AlgEbRA Second Edition (2011) Artin

Partial Scrutiny, Solutions of some Exercises, Comments, Suggestions and Errata José Renato Ramos Barbosa

2017

Departamento de Matemática
Universidade Federal do Paraná
Curitiba - Paraná - Brasil
jrrb@ufpr.br

1
===12

Comments

p. 27, paragraph right before the last sentence of 1.5, "Every permutation ..."

A permutation p can be written as a product of cycles. A cycle $\left(l_{1} l_{2} l_{3} \ldots l_{m}\right)$ can be written as a product

$$
\left(\imath_{1} \imath_{m}\right) \ldots\left(l_{1} l_{3}\right)\left(\imath_{1} l_{2}\right)
$$

of transpositions. ${ }^{1}$ Now, once we write p as a product of cycles, let $\mathcal{N}(p)$ denote the number of distinct cycles of p, possibly including 1 -cycles, ${ }^{2}$ and consider a transposition $\tau=(1 \mathrm{j})$. Then

$$
\mathcal{N}(\tau p)= \begin{cases}\mathcal{N}(p)+1 & \text { if } \imath \text { and } \jmath \text { belong to the same cycle of } p ; \\ \mathcal{N}(p)-1 & \text { otherwise. }\end{cases}
$$

(In fact, in the first case,

$$
\tau\left(\begin{array}{llllll}
1 & \imath_{1} & \ldots & \imath_{r} & \jmath & \jmath_{1}
\end{array} \ldots \jmath_{s}\right)=\left(\begin{array}{llll}
l_{1} & \imath_{1} & \ldots & \imath_{r}
\end{array}\right)\left(\begin{array}{llll}
\jmath_{1} & \ldots & \jmath_{s}
\end{array}\right)
$$

increases the number of disjoint cycles by 1 , whereas

$$
\tau\left(\begin{array}{llll}
1 & \imath_{1} & \ldots & \imath_{r}
\end{array}\right)\left(\begin{array}{llll}
\jmath & \jmath_{1} & \ldots & \jmath_{s}
\end{array}\right)=\left(\begin{array}{llllll}
l & \imath_{1} & \ldots & \imath_{r} & \jmath & \jmath_{1}
\end{array} \ldots \jmath_{s}\right)
$$

decreases the number of disjoint cycles by 1 in the second case.) So, if τ_{i} is a transposition, $i=1, \ldots, k$,

$$
\mathcal{N}\left(\tau_{1} \cdots \tau_{k} p\right) \equiv \mathcal{N}(p)+k \quad \bmod 2
$$

(by induction on k). Finally, in considering permutations of S_{n}, suppose that p can be written as a product of transpositions in two different ways, say

$$
\begin{aligned}
p & =\tau_{1} \cdots \tau_{k} \\
& =\theta_{1} \cdots \theta_{\ell}
\end{aligned}
$$

and let

$$
\begin{aligned}
p_{0} & =1 \\
& =(\mathbf{1}) \cdots(\mathbf{n}) .
\end{aligned}
$$

Then (it follows from the previous result that)

$$
\begin{aligned}
\mathcal{N}(p)=\mathcal{N}\left(p p_{0}\right) & \equiv n+k \quad \bmod 2 \\
& \equiv n+\ell \quad \bmod 2
\end{aligned}
$$

Therefore

$$
k \equiv \ell \bmod 2
$$

which means that p is either a product of an even number of transpositions or a product of an odd number of transpositions, but never both.

[^0]
2

Comments/Errata

p. 40, l. 12
'Exercise 1.3' should be 'Exercise 1.2'.
p. 47, P. 2.4.3, last bullet

First, n / d is a positive integer and

$$
\begin{aligned}
\left(x^{k}\right)^{n / d} & =\left(x^{n}\right)^{k / d} \\
& =1^{k / d} \\
& =1
\end{aligned}
$$

Now, suppose that ℓ is an integer such that $\left(x^{k}\right)^{\ell}=1$. Since the second bullet also means that

$$
x^{k}=1 \Longleftrightarrow n \mid k
$$

it suffices to show that

$$
n / d \mid \ell
$$

In fact, it follows from

$$
\begin{aligned}
x^{k \ell}=1 & \Rightarrow n \mid k \ell \\
& \Rightarrow k \ell=m n \text { for some integer } m \\
& \Rightarrow \frac{k}{d} \cdot \ell=m \cdot \frac{n}{d} \\
& \Rightarrow n / d \left\lvert\, \frac{k}{d} \cdot \ell\right.
\end{aligned}
$$

and

$$
\operatorname{gcd}\left(\frac{n}{d}, \frac{k}{d}\right)=1
$$

p. 63

- E. 2.10.6
- Let \mathcal{H} be a subgroup of S_{3}. First, $\mathcal{H}=S_{3}$ if $x, y \in \mathcal{H}$. Second, if $x y, x^{2} y \in \mathcal{H}$, then $x^{2} y x y=x \in \mathcal{H}$, which implies that $x x^{2} y=y \in \mathcal{H}$. Finally, if $x y \in \mathcal{H}$ or $x^{2} y \in \mathcal{H}$,

$$
x \in \mathcal{H}, \text { that is, } x^{2} \in \mathcal{H} \Longleftrightarrow y \in \mathcal{H}
$$

Therefore, whichever \mathcal{H} one considers,

$$
\mathcal{H} \in\left\{\{1\},\langle x\rangle,\langle y\rangle,\langle x y\rangle,\left\langle x^{2} y\right\rangle, S_{3}\right\} .
$$

- Since $K \subset A_{4}, A_{4}$ corresponds to $\langle x\rangle$.
- last bullet ${ }^{3}$

Consider $H=\varphi^{-1}(\mathcal{H})$ and the restriction $\left.\varphi\right|_{H}$. Since $K \subset H, \operatorname{ker}\left(\left.\varphi\right|_{H}\right)=K$ by (2.10.2). Therefore, since $\varphi(H)=\mathcal{H}$ is the image of $\left.\varphi\right|_{H}$, the first bullet of \mathbf{C}. 2.8.13 implies that

$$
|H|=|\mathcal{H}||K|
$$

[^1]```
===
p. 67,11. 2-3 after }\square,\\ldots..[\mp@subsup{C}{1}{}\mp@subsup{C}{2}{}],\mathrm{ Where ..."
'W' should be 'w'.
```



```
p. 69, Proof
```

Some points on the bijectivity of $\bar{\varphi}$ :

1st, the elements of the image of $\varphi$ correspond bijectively to the nonempty fibres of $\varphi$ as stated on p. 55. 2nd, not only all such fibres are nonempty, by virtue of the surjectivity hypothesis, but also they are the equivalence classes for the relation defined by $\varphi$ as stated on pp. 55-6. Furthermore, such fibres are the cosets of $N$ by $\mathbf{P}$. 2.7.15.

## Another way to prove that $\bar{\varphi}$ is bijective:

- $\bar{\varphi}$ is surjective.

In fact, consider $y \in G^{\prime}$. Since $\varphi$ is surjective, there is an element $x \in G$ such that $y=\varphi(x)$. Therefore $\varphi^{-1}(y)=\bar{x}$ is an element of $\bar{G}$ such that $y=\bar{\varphi}(\bar{x})$.

- $\bar{\varphi}$ is injective.

In fact,

$$
\begin{aligned}
\bar{\varphi}(\bar{x})=\bar{\varphi}(\bar{y}) & \Rightarrow \varphi(x)=\varphi(y) \\
& \Rightarrow \bar{x}=\bar{y}
\end{aligned}
$$

by P. 2.5.8.

## 3

＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝12
Comments／Errata


p．82，1． 9
$\mathbb{F}_{P}^{\times}$should be $\mathbb{F}_{p}^{\times}$．
ニニーニローニーニーーー
p．85，1．－12
$\{c w\}$ should be $c w$ ．

## p．89，P．3．4．15（a）

Concerning the if part，consider $w \in \operatorname{Span} S$ ．Now apply L．3．4．5．
 p．90，T．3．4．18，Proof，$(S A) X=S(A X)$ In fact，

$$
\begin{aligned}
\left(S A_{1}, \ldots, S A_{2}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] & =\sum_{j=1}^{n}\left(S A_{j}\right) x_{j} \\
& =\sum_{j=1}^{n} S\left(A_{j} x_{j}\right) \\
& =S\left(\sum_{j=1}^{n} A_{j} x_{j}\right)
\end{aligned}
$$

since，by abuse of notation，$S: F^{m} \rightarrow V$ is linear by（3．4．2）．${ }^{4}$
p．98，C．3．7．7，1st bullet
Suppose $V$ has an infinite basis B．Therefore，on the one hand，B contains a finite subset $S$ that spans $V$（L． 3．7．6），which is independent due to the independence of $\mathbf{B}$ ．On the other hand，consider $S, w$ and $S^{\prime}$ are as in $\mathbf{P}$ ． 3．4．15（b）with $w \in \mathbf{B}$ ．Then，since $w \in \operatorname{Span} S, S^{\prime}$ is not independent，which is a contradiction since $S^{\prime}$ is a finite subset of $\mathbf{B}$ ，which is independet．

[^2]
## Comments/Errata



p. 104, l. -1
(4.2.3) is consistent with possible repetitions of images. ${ }^{5}$

p. 106, P. 4.2.13, Proof

Once bases are fixed for the domain and codomain of $T$, the conclusion of part (a) is a consequence of the uniqueness of $A^{\prime}$. In fact, the coefficients of (4.2.7) are unique since $\mathbf{C}$ is independent.
$=============================================================================$ p. 107, 1st three sentences after (4.2.15)

The restriction of $Q$ to $U^{\prime}$, the column space of $A^{\prime}$, is an isomorphism from $U^{\prime}$ to $U$, the column space of $A$, since:

1. $Q$ is linear;
2. $Q$ is invertible;
3. $Q\left(A^{\prime} X^{\prime}\right)=A\left(P X^{\prime}\right)$ for each $X^{\prime} \in F^{n}$.

p. 108, l. -7
$K=0$ should be $K=\{0\}$.

pp. 112-13, content of the '•
For a complete and general proof, see the Perron-Frobenius Theorem.



## Exercises, pp. 125-131



2.4. (A proof without using row and column operations!)

Concerning (4.2.9), replace $T$ with $A$ and take B and C as in T. 4.2.10(a). Furthermore, if

$$
\mathbf{B}=\left\{P_{1}, \ldots, P_{n}\right\} \quad \text { and } \quad \mathbf{C}=\left\{Q_{1}, \ldots, Q_{m}\right\}
$$

consider the matrices

$$
P=\left[\begin{array}{lll}
P_{1} & \ldots & P_{n}
\end{array}\right] \text { and } Q=\left[\begin{array}{lll}
Q_{1} & \ldots & Q_{m}
\end{array}\right] .
$$

Therefore the diagram

commutes.

[^3]


## Comments



p. 331, 1. -3

Let $I$ be an ideal and $a$ a unit (of $R$ ). Then the 2 nd bullet of $\mathbf{D}$. 11.3.13 implies that $1=a^{-1} a \in I$ and, for each $r \in R, r=r 1 \in I$. Therefore $R \subset I$.
p. 334, last sentence before L. 11.3.24
(Here, $R[x] f$ denotes the multiples of $f$ in $R[x]$ with $R=\mathbb{Z}, \mathbb{Q}$ (11.3.15).) On the one hand, since $\operatorname{ker} \Phi^{\prime} \subset$ $\operatorname{ker} \Phi=\mathbb{Q}[x] f\left(\mathbf{E}\right.$. 11.3.23), if $g \in \operatorname{Ker} \Phi^{\prime}$, then $g \in \mathbb{Z}[x]$ and $f$ divides $g$ in $\mathbb{Q}[x]$. Thus $f$ divides $g$ in $\mathbb{Z}[x]$ (L. 11.3.24). Hence $\operatorname{ker} \Phi^{\prime} \subset \mathbb{Z}[x] f$. On the other hand, since $\mathbb{Z}[x] f \subset \mathbb{Q}[x] f=\operatorname{ker} \Phi$, if $g \in \mathbb{Z}[x] f$, then $g \in \mathbb{Z}[x]$ and $\Phi(g)=0$. Hence $g \in \operatorname{ker} \Phi^{\prime}$. Therefore $\operatorname{ker} \Phi^{\prime}=\mathbb{Z}[x] f$.


## p. 336, last sentence

Since $\varphi$ is surjective by hypothesis and $\tilde{\pi}$ is surjective by T. 2.12.2, p. 66, it follows that $f=\tilde{\pi} \varphi$ is surjective. Hence $\bar{f}$ is an isomorphism.
$===================================================================================$
p. 337 p. 337

## E. 11.4.4(b)

Here, $\pi$ is used in place of $\varphi$ of the Correspondence Theorem. ker $\pi=\left(t^{2}-1\right)$ follows from T. 11.4.1. $I=(f)$ follows from P. 11.3.22.

1. -9

Since $\pi$ is surjective and ker $\pi=I$, if $I=R$, then $\bar{R}=\{\overline{0}\}$.

## p. 338, E. 11.4.5

- $\mathbb{Z}[x] \rightarrow \mathbb{Z}[i]$ can be thought of as being the extension $\Phi$ of $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}[i]$ as considered in the Substitution Principle. (As a matter of fact, here, $\varphi$ is the inclusion map by P. 11.3.10.) Notice that $K=\operatorname{ker} \Phi$ is an ideal as can be seen on page 331. Furthermore, $K=(f)$. In fact, on the one hand, $i^{2}+1=0$ shows that $f \in K$; hence $(f) \subset K$. On the other hand, if $h \in K$, then $h(i)=0$, which implies that $h(-i)=0$ by the Complex Conjugate Root Theorem. Thus $x \pm i$ divide $h$ in $\mathbb{C}[x]$. Then

$$
\begin{aligned}
(x+i)(x-i) & =x^{2}+1 \\
& =f
\end{aligned}
$$

divides $h$ in $\mathbb{Z}[x]$. So $h \in(f)$. Therefore $K \subset(f)$.

- $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ can be thought of as being the extension $\Phi$ of $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ as considered in the Substitution Principle. (As a matter of fact, here, $\varphi$ is the identity map by P.11.3.10.) Notice that $K=\operatorname{ker} \Phi$ is an ideal as can be seen on page 331. Furthermore, $K=(g)$. In fact, on the one hand, $x-2 \rightsquigarrow 0$ shows that $g \in K$; hence $(g) \subset K$. On the other hand, if $h \in K$, then $h(2)=0$. Thus $x-2$ divides $h$ in $\mathbb{Z}[x]$. So $h \in(g)$. Therefore $K \subset(g)$.
p. 340, Proof of the proposition, (a), last sentence

$$
\begin{aligned}
\beta & =a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha_{1}+a_{0} \\
& =b_{n-1} \alpha^{n-1}+\cdots+b_{1} \alpha_{1}+b_{0}
\end{aligned}
$$

implies that $\left(a_{n-1}-b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1}-b_{1}\right) x+a_{0}-b_{0}$ belongs to $(f)$ !

## p. 341, P. 11.6.1(d)

Note that $(1,1)$ is neither in $R \times\{0\}$ nor in $\{0\} \times R^{\prime}$.

p. 342, E. 11.6.3(b)

If $f(x, 0)=0$ and $f(0, y)=0$, it follows from $\mathbf{C}$. 11.3.9 that both $y-0$ and $x-0$ divide $f(x, y)$ in $\mathbb{C}[x, y]$.
$=============================================================================$
p. 343, 11. 6,7

See E. 7.2.
p. 343, Mapping Property

Note that, if $\phi$ denotes the embedding of $R$ into $F$, then

$$
\varphi=\Phi \circ \phi
$$

Now, $\Phi$ is a homomorphism since

$$
\begin{aligned}
\Phi(0 / 1) & =\Phi(\phi(0)) \\
& =\varphi(0) \\
& =0 \\
\Phi(1 / 1) & =\Phi(\phi(1)) \\
& =\varphi(1) \\
& =1, \\
\Phi\left(\frac{a}{b}+\frac{c}{d}\right) & =\Phi\left(\frac{a d+b c}{b d}\right) \\
& =\varphi(a d+b c) \varphi(b d)^{-1} \\
& =(\varphi(a) \varphi(d)+\varphi(b) \varphi(c)) \varphi(b)^{-1} \varphi(d)^{-1} \\
& =\varphi(a) \varphi(b)^{-1}+\varphi(c) \varphi(d)^{-1} \\
& =\Phi\left(\frac{a}{b}\right)+\Phi\left(\frac{c}{d}\right) \text { and } \\
\Phi\left(\frac{a}{b} \frac{c}{d}\right) & =\Phi\left(\frac{a c}{b d}\right) \\
& =\varphi(a c) \varphi(b d)^{-1} \\
& =\varphi(a) \varphi(c) \varphi(b)^{-1} \varphi(d)^{-1} \\
& =\varphi(a) \varphi(b)^{-1} \varphi(c) \varphi(d)^{-1} \\
& =\Phi\left(\frac{a}{b}\right) \Phi\left(\frac{c}{d}\right) .
\end{aligned}
$$

p. 345, l. 7

For the use of ' $<$ ' in place of ' $C$ ', see p. 527.


## Exercises, pp. 354-358



7.2. Consider $p(x), q(x) \in R[x]-\{0\}$. Let $a_{\operatorname{deg} p}$ and $b_{\operatorname{deg} q}$ be the leading coefficients of $p(x)$ and $q(x)$, respectively. Since $R$ is a domain, $a_{\operatorname{deg} p} b_{\operatorname{deg} q}$ is the leading coefficient of $p(x) q(x)$. In particular, $p(x) q(x) \neq 0$ and

$$
\operatorname{deg}(p q)=\operatorname{deg} p+\operatorname{deg} q
$$

## Errata

p. 421, 1.6
$r$ should be $k$.



## Comments

p. 414, Proof, (a)

If $A$ is an $n \times n$ matrix and $L$ is an $m \times n$ matrix with $L A=I_{m}$, then $m=n$.
p. 421, ll. 10-12, "(b),(d) ..

Note that, since $A^{\prime}=Q^{-1} A P$, if $X^{\prime}=P^{-1} X$ and $Y^{\prime}=Q^{-1} Y$, then

$$
\begin{aligned}
A X=Y & \Leftrightarrow\left(Q^{-1} A P\right) P^{-1} X=Q^{-1} Y \\
& \Leftrightarrow A^{\prime} X^{\prime}=Y^{\prime}
\end{aligned}
$$

p. 421, C. 14.4.10

See (14.2.9) (with $R=\mathbb{Z}$ ), (14.4.7) and the sentence right before $\mathbf{P}$. 14.2.6.
p. 421, 1st sentence of the Proof of T. 14.4.11

As far as the existence of $\mathbf{B}$ is concerned, consider the very end of the proof.

[^4]
[^0]:    ${ }^{1}$ As a matter of fact, there are many ways to write a cycle as a product of transpositions. For example, the 4 -cycle (1347) can be written as $(17)(14)(13)$ or as $(47)(34)(13)(37)(14)$.
    ${ }^{2}$ For example, concerning the identity permutation of $S_{n}, \mathcal{N}(1)=n$ when considering $1=(\mathbf{1}) \cdots(\mathbf{n})$

[^1]:    ${ }^{3}$ On p. 64, its proof is left as an exercise!

[^2]:    ${ }^{4}$ The notation for such a linear transformation appears in the sentence right after（3．5．3）．

[^3]:    ${ }^{5}$ See p. 86, 2nd paragraph of 3.4.

[^4]:    
    

