ALGEBRA Second Edition (2011) Artin

PARTIAL SCRUTINY, SOLUTIONS OF SOME EXERCISES, COMMENTS, SUGGESTIONS AND ERRATA José Renato Ramos Barbosa 2017

> Departamento de Matemática Universidade Federal do Paraná Curitiba - Paraná - Brasil jrrb@ufpr.br

Comments

1

A permutation *p* can be written as a product of cycles. A cycle $(l_1 \ l_2 \ l_3 \ \dots \ l_m)$ can be written as a product

 $(\iota_1 \iota_m) \dots (\iota_1 \iota_3) (\iota_1 \iota_2)$

of transpositions.¹ Now, once we write *p* as a product of cycles, let $\mathcal{N}(p)$ denote the number of distinct cycles of *p*, possibly including 1-cycles,² and consider a transposition $\tau = (\iota_1)$. Then

$$\mathcal{N}(\tau p) = \begin{cases} \mathcal{N}(p) + 1 & \text{if } i \text{ and } j \text{ belong to the same cycle of } p; \\ \mathcal{N}(p) - 1 & \text{otherwise.} \end{cases}$$

(In fact, in the first case,

$$(\iota \iota_1 \ldots \iota_r \jmath \jmath_1 \ldots \jmath_s) = (\iota \iota_1 \ldots \iota_r) (\jmath \jmath_1 \ldots \jmath_s)$$

increases the number of disjoint cycles by 1, whereas

 τ

$$\tau (\iota \iota_1 \ldots \iota_r) (\jmath \jmath_1 \ldots \jmath_s) = (\iota \iota_1 \ldots \iota_r \jmath \jmath_1 \ldots \jmath_s)$$

decreases the number of disjoint cycles by 1 in the second case.) So, if τ_i is a transposition, i = 1, ..., k,

$$\mathcal{N}(\tau_1\cdots\tau_k p)\equiv\mathcal{N}(p)+k\mod 2$$

(by induction on k). Finally, in considering permutations of S_n , suppose that p can be written as a product of transpositions in two different ways, say

$$p = \tau_1 \cdots \tau_k$$
$$= \theta_1 \cdots \theta_\ell$$

and let

$$p_0 = 1$$
$$= (\mathbf{1}) \cdots (\mathbf{n})$$

Then (it follows from the previous result that)

$$\mathcal{N}(p) = \mathcal{N}(pp_0) \equiv n+k \mod 2$$

 $\equiv n+\ell \mod 2.$

Therefore

$k \equiv \ell \mod 2$,

which means that *p* is either a product of an even number of transpositions or a product of an odd number of transpositions, but never both.

¹As a matter of fact, there are many ways to write a cycle as a product of transpositions. For example, the 4-cycle $(1 \ 3 \ 4 \ 7)$ can be written as $(1 \ 7)(1 \ 4)(1 \ 3)$ or as $(4 \ 7)(3 \ 4)(1 \ 3)(3 \ 7)(1 \ 4)$.

²For example, concerning the identity permutation of S_n , $\mathcal{N}(1) = n$ when considering $1 = (1) \cdots (n)$.

= 2 **Comments/Errata**

	=======================================	

p. 40, l. 12

'Exercise 1.3' should be 'Exercise 1.2'.

______ p. 47, P. 2.4.3, last bullet

First, n/d is a positive integer and

$$(x^k)^{n/d} = (x^n)^{k/d}$$
$$= 1^{k/d}$$
$$= 1.$$

Now, suppose that ℓ is an integer such that $(x^k)^{\ell} = 1$. Since the second bullet also means that

$$x^k = 1 \Longleftrightarrow n | k,$$

it suffices to show that

 $n/d|\ell.$

In fact, it follows from

 $x^{k\ell} = 1 \Rightarrow n | k\ell$ $\Rightarrow k\ell = mn$ for some integer *m* $\Rightarrow \frac{k}{d} \cdot \ell = m \cdot \frac{n}{d}$ $\Rightarrow n/d \Big| \frac{k}{d} \cdot \ell$

and

$\operatorname{gcd}\left(\frac{n}{d},\frac{k}{d}\right) = 1.$

p. 63

• E. 2.10.6

- Let \mathcal{H} be a subgroup of S_3 . First, $\mathcal{H} = S_3$ if $x, y \in \mathcal{H}$. Second, if $xy, x^2y \in \mathcal{H}$, then $x^2yxy = x \in \mathcal{H}$, which implies that $xx^2y = y \in \mathcal{H}$. Finally, if $xy \in \mathcal{H}$ or $x^2y \in \mathcal{H}$,

$$x \in \mathcal{H}$$
, that is, $x^2 \in \mathcal{H} \iff y \in \mathcal{H}$.

Therefore, whichever \mathcal{H} one considers,

$$\mathcal{H} \in \left\{ \{1\}, \langle x \rangle, \langle y \rangle, \langle xy \rangle, \langle x^2y \rangle, S_3
ight\}.$$

- Since $K \subset A_4$, A_4 corresponds to $\langle x \rangle$.

• last bullet³

Consider $H = \varphi^{-1}(\mathcal{H})$ and the restriction $\varphi|_{H}$. Since $K \subset H$, ker $(\varphi|_{H}) = K$ by (2.10.2). Therefore, since $\varphi(H) = \mathcal{H}$ is the image of $\varphi|_{H}$, the first bullet of **C. 2.8.13** implies that

$$|H| = |\mathcal{H}||K|.$$

³On p. **64**, its proof is left as an exercise!

=================			-======================================
p. 67 , ll. 2-3 after □,	" $[C_1C_2]$, Where"		
'W' should be 'w'.		1	
==================	=======================================	=======================================	-======================================
p. 69 , Proof			

Some points on the bijectivity of $\overline{\varphi}$:

1st, the elements of the image of φ correspond bijectively to the nonempty fibres of φ as stated on p. 55. 2nd, not only all such fibres are nonempty, by virtue of the surjectivity hypothesis, but also they are the equivalence classes for the relation defined by φ as stated on pp. 55-6. Furthermore, such fibres are the cosets of *N* by **P**. 2.7.15.

Another way to prove that $\overline{\varphi}$ is bijective:

- $\overline{\varphi}$ is surjective.
- In fact, consider $y \in G'$. Since φ is surjective, there is an element $x \in G$ such that $y = \varphi(x)$. Therefore $\varphi^{-1}(y) = \overline{x}$ is an element of \overline{G} such that $y = \overline{\varphi}(\overline{x})$.
- $\overline{\varphi}$ is injective. In fact,

$$\overline{\varphi} \left(\overline{x}
ight) = \overline{\varphi} \left(\overline{y}
ight) \Rightarrow \varphi(x) = \varphi(y)$$

 $\Rightarrow \overline{x} = \overline{y}$

by P. 2.5.8.

3

Comments/Errata

p. **82**, l. 9 \mathbb{F}_p^{\times} should be \mathbb{F}_p^{\times} .

p. 89, P. 3.4.15(a)

Concerning the if part, consider $w \in \text{Span } S$. Now apply L. 3.4.5.

p. **90**, **T. 3.4.18**, *Proof*, (SA)X = S(AX)In fact,

$$(SA_1, \dots, SA_2) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{j=1}^n (SA_j) x_j$$
$$= \sum_{j=1}^n S(A_j x_j)$$
$$= S\left(\sum_{j=1}^n A_j x_j\right)$$

since, by abuse of notation, $S: F^m \to V$ is linear by (3.4.2).⁴

p. 98, C. 3.7.7, 1st bullet

Suppose *V* has an infinite basis **B**. Therefore, on the one hand, **B** contains a finite subset *S* that spans *V* (**L**. **3.7.6**), which is independent due to the independence of **B**. On the other hand, consider *S*, *w* and *S'* are as in **P**. **3.4.15(b)** with $w \in \mathbf{B}$. Then, since $w \in \text{Span } S$, *S'* is not independent, which is a contradiction since *S'* is a finite subset of **B**, which is independet.

⁴The notation for such a linear transformation appears in the sentence right after (3.5.3).

_____ ______ 4 ______ ______ **Comments/Errata** ______ _____ p. 104, l. -1 (4.2.3) is consistent with possible repetitions of images.⁵ _____ p. 106, P. 4.2.13, Proof Once bases are fixed for the domain and codomain of T, the conclusion of part (a) is a consequence of the uniqueness of A'. In fact, the coefficients of (4.2.7) are unique since **C** is independent. _____ p. **107**, 1st three sentences after (4.2.15) The restriction of Q to U', the column space of A', is an isomorphism from U' to U, the column space of A, since: 1. *Q* is linear; 2. *Q* is invertible; 3. Q(A'X') = A(PX') for each $X' \in F^n$. _____ p. 108, l. -7 K = 0 should be $K = \{0\}$. _____ pp. **112-13**, content of the '•' For a complete and general proof, see the Perron-Frobenius Theorem. _____ Exercises, pp. 125-131 _____ ______ ______ 2.4. (A proof without using row and column operations!)

2.4. (A proof without using row and column operations!) Concerning (4.2.9), replace *T* with *A* and take **B** and **C** as in **T. 4.2.10(a)**. Furthermore, if

$$\mathbf{B} = \{P_1, ..., P_n\}$$
 and $\mathbf{C} = \{Q_1, ..., Q_m\}$,

consider the matrices

$$P = \begin{bmatrix} P_1 & \dots & P_n \end{bmatrix}$$
 and $Q = \begin{bmatrix} Q_1 & \dots & Q_m \end{bmatrix}$.

Therefore the diagram

$$\begin{array}{ccc} F^n & \xrightarrow{A'} & F^m \\ P & & & \downarrow Q \\ F^n & \xrightarrow{A} & F^m \end{array}$$

commutes.

⁵See p. **86**, 2nd paragraph of **3.4**.

11 ______

Comments

p. **331**, l. -3

Let *I* be an ideal and *a* a unit (of *R*). Then the 2nd bullet of **D**. 11.3.13 implies that $1 = a^{-1}a \in I$ and, for each $r \in R$, $r = r1 \in I$. Therefore $R \subset I$.

p. 334, last sentence before L. 11.3.24

(Here, R[x]f denotes the multiples of f in R[x] with $R = \mathbb{Z}$, Q (11.3.15).) On the one hand, since ker $\Phi' \subset$ ker $\Phi = \mathbb{Q}[x]f$ (E. 11.3.23), if $g \in$ Ker Φ' , then $g \in \mathbb{Z}[x]$ and f divides g in $\mathbb{Q}[x]$. Thus f divides g in $\mathbb{Z}[x]$ (L. 11.3.24). Hence ker $\Phi' \subset \mathbb{Z}[x]f$. On the other hand, since $\mathbb{Z}[x]f \subset \mathbb{Q}[x]f =$ ker Φ , if $g \in \mathbb{Z}[x]f$, then $g \in \mathbb{Z}[x]$ and $\Phi(g) = 0$. Hence $g \in$ ker Φ' . Therefore ker $\Phi' = \mathbb{Z}[x]f$.

p. 336, last sentence

Since φ is surjective by hypothesis and $\tilde{\pi}$ is surjective by **T. 2.12.2**, p. **66**, it follows that $f = \tilde{\pi}\varphi$ is surjective. Hence \overline{f} is an isomorphism.

p. 337

E. 11.4.4(b)

Here, π is used in place of φ of the **Correspondence Theorem**. ker $\pi = (t^2 - 1)$ follows from **T. 11.4.1**. I = (f) follows from **P. 11.3.22**.

1. -9

Since π is surjective and ker $\pi = I$, if I = R, then $\overline{R} = \{\overline{0}\}$.

p. 338, E. 11.4.5

• $\mathbb{Z}[x] \to \mathbb{Z}[i]$ can be thought of as being the extension Φ of $\varphi : \mathbb{Z} \to \mathbb{Z}[i]$ as considered in the **Substitution Principle**. (As a matter of fact, here, φ is the inclusion map by **P. 11.3.10**.) Notice that $K = \ker \Phi$ is an ideal as can be seen on page **331**. Furthermore, K = (f). In fact, on the one hand, $i^2 + 1 = 0$ shows that $f \in K$; hence $(f) \subset K$. On the other hand, if $h \in K$, then h(i) = 0, which implies that h(-i) = 0 by the Complex Conjugate Root Theorem. Thus $x \pm i$ divide h in $\mathbb{C}[x]$. Then

$$(x+i)(x-i) = x^2 + 1$$
$$= f$$

divides *h* in $\mathbb{Z}[x]$. So $h \in (f)$. Therefore $K \subset (f)$.

• $\mathbb{Z}[x] \to \mathbb{Z}$ can be thought of as being the extension Φ of $\varphi : \mathbb{Z} \to \mathbb{Z}$ as considered in the **Substitution Principle**. (As a matter of fact, here, φ is the identity map by **P. 11.3.10**.) Notice that $K = \ker \Phi$ is an ideal as can be seen on page **331**. Furthermore, K = (g). In fact, on the one hand, $x - 2 \to 0$ shows that $g \in K$; hence $(g) \subset K$. On the other hand, if $h \in K$, then h(2) = 0. Thus x - 2 divides h in $\mathbb{Z}[x]$. So $h \in (g)$. Therefore $K \subset (g)$.

p. **340**, *Proof of the proposition*, (a), last sentence

$$\beta = a_{n-1}\alpha^{n-1} + \dots + a_1\alpha_1 + a_0$$

= $b_{n-1}\alpha^{n-1} + \dots + b_1\alpha_1 + b_0$

implies that $(a_{n-1} - b_{n-1}) x^{n-1} + \dots + (a_1 - b_1) x + a_0 - b_0$ belongs to (f)!

p. **341**, **P. 11.6.1(d)** Note that (1, 1) is neither in $R \times \{0\}$ nor in $\{0\} \times R'$.

p. **342**, **E. 11.6.3(b)** If f(x, 0) = 0 and f(0, y) = 0, it follows from **C. 11.3.9** that both y - 0 and x - 0 divide f(x, y) in $\mathbb{C}[x, y]$.

======

See E. 7.2.

p. 343, Mapping Property

Note that, if ϕ denotes the embedding of *R* into *F*, then

$$\varphi = \Phi \circ \phi.$$

Now, Φ is a homomorphism since

$$\begin{split} \Phi(0/1) &= \Phi(\phi(0)) \\ &= \varphi(0) \\ &= 0, \\ \Phi(1/1) &= \Phi(\phi(1)) \\ &= q(1) \\ &= 1, \\ \Phi\left(\frac{a}{b} + \frac{c}{d}\right) &= \Phi\left(\frac{ad+bc}{bd}\right) \\ &= \varphi(ad+bc)\varphi(bd)^{-1} \\ &= (\varphi(a)\varphi(d) + \varphi(b)\varphi(c))\varphi(b)^{-1}\varphi(d)^{-1} \\ &= \varphi(a)\varphi(b)^{-1} + \varphi(c)\varphi(d)^{-1} \\ &= \Phi\left(\frac{a}{b}\right) + \Phi\left(\frac{c}{d}\right) \text{ and} \\ \Phi\left(\frac{a}{b}\frac{c}{d}\right) &= \Phi\left(\frac{ac}{bd}\right) \\ &= \varphi(ac)\varphi(bd)^{-1} \\ &= \varphi(a)\varphi(c)\varphi(d)^{-1} \\ &= \varphi(a)\varphi(b)^{-1}\varphi(c)\varphi(d)^{-1} \\ &= \Phi\left(\frac{a}{b}\right)\Phi\left(\frac{c}{d}\right). \end{split}$$

p. **345**, l. 7

For the use of '<' in place of ' \subset ', see p. 527.

Exercises, pp. 354-358

7.2. Consider $p(x), q(x) \in R[x] - \{0\}$. Let $a_{\deg p}$ and $b_{\deg q}$ be the leading coefficients of p(x) and q(x), respectively. Since *R* is a domain, $a_{\deg p}b_{\deg q}$ is the leading coefficient of p(x)q(x). In particular, $p(x)q(x) \neq 0$ and

$$\deg(pq) = \deg p + \deg q$$

Errata

p. **421**, l. 6 *r* should be *k*.

Comments

p. 414, Proof, (a)

If *A* is an $n \times n$ matrix and *L* is an $m \times n$ matrix with $LA = I_m$, then m = n.

p. **421**, ll. 10-12, "**(b)**,**(d)** ... □"

Note that, since $A' = Q^{-1}AP$, if $X' = P^{-1}X$ and $Y' = Q^{-1}Y$, then

$$AX = Y \Leftrightarrow \left(Q^{-1}AP\right)P^{-1}X = Q^{-1}Y$$
$$\Leftrightarrow A'X' = Y'.$$

p. 421, C. 14.4.10

See (14.2.9) (with $R = \mathbb{Z}$), (14.4.7) and the sentence right before **P. 14.2.6**.

p. 421, 1st sentence of the Proof of T. 14.4.11

As far as the existence of **B** is concerned, consider the very end of the proof.