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================================================================================
================================================================================
1
================================================================================
================================================================================
Comments
================================================================================
================================================================================
p. 27, paragraph right before the last sentence of 1.5, “Every permutation ...”

A permutation p can be written as a product of cycles. A cycle (ı1 ı2 ı3 . . . ım) can be written as a product

(ı1 ım) . . . (ı1 ı3) (ı1 ı2)

of transpositions.1 Now, once we write p as a product of cycles, let N (p) denote the number of distinct cycles
of p, possibly including 1-cycles,2 and consider a transposition τ = (ı ). Then

N (τp) =

{

N (p) + 1 if ı and  belong to the same cycle of p;
N (p)− 1 otherwise.

(In fact, in the first case,
τ (ı ı1 . . . ır  1 . . . s) = (ı ı1 . . . ır) ( 1 . . . s)

increases the number of disjoint cycles by 1, whereas

τ (ı ı1 . . . ır) ( 1 . . . s) = (ı ı1 . . . ır  1 . . . s)

decreases the number of disjoint cycles by 1 in the second case.) So, if τi is a transposition, i = 1, . . . , k,

N (τ1 · · · τk p) ≡ N (p) + k mod 2

(by induction on k). Finally, in considering permutations of Sn, suppose that p can be written as a product of
transpositions in two different ways, say

p = τ1 · · · τk

= θ1 · · · θℓ,

and let

p0 = 1

= (1) · · · (n).

Then (it follows from the previous result that)

N (p) = N (pp0) ≡ n + k mod 2

≡ n + ℓ mod 2.

Therefore
k ≡ ℓ mod 2,

which means that p is either a product of an even number of transpositions or a product of an odd number of
transpositions, but never both.
================================================================================

1As a matter of fact, there are many ways to write a cycle as a product of transpositions. For example, the 4-cycle (1 3 4 7) can be
written as (1 7)(1 4)(1 3) or as (4 7)(3 4)(1 3)(3 7)(1 4).

2For example, concerning the identity permutation of Sn, N (1) = n when considering 1 = (1) · · · (n).
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================================================================================
================================================================================
2
================================================================================
================================================================================
Comments/Errata
================================================================================
================================================================================
p. 40, l. 12
‘Exercise 1.3’ should be ‘Exercise 1.2’.
================================================================================
p. 47, P. 2.4.3, last bullet
First, n/d is a positive integer and

(

xk
)n/d

= (xn)k/d

= 1k/d

= 1.

Now, suppose that ℓ is an integer such that
(

xk
)ℓ

= 1. Since the second bullet also means that

xk = 1 ⇐⇒ n|k,

it suffices to show that
n/d

∣

∣ℓ.

In fact, it follows from

xkℓ = 1 ⇒ n|kℓ

⇒ kℓ = mn for some integer m

⇒
k

d
· ℓ = m ·

n

d

⇒ n/d
∣

∣

k

d
· ℓ

and

gcd

(

n

d
,

k

d

)

= 1.

================================================================================
p. 63

• E. 2.10.6

– Let H be a subgroup of S3. First, H = S3 if x, y ∈ H. Second, if xy, x2y ∈ H, then x2yxy = x ∈ H,
which implies that xx2y = y ∈ H. Finally, if xy ∈ H or x2y ∈ H,

x ∈ H, that is, x2 ∈ H ⇐⇒ y ∈ H.

Therefore, whichever H one considers,

H ∈
{

{1} , 〈x〉, 〈y〉, 〈xy〉, 〈x2y〉, S3

}

.

– Since K ⊂ A4, A4 corresponds to 〈x〉.

• last bullet3

Consider H = ϕ−1 (H) and the restriction ϕ|H . Since K ⊂ H, ker (ϕ|H) = K by (2.10.2). Therefore, since
ϕ(H) = H is the image of ϕ|H , the first bullet of C. 2.8.13 implies that

|H| = |H||K|.

3On p. 64, its proof is left as an exercise!
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================================================================================
p. 67, ll. 2-3 after �, “... [C1C2], Where ...”

‘W’ should be ‘w’.
================================================================================
p. 69, Proof

Some points on the bijectivity of ϕ:

1st, the elements of the image of ϕ correspond bijectively to the nonempty fibres of ϕ as stated on p. 55. 2nd,
not only all such fibres are nonempty, by virtue of the surjectivity hypothesis, but also they are the equivalence
classes for the relation defined by ϕ as stated on pp. 55-6. Furthermore, such fibres are the cosets of N by P.
2.7.15.

Another way to prove that ϕ is bijective:

• ϕ is surjective.
In fact, consider y ∈ G′. Since ϕ is surjective, there is an element x ∈ G such that y = ϕ(x). Therefore
ϕ−1(y) = x is an element of G such that y = ϕ (x).

• ϕ is injective.
In fact,

ϕ (x) = ϕ (y) ⇒ ϕ(x) = ϕ(y)

⇒ x = y

by P. 2.5.8.
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================================================================================
================================================================================
3
================================================================================
================================================================================
Comments/Errata
================================================================================
================================================================================
p. 82, l. 9
F×

P should be F×
p .

================================================================================
p. 85, l. -12
{cw} should be cw.
================================================================================
p. 89, P. 3.4.15(a)
Concerning the if part, consider w ∈ Span S. Now apply L. 3.4.5.
================================================================================
p. 90, T. 3.4.18, Proof, (SA)X = S(AX)
In fact,

(SA1, . . . , SA2)







x1
...

xn






=

n

∑
j=1

(

SAj

)

xj

=
n

∑
j=1

S
(

Ajxj

)

= S

(

n

∑
j=1

Ajxj

)

since, by abuse of notation, S : Fm → V is linear by (3.4.2).4

================================================================================
p. 98, C. 3.7.7, 1st bullet
Suppose V has an infinite basis B. Therefore, on the one hand, B contains a finite subset S that spans V (L.
3.7.6), which is independent due to the independence of B. On the other hand, consider S, w and S′ are as in P.
3.4.15(b) with w ∈ B. Then, since w ∈ Span S, S′ is not independent, which is a contradiction since S′ is a finite
subset of B, which is independet.

4The notation for such a linear transformation appears in the sentence right after (3.5.3).
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================================================================================
================================================================================
4
================================================================================
================================================================================
Comments/Errata
================================================================================
================================================================================
p. 104, l. -1
(4.2.3) is consistent with possible repetitions of images.5

================================================================================
p. 106, P. 4.2.13, Proof
Once bases are fixed for the domain and codomain of T, the conclusion of part (a) is a consequence of the
uniqueness of A′. In fact, the coefficients of (4.2.7) are unique since C is independent.
================================================================================
p. 107, 1st three sentences after (4.2.15)
The restriction of Q to U′, the column space of A′, is an isomorphism from U′ to U, the column space of A,
since:

1. Q is linear;

2. Q is invertible;

3. Q (A′X′) = A(PX′) for each X′ ∈ Fn.

================================================================================
p. 108, l. -7
K = 0 should be K = {0}.
================================================================================
pp. 112-13, content of the ‘•’
For a complete and general proof, see the Perron-Frobenius Theorem.
================================================================================
================================================================================
Exercises, pp. 125-131
================================================================================
================================================================================

2.4. (A proof without using row and column operations!)
Concerning (4.2.9), replace T with A and take B and C as in T. 4.2.10(a). Furthermore, if

B = {P1, . . . , Pn} and C = {Q1, . . . , Qm} ,

consider the matrices
P =

[

P1 . . . Pn
]

and Q =
[

Q1 . . . Qm
]

.

Therefore the diagram

Fn Fm

Fn Fm

P

A′

Q

A

commutes.

5See p. 86, 2nd paragraph of 3.4.
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================================================================================
================================================================================
11
================================================================================
================================================================================
Comments
================================================================================
================================================================================
p. 331, l. -3
Let I be an ideal and a a unit (of R). Then the 2nd bullet of D. 11.3.13 implies that 1 = a−1a ∈ I and, for each
r ∈ R, r = r1 ∈ I. Therefore R ⊂ I.
================================================================================
p. 334, last sentence before L. 11.3.24
(Here, R[x] f denotes the multiples of f in R[x] with R = Z, Q (11.3.15).) On the one hand, since ker Φ′ ⊂
ker Φ = Q[x] f (E. 11.3.23), if g ∈ Ker Φ′, then g ∈ Z[x] and f divides g in Q[x]. Thus f divides g in Z[x] (L.
11.3.24). Hence ker Φ′ ⊂ Z[x] f . On the other hand, since Z[x] f ⊂ Q[x] f = ker Φ, if g ∈ Z[x] f , then g ∈ Z[x]
and Φ(g) = 0. Hence g ∈ ker Φ′. Therefore ker Φ′ = Z[x] f .
================================================================================
p. 336, last sentence
Since ϕ is surjective by hypothesis and π̃ is surjective by T. 2.12.2, p. 66, it follows that f = π̃ϕ is surjective.

Hence f is an isomorphism.
================================================================================
p. 337

E. 11.4.4(b)
Here, π is used in place of ϕ of the Correspondence Theorem. ker π =

(

t2 − 1
)

follows from T. 11.4.1.
I = ( f ) follows from P. 11.3.22.

l. -9
Since π is surjective and ker π = I, if I = R, then R =

{

0
}

.

================================================================================
p. 338, E. 11.4.5

• Z[x] → Z[i] can be thought of as being the extension Φ of ϕ : Z → Z[i] as considered in the Substitution
Principle. (As a matter of fact, here, ϕ is the inclusion map by P. 11.3.10.) Notice that K = ker Φ is an
ideal as can be seen on page 331. Furthermore, K = ( f ). In fact, on the one hand, i2 + 1 = 0 shows that
f ∈ K; hence ( f ) ⊂ K. On the other hand, if h ∈ K, then h(i) = 0, which implies that h(−i) = 0 by the
Complex Conjugate Root Theorem. Thus x ± i divide h in C[x]. Then

(x + i)(x − i) = x2 + 1

= f

divides h in Z[x]. So h ∈ ( f ). Therefore K ⊂ ( f ).

• Z[x] → Z can be thought of as being the extension Φ of ϕ : Z → Z as considered in the Substitution
Principle. (As a matter of fact, here, ϕ is the identity map by P. 11.3.10.) Notice that K = ker Φ is an ideal
as can be seen on page 331. Furthermore, K = (g). In fact, on the one hand, x − 2 0 shows that g ∈ K;
hence (g) ⊂ K. On the other hand, if h ∈ K, then h(2) = 0. Thus x − 2 divides h in Z[x]. So h ∈ (g).
Therefore K ⊂ (g).

================================================================================
p. 340, Proof of the proposition, (a), last sentence

β = an−1αn−1 + · · ·+ a1α1 + a0

= bn−1αn−1 + · · ·+ b1α1 + b0

implies that (an−1 − bn−1) xn−1 + · · ·+ (a1 − b1) x + a0 − b0 belongs to ( f )!
================================================================================
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p. 341, P. 11.6.1(d)
Note that (1, 1) is neither in R × {0} nor in {0} × R′.
================================================================================
p. 342, E. 11.6.3(b)
If f (x, 0) = 0 and f (0, y) = 0, it follows from C. 11.3.9 that both y − 0 and x − 0 divide f (x, y) in C[x, y].
================================================================================
p. 343, ll. 6,7
See E. 7.2.
================================================================================
p. 343, Mapping Property
Note that, if φ denotes the embedding of R into F, then

ϕ = Φ ◦ φ.

Now, Φ is a homomorphism since

Φ(0/1) = Φ(φ(0))

= ϕ(0)

= 0,

Φ(1/1) = Φ(φ(1))

= ϕ(1)

= 1,

Φ
( a

b
+

c

d

)

= Φ

(

ad + bc

bd

)

= ϕ(ad + bc)ϕ(bd)−1

= (ϕ(a)ϕ(d) + ϕ(b)ϕ(c))ϕ(b)−1ϕ(d)−1

= ϕ(a)ϕ(b)−1 + ϕ(c)ϕ(d)−1

= Φ
( a

b

)

+ Φ
( c

d

)

and

Φ
( a

b

c

d

)

= Φ
( ac

bd

)

= ϕ(ac)ϕ(bd)−1

= ϕ(a)ϕ(c)ϕ(b)−1 ϕ(d)−1

= ϕ(a)ϕ(b)−1 ϕ(c)ϕ(d)−1

= Φ
( a

b

)

Φ
( c

d

)

.

================================================================================
p. 345, l. 7
For the use of ‘<’ in place of ‘⊂’, see p. 527.
=============================================================================
====================================================================== ==========
Exercises, pp. 354-358
================================================================================
================================================================================

7.2. Consider p(x), q(x) ∈ R[x]− {0}. Let adeg p and bdeg q be the leading coefficients of p(x) and q(x), respec-

tively. Since R is a domain, adeg pbdeg q is the leading coefficient of p(x)q(x). In particular, p(x)q(x) 6= 0
and

deg(pq) = deg p + deg q.
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=============================================================================
=============================================================================
14
=============================================================================
=============================================================================
Errata

p. 421, l. 6
r should be k.

=============================================================================
=============================================================================
Comments

p. 414, Proof, (a)
If A is an n × n matrix and L is an m × n matrix with LA = Im, then m = n.

p. 421, ll. 10-12, “(b),(d) ... �”
Note that, since A′ = Q−1 AP, if X′ = P−1X and Y′ = Q−1Y, then

AX = Y ⇔
(

Q−1 AP
)

P−1X = Q−1Y

⇔ A′X′ = Y′.

p. 421, C. 14.4.10
See (14.2.9) (with R = Z), (14.4.7) and the sentence right before P. 14.2.6.

p. 421, 1st sentence of the Proof of T. 14.4.11
As far as the existence of B is concerned, consider the very end of the proof.

=============================================================================
=============================================================================
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