xz 235. zz
137. e''xx(0) 185. yz 236. UM''xx(0;w,-w)
138. xy 186. yy 237. xy
139. xz 187. yz 238. xz
140. yy 188. zx 239. yz
141. yz 189. zy 240. yy
142. zz 190. zz 241. yz
143. UM''xx(0) 191. e''xx(-w;w,0) 242. zx



5-29

144. xy 192. xy 243. zy
145. xz 193. xz 244. zz
146. yy 194. yz
147. yz 195. yy
148. zz 196. yz

197. zx
198. zy
199. zz

245. old NLO Fock matrix
246. older NLO Fock matrix
247. oldest NLO Fock matrix
249. not used
250. transition density matrix in AO basis
251. static polarizability tensor alpha
252. X dipole integrals in MO basis
253. Y dipole integrals in MO basis
254. Z dipole integrals in MO basis
255. alpha MO symmetry labels
256. beta MO symmetry labels

257-261. reserved for Cheol Choi
262-279. not used

280. Zero field LMOs during numerical polarizability
281. Alpha zero field dens. during num. polarizability
282. Beta zero field dens. during num. polarizability
283. zero field Fock matrix. during num. polarizability

284-289. not used
290-299. reserved for Alex Granovsky

300. Z-vector during MP2 gradient
301. Pocc during MP2 gradient
302. Pvir during MP2 gradient
303. Wai during MP2 gradient
304. Lagrangian Lai during MP2 or CI gradient
305. Wocc during MP2 gradient
306. Wvir during MP2 gradient
307. P(MP2)-P(RHF) during MP2 gradient
308. SCF density during MP2 gradient
309. energy weighted density during MP2 gradient
311. Supermolecule h during Morokuma
312. Supermolecule S during Morokuma
313. Monomer 1 orbitals during Morokuma
314. Monomer 2 orbitals during Morokuma
315. combined monomer orbitals during Morokuma
316. nonorthogonal SCF orbitals during SCF-MI
317. unzeroed Fock matrix when MOs are frozen
318. MOREAD orbitals when MOs are frozen
319. bare Hamiltonian without EFP contribution
320. MCSCF active orbital density
321. MCSCF DIIS error matrix
322. MCSCF orbital rotation indices
323. Hamiltonian matrix during QUAD MCSCF
324. MO symmetry labels during MCSCF
330. CEL matrix during PCM
331. VEF matrix during PCM



5-30

332. QEFF matrix during PCM
333. ELD matrix during PCM
340. DFT alpha Fock matrix
341. DFT beta Fock matrix
342. DFT screening integrals
343. DFT: V aux basis only
344. DFT density gradient d/dx integrals
345. DFT density gradient d/dy integrals
346. DFT density gradient d/dz integrals
347. DFT M[D] alpha density resolution in aux basis
348. DFT M[D] beta density resolution in aux basis
349. DFT orbital description
350. overlap of true and auxiliary DFT basis
351. previous iteration DFT alpha density
352. previous iteration DFT beta density
353. DFT screening matrix (true and aux basis)
354. DFT screening integrals (aux basis only)

360-369. reserved for Rob Bell
370. left transformation for pVp
371. right transformation for pVp
370. basis A (large component) during NESC
371. basis B (small component) during NESC
372. difference basis set A-B1 during NESC
373. basis N (rel. normalized large component)
374. basis B1 (small component) during NESC
375. charges of non-relativistic atoms in NESC
376. common nuclear charges for all NESC basis
377. common coordinates for all NESC basis
378. common exponent values for all NESC basis
372. left transformation for V  during RESC
373. right transformation for V during RESC
374. 2T, T is kinetic energy integrals during RESC
375. pVp integrals during RESC
376. V integrals during RESC
377. Sd, overlap eigenvalues during RESC
378. V, overlap eigenvectors during RESC
379. Lz integrals
380. reserved for Ly integrals.
381. reserved for Lx integrals.
382. X, AO orthogonalisation matrix during RESC
383. Td, eigenvalues of 2T during RESC
384. U, eigenvectors of kinetic energy during RESC

In order to correctly pass data between different machine types when running in parallel, it is
required that a DAF record must contain only floating point values, or only integer values.  No
logical or Hollerith data may be stored.  The final calling argument to DAWRIT and DAREAD must
be 0 or 1 to indicate floating point or integer values are involved.  The records containing
integers are so marked in the list below.

Physical record 1 (containing the DAF directory) is written whenever a new record is added
to the file.  This is invisible to the programmer.  The numbers shown above are "logical record
numbers", and are the only thing that the programmer need be concerned with.


