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Ex.3.1.4,p. 48
Consider S={x e R|x #0} and S 5 x — f(x) = —x.

Ex. 3.1.5, p. 48
(a) Nope since

£ (x0) = f (* (x0)
= f1(xy) (since xg is a period-2 point)
# xo (since 2 is the prime period of x).

(b) Yep since

Ex. 3.1.10, p. 49
Since

xo = f"(x9) (since xp is a period-n point)

= f((f7)"(x0)) (sincen = pq+r)
= f"(xp) (since xp is a period-p point),

p is the prime period of xg and 0 < r < p, it follows that 7 = 0. Then n = gp.

Ex. 3.1.12, p. 49
Fori € {0,...,n—1}, one has
Ex. 2.3.5, p. 42
S (i) = f* (xn)
x is a period-n point; Theo. 2.3.3, p. 41
= f! (xo)
Theo. 2.3.3, p. 41
Ty,

Ex. 3.2.6, p. 56

Since f (a;) = a; foreachi € {1,...,k}, it follows that f" (a;) — a; = 0 for each n € INy. Hence there exists some
g(x) € R[x] such that f"(x) —x = (x —ay) - - - (x — a) g(x). Thus degree(g(x)) + k = degree (f"(x) — x)

nd.

Ex. 3.3.1, p. 59
On the one hand, f(0) = 0. On the other hand:

f(x)=0=x€{0,1}
= f(1) =0;



= f(1/2)=1;
1 1 1
f(x):§:>x:§ 2\7
1 1 1
=1(3%33) =

Ex.3.3.2,p. 59

(b) Each xg € S is an eventually periodic point of f : S — S = S is a set with only finitely many elements.

(c) False! Consider, for instance, id : R — RR.

Ex. 3.3.3, p. 59
(a) See Def. 3.3.1, p. 57.

(b) Use the contrapositive of

(c) Use that f is 1-1.
(d)k=0.

X1 = X140 = k # min{l €Np : f(x) =fl+”(xo)} :

Erratum, Fig. 4.3.2, p. 70
The arrows are reversed!

Ex. 5.1.3, p. 82
See Figure 1.

Ex.5.2.1,p. 85

Suppose f : S — S is differentiable at p € S and |f'(p)| > 1. Then there is a number a > 1 and an open-in-S interval I

such that, forall x € I,

Proof:

[f(x) = f(p)| = alx = pl.

Choose 1 < a < |f'(p)]. Hence either f'(p) < —aor f'(p) > a.
Consider € > 0. Thus there is an interval I containing p such that for all x € I — {p},

f(x) = f(p)

o ) = f )+ o)
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Figure 1: Graphs of f(x) = 3(x? + 1) and its tangent mapping 7i (x) = f(1) + f/(1)(x = 1) = 1+ 1(x — 1) =
at the only one fixed point 1.

Take € < f'(p) — afor f'(p) > a. Therefore L =F) - f’(p) —€e>a.

x=p
Take e < —f'(p) — a for f'(p) < —a. Therefore f(x L < f(p) +e< —a
Thus, for all x € I — {p},
‘f(X) SO
X—p

Thus, forall x € I,

If(x) = f(p)| = alx—p|.

Ex.5.2.2,p. 85
Ex. 5.2.1 gives an 2 > 1 and an open-in-S bounded interval I containing p = f(p) such that:

o Vxi € I —{p}, |xxs1 — p| > a|xx — p|, in other words, x; 1 is further from p than xy is;
e b > OsuchthatI C [—b,b]and, Vx; € I, |x — p| < b.
Suppose that x; € I — {p}, k = 0,1,.... Therefore, by the first item, |x; — p| > a*|xo — p|, k = 1,2,.... Since

|xg — p| is a constant and limy_, ., ¥ = oo, by page 64 (line -9 to line -8), there is a positive integer ko such that
each element of (|xx, — pl, |xk,41 — pl,...) exceeds b! This is a contradiction by the last item!

Ex. 6.1.8, p. 96

@ 3(1=yu1) = 31— yn) L+ ) = Yur1 = yi-
b) yn = y%n, by induction.

@1-2xy,=yn=yZ = (1-2x)% = (2x — 1)%".




Ex. 6.1.9, p. 96

(a)
sin?(0,41) = Xpi1
— 4xn(1 — xn)
= 4sin2(9n)(1 — Sil’lz(en))
= (25in(6y) cos ()
= sin®(26),).
(b)

\/sin2(9n+1) = \/sin2(29n) = sin(0,41) = sin(26,)
= 0,41 = arcsinsin(26,) = 26,
= 0, = 2"0y.

Ex. 6.1.15-16, p. 97
u>0=Cy(0) =Cy(1) =0and C,(1/2) = 1,
€(0,1)={1/2} = 0< 2x - 1] <1 = limy,, Cy(x) = 1 = limy ., [2x —1|* = 0 for a =10 and 1 for a = co.
oo graphof f = {(x,0): x € [0,1] — {1/2}}U{(1/2, 1)} and graphof g = {(x,1) : x € (0,1)} U{(0,0),(1,0)}.

Ex. 6.1.17, p. 97
(a) Proof by Induction:

® Xo = xollo;

o —ux3 < 0= pxo— pux3 < pxg => x1 < xop;

—pxy <0 xy < xou" (Induction Hypothesis)

2 n+1
® Xpi41 = UXn — UXy < Uxp = X1 < Xop" .
u>1 xXp < xop"
. n \/—/ . . %,—/ .
(b) limy 0o #* = ooand xpis a negative constant = = limy_c Xy = —00.

@ x>1= x% > x) = yx% > Uxg = X1 = HXxg — yx% <0 % (x0,x1, %7 ...) diverges to —co.

Erratum, p. 101
After Stability, “Recall from Definition 5.1.5 ...” should be “Recall from Definition 5.1.3 ...”.

Ex. 6.2.2, p. 104

@) fu(x) =2ux(1 —x) - px? = —pux(3x —2) = 0iff x € {0,%}.

(®) fi/(x) = —p(8x —=2) — px -3 = —2u(3x — 1). Thus x = } is the inflection point and, since f}/(0) > 0
and f;/(2/3) < 0, 0 is a minimum and 2/3 is a maximum. Therefore, since f,(0) = 0 and f,(2/3) = %,
0< fu(x) <lfor0<pu< %.

(©) ua®(1—x) = x iff —x(px® — px +1) = 0iff x € {0, P“‘L‘/ZW}
(d)

2
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(e) Notice that, Vi € [0,%], 0is an attractor since | fi(0)] = 0 < 1. Furthermore, for some time after y = 4,

(1—-+/1—4/pu)/2isan atractor and (1 + /1 —4/p)/2is a repellor. In fact, suppose

27
4 < —.
<pu= 1
Then, on the one hand,
11-27 2_4 18.562
0<p?—4pu < o MM VBN g
16 2 2
On the other hand,
3 27 U
—— =3-—<3-%Z<3-2=1.
8 g =°"2°<

Now consider the previous item (d).

Ex. 6.2.4, p. 105

(a) Since

b (1—x 2 B 2420 —1\

)= (155) + o (- iae) = (e )~

x €10,1]

p(x):xz—i—Zx—l:O(:)x:%\/g = x=v2-1,

and
x x)? — (2% 4+ 2x — p(v2-1) =0
gﬂ(x)=—u<2( +1)((1+(1)+x)§ 2 1)))Tgﬁ(ﬁ—l)<o,

we have that g, has its maximum value at x = V2 — 1, where

g (V2—1) = (V1) <z‘ﬂﬁ> H(VE-D(VE-1) = p(3-2V2),
(b) Since g, (0) = gu(1) = 0 and gu(x) > Oforx € (0,1),if 0 < p < 3+2v2, then0 < p(3-2v2) <

(3+2v2)(3—2V2), thatis, 0 < gu(vV2—1) < 1.
(c) 84(0) = 0 and if x # 0 then

P\1+x) ~ P\i+x) ™ T+l r
Observe that if 0 < p < 1, then x;, < 0, which is a contradiction due to dom g, = [0,1].

(d) From the resolution of (a), we have g;l (0) = pand

(1) [ G )
-y ((V—1)2+2(M:y;1) - (14+1)2>

Ex. 6.3.5, p. 111
Use long division.




Ex. 6.3.7, p. 112

(b)
N Exerci:se 1(b) N
(@)= (&) ®
_(_1— (V+1)(y—3)> <—1+ (;4+1)(u—3>)
=—((p+1)(u-3)-1)
_ (‘1,12—2],1—|—1—5).
7

Erratum, 1. 3, p. 128
7.2.3 should be 7.2.1.

Erratum, (a), p. 129
7. tox',..” should be “... to x’, ...”.

Ex. 7.2.3, p. 130
f(z) =0 = f""1(z) = f(0) = 0.

Ex.7.2.4,p. 130
Lemma 7.2.5

fr(x) = 1= f"1(x) = f(1) =0.

Ex. 7.2.6, p. 131
(b) Since

sin? (2"0y) = 0 <= sin (2"6y) = 0
— 2"0y=km, k€ Z,

it follows that f"(xg) = 0 for xg = sin?(k7r/2") = z4, k € Z. As a matter of factk € {0,1,...,2""1}: the first z;
is zg = sin?(07r/2") = 0 and the last one is zy,-1 = sin?(2"~171/2") = 1, which are the end points of [0, 1].

(c)
Fork € {1,...,2”_1},

(zk_1, 2] = [sin?((k — 1)7t/2"), sin?(krr /2")]
is the base of the kth hump of f". Thus, from

n  kr (k—=1)m
on —on o on
= arcsin \/zj — arcsin /zy_1,
it follows that

lim arcsin +/zx = lim arcsin \/Zx_1.
n—oo k n—o0 k=1



Hence, since sin and +/— are continuous, lim,_, (2 — zx_1) = 0 follows from
/lim zp = lim /z
n—oo k n—oo k
= lim (sinarcsin /z
Jim (sinarcsin )
=sin ( lim arcsin /z )
<n~>oo k

= sin ( lim arcsin /z;_ )
(n%oo k=1

= lim (sinarcsin /zj_
Jim ( k1)

= lim /z;_1

n—o0

= /1lim z;_4.
n—)ookl

Ex.7.4.4,p. 139
(a) The set of zeroes of T is
(0,1} = {2111 L0<i gzl—l}.

Now suppose the set of zeroes of T" is

{an_l:ogigzﬂl}.

Then, by Lemma 7.4.1, x is a zero of T"*1 iff T(x) = 2,1%1 fori € {0,...,2""1}. Therefore:

e x€[0,1/2] = 2x = -, thatis, x = 4 fori € {0,...,2" 1},
on—1 2

o x € (1/2,0] = 2—2x = 5lq, thatis, x = 2571 = Ji forj e {271,...,2"}.

In fact, if j = 2" — i, then

0<i<2"ml— 2 l<_j<o
:>27’l_27171 SZ”—IﬁZ”
— (2-1)2"t<j<om

Therefore the set of zeroes of T"11 is

(b) Each hump of T" has base lenght zl,f[ L — zni,l = 2,,%1

Ex. 8.2.6, p. 147
(I) reads as (1), p. 145.

(I) reads as | (36 > 0) (Fy € RN) (Flimy o yx € {x})(Vk € N)(Fn € N)  [f*(x) — f"(yx)| > 6|

(IIT) reads as| (36 > 0)(3n € N) (VI > x)(Fy € 1) ["(x) — f"(y)| > ]




Ex. 8.2.7, p. 148

(a)

(I), as seen in the previous exercise!

(b)

(IMI) since it is the negation of’ (VneIN)(V6 >0)3I>x)(Vyel) |ff(x)—f"(y) <o
is continuos at x for every n € IN.

(©
Ex. 8.2.9

"= [E>0)( 2 1)@y - xhEneN) ')~ f')| 2 5|= O,

, which means that f"

Ex. 8.2.8, p. 148

(a)

(36> 0)(¥y € [0,1] - {x})(Fn e N) [f"(x) — f"(y)| > 5]
(b)

sensitivity is a local concept whereas expansiveness is a global one!

Ex. 8.2.9, p. 148

It seems the assumption must end with “... a point of Y — {x}.” and the deduction must have “... (y);> in
Y — {x} ..”. Otherwise, not only the assumption is always true, but also the deduction follows trivially from
yx = x for k € IN. Hence, by the assumption, for x € Yand k € IN,if , = YN (x — %,x + %), there is an

Vi € Iy — {x}. Thus, since 0 < |yx — x| < % for every k € IN, it follows that y;, — x. For the converse, assume
there is yy € Y — {x} for every k € IN such that y; — x. Thus, if ] is an open interval such thatx € I =Y N,
there is an index k¢ such that y; € | for every k > ko. Hence y;, € I — {x} for k > k.

Ex. 8.2.10, p. 148

First observe that the graph of f is given by the union of [0,1/2] x {0} and the second hump of the graph of
Q7 (see Figure 7.2.1). Now let 6 > 0 and consider I = [0,1/2], which is not an open-in-[0, 1] interval. Thus
If"(1/2) — f"(y)| = 0 < & for all y € I. (For an open-in-[0, 1] interval I containing 3, thereisy € 1N (3,1)
such that |f1(y) — f1(1/2)| = |f(y)| > 6, depending on the J taken!)

Ex. 8.3.1, p. 154
Choose 6 = 2. Let I be an open-in-[0, 1] interval containing 1. Choose y € I — {1}. Thus choose 7 so large that

y* < §. This gives [f"(1) — f'(y)| = [1—y*'| > 3 =4.

Ex. 8.3.2, p. 154
Do the same as Example 8.3.1, replacing y** with y>".

Ex. 8.3.3, p. 154

The points are —1 and 1:

Do the same as the last exercise for 1, choosing y € I, which is an open-in-[—1, 1], such that 0 < y < 1.

For —1, choose § = %, y € I'such that —1 <y < 0,and n € IN such that —% < y3n < 0. Thus % < y3n +1<1,
thatis, 3 < [y*" — (-1)*"| < L.

Ex. 8.3.4,p. 154

1,13 x 0 fi(x) = © € [-1,1] = [=1,1] 5 x> fo(x) = 2L _ L [~1/2,1/2]

2 2
1 ¥ 1
- [*1,1] Sfo3(x) :fz(X)+§ = ?+§ S [0,1]
(x—1)3 1
= [0,2] 5 x+— fa(x) = fz(x—1) = +§ € [0,1]
= [0,1] > x— f(x) = fa(2x) = @—l—% € [0,1].




Ex. 8.3.5, p. 154
Let § > 0. Thus |y?'| < é forally € I = [0,1]N (—4,0) and each n € N.

Ex. 8.3.6, p. 154

(a)

Letd > 0. Thus |f"(y) — f*(1)|=|y—1| <éforally € [ =[0,1] N (1—6,1+ ) and each n € N.

(b)

Letx # 1land 6 > 0. Thus [f"(y) — f"(x)| = |y — x| < dforally € = [0,1] N (x —J,x + ) and each n € N.

Ex. 8.3.7, p. 154
First observe that all the iterates of f lie below the graph of id. Now use that id is not sensitive dependent
anywhere. (See p. 152 and the last exercise).

Ex. 8.3.8, p. 154
Letx €[0,1],0 >0,y € I =[0,1]N(x —d,x+ ) and n € IN. Therefore, since

e fi(z) €[0,1] and |f'(fi(z))| < 1fori=0,1,...,n—1,

e a composition of differentiable functions is a differentiable function,
and

o (M) (2)=f@f f@)f (@) f(f"1(2)

for each z € [0, 1], it follows from The Mean Value Theorem that | " (x) — f"(y)| = |(f") (zn)||x — y| < 6 for
some z, € (min{x,y}, max{x,y}).

Ex. 8.3.9, p. 154
If f is differentiable on [0, 1], then there is an x € (0,1) such that f(1) — f(0) = f’(x)(1 — 0). Thus, since
0 <min{f(0), f(1)} <max{f(0),f(1)} <1, thereisan x € (0,1) such that f'(x) < 1.

Ex.9.1.1, p. 160
Use Example 7.2.6 on p. 129.

Ex. 9.1.2, p. 160
(a) Take x € {0,1}.
(b) Choose y € I and n € N such that f"(y) = 1.

Ex. 9.1.3, p. 160
Let S be the set of all zeroes of all iterates of f (Lemma 7.3.2), x € S and I be an open-in-[0, 1] interval containing
x. Thus, since there is an 1y € N such that f"(x) = 0 for every n > ng, choose y € I and n > ng such

thatf"(y) = 1.

Ex. 9.1.4, p. 160

(a) The Spike Lemma.

(b) It follows from the ‘Wiggly <> dense sets of zeroes” Lemma (see p. 133). In fact, if I C [0,1] and S is the set
of all zeroes of all iterates of f, since f is spreading, there is an n € IN and there is an z € I such that f"(z) = 0,
thatis, z € S.

10



Ex.9.2.1, p. 164

None!

For the reasons, observe that S C [0,1] is not dense in [0,1] if S is a finite set (just take an interval I C [0, 1]
such that SN I = @), and

(a) a periodic orbit is a finite set S = {xg, x1,...,x,_1} such that f(x,_1) = xo,

(b) an eventually periodic orbit is a finite set S = {xo, x1,..., X, Xk11, - - -, X1} such that f(xp, 1) = xg,
(c) for every open interval | C [0, 1] containing a fixed point p, an orbit converging to p is the union SU S’ such
that S = {xp,x1,..., %51} and S’ = {xny, Xyy11,...} C J. (Here, take I such that IN ] = @ as well).

Ex.9.2.2,p. 164

(EDEN(VeN) fHI)N]=.

Thus, to prove that f is not transitive, choose a pair of subintervals I and ] of [0, 1] such that f*(I) N ] = @ for
alln € N.

Ex. 9.2.3, p. 164
Choose a pair of subintervals I and | of [0,1] such that IN] = @ and let f = id™ for m € N. Thus, since
A HN]=id"™I)NJ=1N]=Q@foralln € N, f =id" is not transitive for m € {1,2,...}.

Ex. 9.2.4, p. 164
f is not transitive. In fact, choose | = [0,0.5) and I = [0.5,1]. Thus, since f(I) = I, f/(I)N] =1IN] = @ for
all n € IN. (See Figure 2)

Exercise 9.2.4

0.8

0.6

0.4

0.2

X

Figure 2: f(x) = 2x for x € [0,0.5] and f(x) = 1.5 — x for x € [0.5,1].

Ex. 9.2.5, p. 164
Choose a pair of subintervals I and | of [0, 1] such that I is a small enough interval containing the fixed point
and INJ = @. Thus, since I 2 f(I) D f2(I) D - - -, it follows that f*(I)N ] = @ for all n € N.

Ex.9.2.6, p. 164

(a) Let S = D — {xo} with xg € D and let I be a subinterval of [0,1]. If xg ¢ I, then IN Sy # @ since
IND # @. Otherwise, if xg € I, take another subinterval | of [0,1] such that ] C I — {xo}. Thus J NSy # @
since ] N D # @. Therefore, IN Sy # @.

(b) Suppose Sy = D — {xq,...,xx} is dense in [0,1] if {xp,...,x¢} C D. Let Sx.1 = D — {xp, ..., Xky1} with
{x0,.-., %41} C D and let I be a subinterval of [0,1]. If x;,1 ¢ I, then INS,, 1 # D since INS; # @.
Otherwise, if x;,1 € I, take another subinterval | of [0,1] such that ] C I — {x;,1}. Thus ] N Sxyq # @ since
J N Si # @. Therefore, I N S1q # @.

Ex. 9.2.7, p. 165
Consider yp € D = {x, / n € No} such that (xg,x,...) is a dense orbit and, for yo = xy,, let S = D —

11



{x0,...,xpy—1}, which is a dense set from Exercise 6. Thus, if y, = Xxp,4n for all n € Ny, it follows that
(vo,y1,-..) is a dense orbit.

Ex. 9.2.8, p. 165

Let I and ] be a pair of subintervals of [0, 1l and (xg,x1,...) a dense orbit in [0,1]. Therefore I contains an
element x,,, of the dense orbit. Thus, since f*(x,,) € f*(I) for all k € IN and, from Exercise 7, f"(xy,) € J for
some n € N, it follows that f"(I) N ] # @.

Ex. 9.3.1, p. 167
(a) Consider Ty.
(b) See Figure 3.

Exercise 9.3.1(b)

0.8

0.6

0.4

0.2

0 £ .
[ 0.2 0.4 0.6 0.8 1

Figure 3: f(x) = 5 for x € {O,H,f(x) =2 _3forx € H,%},f(x) = -2+ forx e {%,%},and
f(x) =% forx € [3,1].

(c) See Figure 4.

Exercise 9.3.1(c)

0.8

0.6

0.4

o

0.2 0.4 0.6 0.8 1

Figure4: f(x) = ¥ forx € {O,%},f(x) I4+iforxe [%,%],f(x) =Ur_Tforxe [%,%},f(x) =-Ury B

2
forx € {%,%},f(x) =—%+3forxe (3 %], and f(x) = =3 forx € [§,1].

The least possible number of fixed points for a one-hump maps is two.

Ex. 9.3.2, p. 167
Since both Q4 and Ty have wiggly iterates (see Example 7.2.6), they are mappings whose periodic points are
dense in [0, 1]. Thus

0,1] x [0,1] 5 (x1,12) 99 (Qu(x1), Talx2)) € [0,1] x [0,1]

12



is a mapping whose periodic points are dense in [0,1] x [0,1]. In fact, let Sp, and St, be the sets of periodic
points of Qg and Ty, (x1,x2) € [0,1] x [0,1] and B((x1, x2),7) C [0,1] x [0,1] be an open ball of radius r centered
at (x1,x2). Consider that I; and I, are intervals such that (x1,x2) € (I; X I) C B((x1,x2),r). Therefore,
since (I; X ) N (Sg, x St,) # @, it follows that B((x1,x2),7) N (Sq, X S1,) # @. Finally, B((x1,x2),7) N
(S, x S1,) 2 (p1,p2) is a period-nyn, point of (Qy, Ty) if py is a period-n; point of Q4 and p; is a period-ny
point of Tj.

Ex. 9.3.3, p. 167

Since f" —id : [z;, ;] — R is a continuos function, (f" —id)(z;) = —z; < 0 (since 0 < z; < 1) and (f" —
id)(y;) =1—y; > 0 (since 0 < y; < 1), it follows that there is x; € [z;,y;] such that (f" —id)(x;) = 0, that is,
f"(x;) = id(x;) = x;. Since f" —1id : [y;,zi+1] — Ris a continuos function, (f" —id)(y;) = 1 —y; > 0 (since
0<y; <1land (f"—id)(zj11) = —ziy1 < 0(since 0 < z;;1 < 1), it follows that there is x; 1 € [y;,z;11] such
that (fn - ld) (xl-+1) =0, that is, fn (xi—l—l) = id(xH_l) = Xj+1-

Ex. 9.3.4, p. 167
(a) From Theorem 5.2.1, there is an open-in-[0, 1] interval I containing p such that

[f"(x0) = pl = lxn = p| <--- <[x2 = p[ < |x1 = p[ < |x0—p|

forallxo € I — {p}and alln € N.

(b) Now suppose ] C I — {p} is an interval and pg € ] is a fixed point of f. Thus |f"(po) — p| = |po — p| for
all n € IN. This contradicts (a).

(c) See Exercice 9.3.1.(b)-(c).

Ex. 9.5.1, p. 175
If {u,v} C f(I) and w € [min{u, v}, max {u,v}|, then thereis a {x,y} C I such that f(x) = uand f(y) = v,
and the IVT implies that there is a z € [min {x,y} , max {x,y}] such that f(z) = w. Thus w € f(I).

Ex. 9.5.2,p. 175

(@) {0,c,1} N] = @ since f(0) = f2(c) = f(1) = 0. Thus either ] C (0,c) or | C (c¢,1). Therefore, since
f is strictly increasing on (0, ¢) and strictly decreasing on (c,1), either f is strictly increasing on | or strictly
decreasing on J.

(b) f(J) is an interval contained in f((0,c)) = f((c,1)) = (0,1). Thus, if ] C (0,c), that is, f is strictly
increasing on J, since f(J) C f((c,1)), then the IVT implies that there exists an interval K C (¢, 1) such that
f(K) = f(]) and f is strictly decreasing on K. Otherwise, if ] C (¢, 1), thatis, f is strictly decreasing on J, since
f(J) C f((0,c)), then the IVT implies that there exists an interval K C (0,¢) such that f(K) = f(]) and f is
strictly increasing on K.
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Ex. 10.1.2, p. 184
f(x) = x3. (See Figure 6).

Ex. 10.1.3, p. 185
(a) Use Ex. 9.2.5 and Lemma 9.2.2.
(b) 0 is an attracting fixed point since f/(0) = 0.

Ex. 10.1.4, p. 185
g has an attracting fixed point by Figure 10.1.5.
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Ex. 10.1.6, p. 185
Consider f(x) = sinx forx € [ = (%

£7(a) = —sin0 = 0and f(a)f" (a) = (cosa)(—cosa) = 1- (1) < 0,

Exercise 10.1.6

T r‘yzg,/«
f()=8in(x) -------
/,4“(><=cos(><) """"

0.5

-0.5

-15 -1 -0.5 0 0.5 1 15

Figure 5: f(x) =sinxand f/(x) = cosx forx € (-5, %).

Ex. 10.1.7, p. 185
It’s similar to the previous exercise.

Ex. 10.1.8, p. 185

%) and a = 0. Thus (see Figure 5) f/(x) = cosx > 0 for x € I,
a

21 zeroes since f" has 2"~ ! humps and each one of the humps has its peak correspondingto the maximum

of fm.
Ex. 10.2.2, p. 189
Ex.6.14 2x, 0<x<}
Ta(x) {2a—@,§§x§1
2, 0<x<!
T/ — 7 = 2
4(x) {2,§<x§1

T/ (x) = TV (x) = 0, ¥x € [0,1] — {;}

I

S(Ty)(x) = 0, Vx € [0,1] — {;}

Ex. 10.2.3, p. 189
Since f'(x) = 3x%> = 0iff x = 0, f”(x) = 6x and f"'(x) = 6, it follows that

S(f)(x) =2-3x%-6 —3(6x)?
=722 <0

14



Exercise 10.2.3

‘x axis /
cubing map ------- /

0.5

-0.5

-1 -0.5 0 0.5 1
X

Figure 6: Cubing map.

for all x # 0. (See Figure 6).

Ex. 10.2.4, p. 189
If

A=f"og-flog-(§)+3f 0og-flog-g" (§)+(fog)? 8" ¢
and
B=2(f"0g)* (§)* +4f"0g flog-g" (&) +2(f 0g)* (")
then S(f o ¢) would be equal to
A+B=5(f)og- () +(fog)* S(g)+7f'og-flog 8" (§)

Def. 10.2.2

Therefore S(f o ¢) would depend on |7f" o g- f'og-¢"-(¢')? | However, for | S(f) 7 +2(F)?),
it is even hard to find an f : [0,1] — [0,1] such that S(f) < 0 holds at all points of [0,1] for which " # 0.
For example, if f(x) = sin7x, then S(f)(x) = 7m(2 —3cos® mx) < 0 for x sufficiently close to 0 or for x
sufficiently close to 1, whereas S(f)(x) > 0 for x sufficiently close to 3. As another example, if 2 # 0 and
f(x) = ax? + bx + ¢, then S(f)(x) = 4a® > 0 for all x.

Ex. 10.2.5, p. 189
Concerning the first equality of the next exercise, take c = —1.

Ex. 10.2.6, p. 189
Use that S(cf) = ¢2S(f) and S(f +¢) = S(f).

Ex. 10.2.7-8, p. 189
It’s similar to the Proof of Theo. 10.2.4.

Ex. 10.2.11, p. 190
Let x € I such that f’(x) # 0. Thus (f'(x))?> > 0, |S(f)(x) <0 = S(f)(x) = 2(f'(x))?S(f)(x) < 0|and

S()(x) < 0= 5(f)(x) = st <0}

Example, p. 192

Qu hla?s negative Schwarzian derivative (except at x = %) and Q;, (0) = . Does Qy, have chaotic behaviour if
p> 12

15



In order to use the Test for chaos, p. 191, Q, must be a symmetric one-hump mapping (Def. 7.2.1, p. 126).
Thus Q,(1/2) must be equal to 1, thatis, y = 4.

Ex. 10.3.1, p. 192

If f(x) =1— (2x — 1)4, then f'(x) = —8(2x — 1)3, f”( ) = —48(2x —1)?and f"(x) = —192(2x — 1). Hence
f'(0) =8> 1and S(f)(x) = (3072 — 6912) (2x — 1)* < O for x # 3.

If f(x) = sin(7tx), then f'(x) = 7 cos(mx), f”( ) = —712 s1n(7rx) and "' (x) = —mcos(rmtx). Hence f'(0) =
7> 1and S(f)(x) = —*(2cos?(rrx) + 3sin®(mx)) <

11

Erratum, . -2, p. 213
... (see Exercise 11.3.4) ...” should be “... (see Exercise 11.3.5) ...”.

Ex. 11.3.4, p. 215
No for both items since

f(x) = Tu(x)
[ 2x ifx €[0,1/2]
_{ 2-2x ifx e (1/2,1]

has two fixed points, whereas
(x) = 2x+2 ifxe[-1,-1/2]
W= —2x  ifxe (—1/2,0]

has only one fixed point.

12

Ex. 12.1.5, p. 223
For x > 0, see Example 12.1.6. For x < 0,

Ex. 12.1.6, p. 223
(a) Clearly h is continuous at x # 0.

16



What about lim,_,o h(x)?

Since ¢(0) > 1and ¢ is either strictly increasing or strictly decreasing!, it follows that ¢(0) = 1 (and ¢ is strictly
increasing, which implies that & is strictly increasing?, which implies that & is invertible if / is continuous).
Thus

1 . 1 1

Jim h(x) = lim ¢(x) = 9(0) =1 and _lim h(x) = lim -~ B 90~ $0)

Now, since h is strictly increasing, h~1is continuous®.

(b)Let f: R — Rand g: Rt — R* with f(x) = —x and g(x) = L. Then:
o Since 11(0) = ¢(0) = 1, h(f(0)) = h(0) = ;157 = &(1(0));
o Ifx >0, then h(f(x)) = h(~x) = 515 = 8(¢(x)) = g(h(x));

o If x <0, then h(f(x)) = h(—x) = ¢p(—x) = —— = ﬁ = g(h(x)).

(c) There are infinitely many such homeomorphisms / since there are infinitely many such strictly increasing
maps ¢ : [0, o) — [1,0).

Ex. 12.1.8, p. 224

If ’ f is conjugate to g via h ‘is denoted by | f Ed g |, then:
id;

@f~f |
@M flg=g'~ f;
Qi) fi X foand fo 22 f = fi

Ex. 12.1.9, p. 224
From Example 12.1.3,

hzohl
~

f3.

hof:goh:>hof2:gzoh.
Therefore
hof3:hof20f
:gzohof
:gzogoh
:g3oh.

Ex. 12.1.10, p. 224
Suppose ho f =gohand ho f" = g" o h withn € N. Thus

hofnJrl:hofnof

=g'ohof
= g” ogoh
_ gn—i-l o h
Ex. 12.2.4, p. 237
h is increasing Lemma 12.2.5
~—_———— —_————
X € [2;,2i41] S h(x) € [h(z;), h(zi1)] e [wi, wiy1]-

Lemma 12.3.1, p. 238

1From Calculus, if I is an interval and f : I — f(I) is a continuous function, then f is invertible iff f is either strictly increasing or
strictly decreasing;
210 < x1 < xp, then h(x1) = ¢(x1) < P(x2) = h(x2). If x1 < xp < 0, thatis 0 < —xp < —x1, then h(x;) =

3From Calculus, if I is an interval and f : I — R is strictly monotone, then f~1 : f(I) — R is continuous.

< 1= ]’l(Xz);

1
p(—x1) = ¢(—x2)
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“Each time the exponent 7 is increased by 1,
f™ acquires one new zero between each of the old ones,
as f is a one-hump mapping.”

In fact, besides the zeroes of f" are also zeroes of f"*1 (see Ex. 7.2.3, p. 130), f" is a 2"~ !-hump mapping, thus
it has 2"~ + 1 zeroes, whereas f"*! is a 2"-hump mapping, thus it has 2" + 1 zeroes.

Erratum, Def. 12.3.3, p. 240
“... where the h" are ...” should be “... where the h,, are ...”.

Erratum, order of compositions, p. 240 and p. 242

foh=hogshouldbeho f=goh.

Ex. 12.3.1, p. 245

(a) Let z = z; be the i zero of f". Thus I, (z) = hy(z;) = w; is the i zero of ¢", by Matching Zeroes. Hence,
by Lemma 12.3.1, if m > n then z = z; and h,(z) = wj are the jth zeroes of f™ and g™ for j > i, that is,
hm(z) = hm(zj) = wj = hy(z) by Matching Zeroes.

(b) h(z) = limy—so0 ftn (2).

(©n=1,2,... = h(0) = hy(0) =0, h(1) = h,(1) = 1.

(d) Since h is continuous, if u € [h(0),h(1)] then there is a z € [0, 1] such that u = h(z), by the IVT.

Ex. 12.3.2, p. 245
If e = L(h(a) — hu(2z)) and m > n, use that h, is strictly increasing and Ex. 12.3.1 in order to obtain hy,(a) <
hw(z) = hn(z) < h(a) —e.

Ex. 12.4.3, p. 253

(a) Theo. 12.4.2.

(b) Since xy is a periodic point for f with prime period n and there is a one-to-one correspondence between
X = {fi(x0)|i=0,...,n—=1}and Y = {h(f'(x0)) |i=0,...,n—1}, X and Y have the same number (1) of
elements. Now suppose that i < 7 is the prime period of /(xg) under g. Thus h(f*(x0)) = ¢'(h(xq)) = h(xo)
and hence Y has less than n elements!

Ex. 12.4.5, p. 253

It suffices to prove the result given in the box that precedes Theo. 12.4.3. Let D be dense in [0,1] and I C [0, 1]
be an interval. Since h~1(I) C [0,1] is an interval, thereisa point x € DN h~1(I). So h(x) € h(D) N I. Therefore
h(D) is dense in [0, 1].

Ex. 12.4.7, p. 253

From Ex. 9.5.1, it follows that I’ and ]’ are intervals as images of I and ] under h~1. Therefore, since the inverse
image of an open set under / is open in its domain, which is a basic fact from General Topology, and h~1(I)
and i~ 1(]) are both images under 1! and inverse images under /1, which comes from the fact that 1 o ! and
h~1! o h are both identities, it follows that I’ and ]’ are open intervals.

Letx € J'n f"(I'). Thusy = h(x) € h(J') Nh(f"(I')). Therefore, since there is a z € I’ such that y =
h(f"(z)) = g"(h(z)), it follows that y € h(J’) N g"(h(I")). Hencey € JNg"(I), by (hoh™1)|] = id;, (ho
h=H|I = id;.
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In fact, 7; is the slope of ‘the first half of the graph of T’, that is, the slope of the line segment joining the
points (0,0) and (1/2,r), which equals the slope of ‘the first half of the triangle of base « and height r — 1.

Thus r-l

_r_
1/2 a/2 [

Ex. 13.1.8, p. 264
See Ex. 13.3.3, p. 276.

Ex. 13.1.9, p. 264

General Version of Theorem 13.1.5

Let T = T, with u > 4. The graph of T" consists of 2" ! isosceles triangles, each of heightr = § > 1 and base
-1

lenght (1%“)}1 @+ (1—a)=1)witha =1— % 0O <a<)

The domain of T" can be obtained recursively from the results:

(a) dom T' = [0,1];

(b) dom T*+1 is the result of removing the open middle fractions « of all the maximal closed intervals in dom

T*.

Proof: Concerning the lines of the original Proof of Theorem 13.1.5, put | a fraction 1%"‘ of the length | in place of

lone third of the length ‘ (line 8), put |a fraction 152 | in place of (line 11) and put | 15 | in place of
(line 11).

Erratum, Example 13.2.2, p. 265
“Let x1 and x5 be ...” should be “Let xg and x; be ...”.

Ex. 13.2.3, p. 270

Cyy1 = dom fH1
=dom f"o f
={xedomf : f(x) € dom f"}
={x€[0,1] : f(x) € Cy}.

Ex. 13.2.4, p. 270
[ )
Mz1Cn = MiZoCita

=GN (N2 Civa)
=[0,1] N (Ni2,Cis1)
= Mi21Cit
= M21Cnt1s

L] ﬂ:lo:]Cn-‘rl C C}’H—l forn = 1,2, s — f (ﬂ;ozlcn+1) C f(Cn+]);

e Ex.13.2.3.

Ex. 13.2.5, p. 271
f1(C) c Cand f"(C) C C is the induction hypothesis. Thus f**1(C) = f(f"(C)) C f(C) c C.

Ex. 13.2.11, p. 271
Ex. 3.1.12
xo is a periodic pointof f == x; = f(xg) is a periodic point of f.

Ex. 13.2.12, p. 271
Let x € [0,1] be a zero of f", thatis, f"(x) = 0. Therefore f"~1(f(x)) = 0, that is, f(x) is a zero of f"~1.
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Erratum, the line before Fig. 13.3.2, p. 274
“...in Exercise 13.3.5.” should be “... in Exercise 13.3.6.”.

Ex. 13.3.1, p. 276
(a)+—(e),
(b)+—(c’),
(0)«—(a"),
(d)«— (') and
(e)«—(d).

Ex. 13.3.3, p. 276

domT! = C; and, forn = 1,2,..., dom T" = C, is the union of the bases of 2"~ isosceles triangles, which
are the bases of humps for T", each of base lenght (1/3)"~!. C, 1 is obtained from C, by removing the open
middle thirds of all the maximal closed intervals in C,;, which are the bases of humps for T". This leaves two
closed intervals in C,, 41, each of lenght (1/3)"~2, in place of each maximal closed interval in C,. Thus (1/3)" !
is also the lenght of the longest interval in C;, and it — 0 as n — oo.

Ex. 13.3.4, p. 276

n—1
See the resolution of Ex. 13.1.9, the resolution of the last exercise and notice that (1%“) — 0asn — oo.

Erratum, Ex. 13.4.8, p. 281
INC, # @ |shouldbe|INC # Q|

Ex. 13.4.8, p. 281
S C C by Corollary 13.2.10. Since I N C # @, there is a hump of some f" with base contained in I by the Spike
Lemma. Since the endpoints of such a base are zeroes of ", we have that SN (INC) # @.
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