CHAOS FIRST EDITION (2003), FIRST PRINTING Banks, Dragan and Jones

PARTIAL SCRUTINY,
SOLUTIONS OF SELECTED EXERCISES,
COMMENTS, SUGGESTIONS AND ERRATA
José Renato Ramos Barbosa
2010

Departamento de Matemática Universidade Federal do Paraná Curitiba - Paraná - Brasil jrrb@ufpr.br 3

Ex. 3.1.4, p. 48

Consider $S = \{x \in \mathbb{R} \mid x \neq 0\}$ and $S \ni x \mapsto f(x) = -x$.

Ex. 3.1.5, p. 48

(a) Nope since

$$f^{3}(x_{0}) = f(f^{2}(x_{0}))$$

= $f^{1}(x_{0})$ (since x_{0} is a period-2 point)
 $\neq x_{0}$ (since 2 is the prime period of x_{0}).

(b) Yep since

$$f^{4}(x_{0}) = f^{2}(f^{2}(x_{0}))$$

$$= f^{2}(x_{0})$$

$$= x_{0}.$$

Ex. 3.1.10, p. 49

Since

$$x_0 = f^n(x_0)$$
 (since x_0 is a period- n point)
= $f^r((f^p)^q(x_0))$ (since $n = pq + r$)
= $f^r(x_0)$ (since x_0 is a period- p point),

p is the prime period of x_0 and $0 \le r < p$, it follows that r = 0. Then n = qp.

Ex. 3.1.12, p. 49

For $i \in \{0, ..., n-1\}$, one has

$$f^{n}(x_{i}) \underbrace{\underbrace{\overset{\mathbf{Ex. 2.3.5}, \text{ p. } 42}{\cong}}_{f^{i}(x_{n})} f^{i}(x_{n})}_{\underbrace{x_{0} \text{ is a period-} n \text{ point; Theo. 2.3.3, p. } 41}_{\cong} f^{i}(x_{0})$$

$$\underbrace{\overset{\mathbf{Theo. 2.3.3}, \text{ p. } 41}_{\cong}}_{x_{i}}$$

Ex. 3.2.6, p. 56

Since $f(a_i) = a_i$ for each $i \in \{1, ..., k\}$, it follows that $f^n(a_i) - a_i = 0$ for each $n \in \mathbb{N}_0$. Hence there exists some $g(x) \in \mathbb{R}[x]$ such that $f^n(x) - x = (x - a_1) \cdots (x - a_k) g(x)$. Thus degree $(g(x)) + k = \text{degree}(f^n(x) - x) = nd$.

Ex. 3.3.1, p. 59

On the one hand, f(0) = 0. On the other hand:

$$f(x) = 0 \Longrightarrow x \in \{0, 1\}$$

 $\Longrightarrow f(1) = 0;$

$$f(x) = 1 \Longrightarrow x = \frac{1}{2}$$

 $\Longrightarrow f(1/2) = 1;$

$$f(x) = \frac{1}{2} \Longrightarrow x = \frac{1}{2} \pm \frac{1}{2\sqrt{2}}$$
$$\Longrightarrow f\left(\frac{1}{2} \pm \frac{1}{2\sqrt{2}}\right) = \frac{1}{2}.$$

Ex. 3.3.2, p. 59

- (b) Each $x_0 \in S$ is an eventually periodic point of $f: S \to S \Rightarrow S$ is a set with only finitely many elements.
- (c) False! Consider, for instance, id : $\mathbb{R} \to \mathbb{R}$.

Ex. 3.3.3, p. 59

- (a) See **Def. 3.3.1**, p. 57.
- (b) Use the contrapositive of $x_{k-1} = x_{k-1+n} \Rightarrow k \neq \min \{l \in \mathbb{N}_0 : f^l(x_0) = f^{l+n}(x_0)\}$
- (c) Use that *f* is 1-1.
- (d) k = 0.

4

Erratum, Fig. 4.3.2, p. 70

The arrows are reversed!

5

Ex. 5.1.3, p. 82

See Figure 1.

Ex. 5.2.1, p. 85

Suppose $f: S \to S$ is differentiable at $p \in S$ and |f'(p)| > 1. Then there is a number a > 1 and an open-in-S interval I such that, for all $x \in I$,

$$|f(x) - f(p)| \ge a|x - p|.$$

Proof:

Choose 1 < a < |f'(p)|. Hence either f'(p) < -a or f'(p) > a.

Consider $\epsilon > 0$. Thus there is an interval I containing p such that for all $x \in I - \{p\}$,

$$\frac{f(x)-f(p)}{x-p}\in (f'(p)-\epsilon,f'(p)+\epsilon).$$

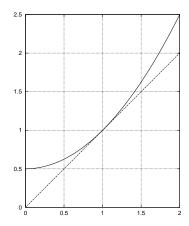


Figure 1: Graphs of $f(x) = \frac{1}{2}(x^2 + 1)$ and its tangent mapping $\tau_1(x) = f(1) + f'(1)(x - 1) = 1 + 1(x - 1) = x$ at the only one fixed point 1.

Take $\epsilon < f'(p) - a$ for f'(p) > a. Therefore $\frac{f(x) - f(p)}{x - p} > f'(p) - \epsilon > a$. Take $\epsilon < -f'(p) - a$ for f'(p) < -a. Therefore $\frac{f(x) - f(p)}{x - p} < f'(p) + \epsilon < -a$. Thus, for all $x \in I - \{p\}$,

$$\left| \frac{f(x) - f(p)}{x - p} \right| > a.$$

Thus, for all $x \in I$,

$$|f(x) - f(p)| \ge a|x - p|.$$

Ex. 5.2.2, p. 85

Ex. 5.2.1 gives an a > 1 and an open-in-*S* bounded interval *I* containing p = f(p) such that:

- $\forall x_k \in I \{p\}, |x_{k+1} p| > a|x_k p|$, in other words, x_{k+1} is further from p than x_k is;
- $\exists b > 0$ such that $I \subsetneq [-b, b]$ and, $\forall x_k \in I, |x_k p| < b$.

Suppose that $x_k \in I - \{p\}$, $k = 0, 1, \ldots$ Therefore, by the first item, $|x_k - p| > a^k |x_0 - p|$, $k = 1, 2, \ldots$ Since $|x_0 - p|$ is a constant and $\lim_{k \to \infty} a^k = \infty$, by page 64 (line -9 to line -8), there is a positive integer k_0 such that each element of $(|x_{k_0} - p|, |x_{k_0+1} - p|, \ldots)$ exceeds b! This is a contradiction by the last item!

6

Ex. 6.1.8, p. 96

(a)
$$\frac{1}{2}(1-y_{n+1}) = \frac{1}{2}(1-y_n)(1+y_n) \Longrightarrow y_{n+1} = y_n^2$$
.

(b) $y_n = y_0^{2^n}$, by induction.

(c)
$$1 - 2x_n = y_n = y_0^{2^n} = (1 - 2x_0)^{2^n} = (2x_0 - 1)^{2^n}$$
.

Ex. 6.1.9, p. 96

(a)

$$sin^{2}(\theta_{n+1}) = x_{n+1}
= 4x_{n}(1 - x_{n})
= 4 sin^{2}(\theta_{n})(1 - sin^{2}(\theta_{n}))
= (2 sin(\theta_{n}) cos(\theta_{n}))^{2}
= sin^{2}(2\theta_{n}).$$

(b)

$$\sqrt{\sin^2(\theta_{n+1})} = \sqrt{\sin^2(2\theta_n)} \Longrightarrow \sin(\theta_{n+1}) = \sin(2\theta_n)$$
$$\Longrightarrow \theta_{n+1} = \arcsin\sin(2\theta_n) = 2\theta_n$$
$$\Longrightarrow \theta_n = 2^n \theta_0.$$

Ex. 6.1.15-16, p. 97

 $\mu > 0 \Longrightarrow C_{\mu}(0) = C_{\mu}(1) = 0 \text{ and } C_{\mu}(1/2) = 1;$

 $x \in (0,1) - \{1/2\} \Longrightarrow 0 < |2x-1| < 1 \Longrightarrow \lim_{\mu \to a} C_{\mu}(x) = 1 - \lim_{\mu \to a} |2x-1|^{\mu} = 0 \text{ for } a = 0 \text{ and } 1 \text{ for } a = \infty.$ \therefore graph of $f = \{(x,0) : x \in [0,1] - \{1/2\}\} \cup \{(1/2,1)\}$ and graph of $g = \{(x,1) : x \in (0,1)\} \cup \{(0,0),(1,0)\}$.

Ex. 6.1.17, p. 97

(a) Proof by Induction:

- $x_0 = x_0 u^0$:
- $-\mu x_0^2 < 0 \Longrightarrow \mu x_0 \mu x_0^2 < \mu x_0 \Longrightarrow x_1 < x_0 \mu^1$;

•
$$x_{n+1} = \mu x_n - \mu x_n^2 \underbrace{\frac{-\mu x_n^2 \le 0}{\le \mu x_n}}_{= \le \infty} \underbrace{x_n \le x_0 \mu^n \text{ (Induction Hypothesis)}}_{= \ge \infty} x_{n+1} \le x_0 \mu^{n+1}.$$

(b) $\lim_{n\to\infty} \mu^n = \infty$ and x_0 is a negative constant $\underbrace{x_n \leq x_0 \mu^n}_{\text{im}_{n\to\infty}} \lim_{n\to\infty} x_n = -\infty$.

(c)
$$x_0 > 1 \Longrightarrow x_0^2 > x_0 \Longrightarrow \mu x_0^2 > \mu x_0 \Longrightarrow x_1 = \mu x_0 - \mu x_0^2 < 0 \Longrightarrow (x_0, x_1, x_2 \dots) \text{ diverges to } -\infty.$$

Erratum, p. 101

After Stability, "Recall from Definition 5.1.5 ..." should be "Recall from Definition 5.1.3 ...".

Ex. 6.2.2, p. 104

(a) $f'_{\mu}(x) = 2\mu x(1-x) - \mu x^2 = -\mu x(3x-2) = 0$ iff $x \in \{0, \frac{2}{3}\}$.

(b) $f_u''(x) = -\mu(3x-2) - \mu x \cdot 3 = -2\mu(3x-1)$. Thus $x = \frac{1}{3}$ is the inflection point and, since $f_u''(0) > 0$ and $f''_{\mu}(2/3) < 0$, 0 is a minimum and 2/3 is a maximum. Therefore, since $f_{\mu}(0) = 0$ and $f_{\mu}(2/3) = \frac{4\mu}{27}$ $0 \le f_u(x) \le 1 \text{ for } 0 \le u \le \frac{27}{4}$.

(c)
$$\mu x^2 (1-x) = x$$
 iff $-x(\mu x^2 - \mu x + 1) = 0$ iff $x \in \left\{0, \frac{\mu \pm \sqrt{\mu^2 - 4\mu}}{2\mu}\right\}$.

(d)

$$\begin{split} f'_{\mu}\left(\frac{1\pm\sqrt{1-4/\mu}}{2}\right) &= -3\mu\left(\frac{\mu\pm\sqrt{\mu^2-4\mu}}{2\mu}\right)^2 + 2\mu\cdot\frac{\mu\pm\sqrt{\mu^2-4\mu}}{2\mu} \\ &= -3\cdot\frac{\mu\pm2\sqrt{\mu^2-4\mu}+\mu-4}{4} + \mu\pm\sqrt{\mu^2-4\mu} \\ &= 3 - \frac{\mu}{2} \mp \frac{\sqrt{\mu^2-4\mu}}{2}. \end{split}$$

(e) Notice that, $\forall \mu \in \left[0, \frac{27}{4}\right]$, 0 is an attractor since $|f'_{\mu}(0)| = 0 < 1$. Furthermore, for some time after $\mu = 4$, $(1 - \sqrt{1 - 4/\mu})/2$ is an attractor and $(1 + \sqrt{1 - 4/\mu})/2$ is a repellor. In fact, suppose

$$4<\mu\leq\frac{27}{4}.$$

Then, on the one hand,

$$0 < \mu^2 - 4\mu \le \frac{11 \cdot 27}{16} \Longrightarrow 0 < \frac{\sqrt{\mu^2 - 4\mu}}{2} \le \frac{\sqrt{18.5625}}{2} \approx 2.154.$$

On the other hand,

$$-\frac{3}{8} = 3 - \frac{27}{8} \le 3 - \frac{\mu}{2} < 3 - 2 = 1.$$

Now consider the previous item (d).

Ex. 6.2.4, p. 105

(a) Since

$$g_{\mu}'(x) = \mu\left(\frac{1-x}{1+x}\right) + \mu x\left(-\frac{2}{(1+x)^2}\right) = -\mu\left(\frac{x^2+2x-1}{(1+x)^2}\right) = 0 \Longleftrightarrow$$

$$p(x) = x^2 + 2x - 1 = 0 \iff x = \frac{-2 \pm \sqrt{8}}{2} \stackrel{x \in [0, 1]}{\iff} x = \sqrt{2} - 1,$$

and

$$g_{\mu}''(x) = -\mu \left(\frac{2(x+1)((1+x)^2 - (x^2 + 2x - 1))}{(1+x)^4} \right) \xrightarrow{p(\sqrt{2} - 1) = 0} g_{\mu}''(\sqrt{2} - 1) < 0,$$

we have that g_{μ} has its maximum value at $x = \sqrt{2} - 1$, where

$$g_{\mu}(\sqrt{2}-1) = \mu(\sqrt{2}-1)\left(\frac{2-\sqrt{2}}{\sqrt{2}}\right) = \mu(\sqrt{2}-1)(\sqrt{2}-1) = \mu(3-2\sqrt{2}).$$

(b) Since $g_{\mu}(0) = g_{\mu}(1) = 0$ and $g_{\mu}(x) > 0$ for $x \in (0,1)$, if $0 \le \mu \le 3 + 2\sqrt{2}$, then $0 \le \mu(3 - 2\sqrt{2}) \le (3 + 2\sqrt{2})(3 - 2\sqrt{2})$, that is, $0 \le g_{\mu}(\sqrt{2} - 1) \le 1$.

(c) $g_u(0) = 0$ and if $x \neq 0$ then

$$\mu x \left(\frac{1-x}{1+x} \right) = x \Longrightarrow \mu \left(\frac{1-x}{1+x} \right) = 1 \Longrightarrow x = \frac{\mu-1}{\mu+1} = x_{\mu}.$$

Observe that if $0 < \mu < 1$, then $x_{\mu} < 0$, which is a contradiction due to dom $g_{\mu} = [0, 1]$.

(d) From the resolution of (a), we have $g'_{\mu}(0) = \mu$ and

$$g'_{\mu}\left(\frac{\mu-1}{\mu+1}\right) = -\mu \left(\frac{\left(\frac{\mu-1}{\mu+1}\right)^2 + 2\left(\frac{\mu-1}{\mu+1}\right) - 1}{\left(1 + \frac{\mu-1}{\mu+1}\right)^2}\right)$$
$$= -\mu \left(\frac{(\mu-1)^2 + 2(\mu^2 - 1) - (\mu+1)^2}{4\mu^2}\right)$$
$$= 1 - \frac{\mu}{2} + \frac{1}{2\mu}.$$

Ex. 6.3.5, p. 111

Use long division.

$$\begin{split} \left(Q_{\mu}^{2}\right)'(a) & \stackrel{\text{Exercise 1(b)}}{=} \left(Q_{\mu}^{2}\right)'(b) \\ &= \left(-1 - \sqrt{(\mu + 1)(\mu - 3)}\right) \left(-1 + \sqrt{(\mu + 1)(\mu - 3)}\right) \\ &= -((\mu + 1)(\mu - 3) - 1) \\ &= -\left(\mu^{2} - 2\mu + 1 - 5\right). \end{split}$$

7

Erratum, l. 3, p. 128

7.2.3 should be 7.2.1.

Erratum, (a), p. 129

"... tox', ..." should be "... to x', ...".

Ex. 7.2.3, p. 130

$$f^{n}(z) = 0 \Longrightarrow f^{n+1}(z) = f(0) = 0.$$

Ex. 7.2.4, p. 130

$$\underbrace{\text{Lemma 7.2.5}}_{T^n(x)} \underbrace{\text{Lemma 7.2.5}}_{T^{n+1}(x)} 1 \Longrightarrow f^{n+1}(x) = f(1) = 0.$$

Ex. 7.2.6, p. 131

(b) Since

$$\sin^{2}(2^{n}\theta_{0}) = 0 \iff \sin(2^{n}\theta_{0}) = 0$$
$$\iff 2^{n}\theta_{0} = k\pi, k \in \mathbb{Z},$$

it follows that $f^n(x_0) = 0$ for $x_0 = \sin^2(k\pi/2^n) = z_k$, $k \in \mathbb{Z}$. As a matter of fact $k \in \{0, 1, ..., 2^{n-1}\}$: the first z_k is $z_0 = \sin^2(0\pi/2^n) = 0$ and the last one is $z_{2^{n-1}} = \sin^2(2^{n-1}\pi/2^n) = 1$, which are the end points of [0, 1]. (c)

For $k \in \{1, \ldots, 2^{n-1}\}$,

$$[z_{k-1}, z_k] = [\sin^2((k-1)\pi/2^n), \sin^2(k\pi/2^n)]$$

is the base of the kth hump of f^n . Thus, from

$$\frac{\pi}{2^n} = \frac{k\pi}{2^n} - \frac{(k-1)\pi}{2^n}$$
$$= \arcsin\sqrt{z_k} - \arcsin\sqrt{z_{k-1}},$$

it follows that

$$\lim_{n\to\infty} \arcsin \sqrt{z_k} = \lim_{n\to\infty} \arcsin \sqrt{z_{k-1}}.$$

Hence, since sin and $\sqrt{-}$ are continuous, $\lim_{n\to\infty}(z_k-z_{k-1})=0$ follows from

$$\sqrt{\lim_{n \to \infty} z_k} = \lim_{n \to \infty} \sqrt{z_k}$$

$$= \lim_{n \to \infty} (\sin \arcsin \sqrt{z_k})$$

$$= \sin \left(\lim_{n \to \infty} \arcsin \sqrt{z_k} \right)$$

$$= \sin \left(\lim_{n \to \infty} \arcsin \sqrt{z_{k-1}} \right)$$

$$= \lim_{n \to \infty} (\sin \arcsin \sqrt{z_{k-1}})$$

$$= \lim_{n \to \infty} \sqrt{z_{k-1}}$$

$$= \sqrt{\lim_{n \to \infty} z_{k-1}}.$$

Ex. 7.4.4, p. 139

(a) The set of zeroes of T^1 is

$$\{0,1\} = \left\{ \frac{i}{2^{1-1}} \, : \, 0 \le i \le 2^{1-1} \right\}.$$

Now suppose the set of zeroes of T^n is

$$\left\{\frac{i}{2^{n-1}} : 0 \le i \le 2^{n-1}\right\}.$$

Then, by **Lemma 7.4.1**, x is a zero of T^{n+1} iff $T(x) = \frac{i}{2^{n-1}}$ for $i \in \{0, \dots, 2^{n-1}\}$. Therefore:

- $x \in [0, 1/2] \Longrightarrow 2x = \frac{i}{2^{n-1}}$, that is, $x = \frac{i}{2^n}$ for $i \in \{0, \dots, 2^{n-1}\}$;
- $x \in (1/2, 0] \Longrightarrow 2 2x = \frac{i}{2^{n-1}}$, that is, $x = \frac{2^n i}{2^n} = \frac{j}{2^n}$ for $j \in \{2^{n-1}, \dots, 2^n\}$. In fact, if $j = 2^n i$, then

$$0 \le i \le 2^{n-1} \Longrightarrow -2^{n-1} \le -i \le 0$$
$$\Longrightarrow 2^n - 2^{n-1} \le 2^n - i \le 2^n$$
$$\Longrightarrow (2-1)2^{n-1} \le j \le 2^n.$$

Therefore the set of zeroes of T^{n+1} is

$$\left\{\frac{i}{2^n}:0\leq i\leq 2^n\right\}.$$

(b) Each hump of T^n has base length $\frac{i+1}{2^{n-1}} - \frac{i}{2^{n-1}} = \frac{1}{2^{n-1}}$.

Ex. 8.2.6, p. 147

- (I) reads as (1), p. 145.
- (II) reads as $(\exists \delta > 0) (\exists y \in \mathbb{R}^{\mathbb{N}}) (\exists \lim_{k \to \infty} y_k \in \{x\}) (\forall k \in \mathbb{N}) (\exists n \in \mathbb{N}) |f^n(x) f^n(y_k)| \ge \delta$.
- (III) reads as $(\exists \delta > 0)(\exists n \in \mathbb{N})(\forall I \ni x)(\exists y \in I) ||f^n(x) f^n(y)| \ge \delta$.

Ex. 8.2.7, p. 148

(I), as seen in the previous exercise!

(III) since it is the negation of $(\forall n \in \mathbb{N})(\forall \delta > 0)(\exists I \ni x)(\forall y \in I) ||f^n(x) - f^n(y)|| < \delta$, which means that f^n is continuos at x for every $n \in \mathbb{N}$.

(c)

Ex. 8.2.8, p. 148

$$(\exists \delta > 0)(\forall y \in [0,1] - \{x\})(\exists n \in \mathbb{N}) \quad |f^n(x) - f^n(y)| \ge \delta.$$

sensitivity is a local concept whereas expansiveness is a global one!

Ex. 8.2.9, p. 148

It seems the assumption must end with "... a point of $Y - \{x\}$." and the deduction must have "... $(y_k)_{k=1}^{\infty}$ in $Y - \{x\}$...". Otherwise, not only the assumption is always true, but also the deduction follows trivially from $y_k = x$ for $k \in \mathbb{N}$. Hence, by the assumption, for $x \in Y$ and $k \in \mathbb{N}$, if $I_k = Y \cap \left(x - \frac{1}{k}, x + \frac{1}{k}\right)$, there is an $y_k \in I_k - \{x\}$. Thus, since $0 < |y_k - x| < \frac{1}{k}$ for every $k \in \mathbb{N}$, it follows that $y_k \to x$. For the converse, assume there is $y_k \in Y - \{x\}$ for every $k \in \mathbb{N}$ such that $y_k \to x$. Thus, if J is an open interval such that $x \in I = Y \cap J$, there is an index k_0 such that $y_k \in J$ for every $k > k_0$. Hence $y_k \in I - \{x\}$ for $k > k_0$.

Ex. 8.2.10, p. 148

First observe that the graph of f is given by the union of $[0,1/2] \times \{0\}$ and the second hump of the graph of Q_4^2 (see **Figure 7.2.1**). Now let $\delta > 0$ and consider I = [0, 1/2], which is not an open-in-[0, 1] interval. Thus $|f^n(1/2) - f^n(y)| = 0 < \delta$ for all $y \in I$. (For an open-in-[0,1] interval I containing $\frac{1}{2}$, there is $y \in I \cap (\frac{1}{2},1)$ such that $|f^1(y) - f^1(1/2)| = |f(y)| > \delta$, depending on the δ taken!)

Ex. 8.3.1, p. 154

Choose $\delta = \frac{3}{4}$. Let *I* be an open-in-[0, 1] interval containing 1. Choose $y \in I - \{1\}$. Thus choose *n* so large that $y^{2^n} \le \frac{1}{4}$. This gives $|f^n(1) - f^n(y)| = |1 - y^{2^n}| \ge \frac{3}{4} = \delta$.

Ex. 8.3.2, p. 154

Do the same as Example 8.3.1, replacing y^{2^n} with y^{3^n} .

Ex. 8.3.3, p. 154

The points are -1 and 1:

Do the same as the last exercise for 1, choosing $y \in I$, which is an open-in-[-1,1], such that 0 < y < 1. For -1, choose $\delta = \frac{1}{2}$, $y \in I$ such that -1 < y < 0, and $n \in \mathbb{N}$ such that $-\frac{1}{2} \le y^{3^n} < 0$. Thus $\frac{1}{2} \le y^{3^n} + 1 < 1$, that is, $\frac{1}{2} \le |y^{3^n} - (-1)^{3^n}| < 1$.

Ex. 8.3.4, p. 154

$$[-1,1] \ni x \mapsto f_1(x) = x^3 \in [-1,1] \Longrightarrow [-1,1] \ni x \mapsto f_2(x) = \frac{f_1(x)}{2} = \frac{x^3}{2} \in [-1/2,1/2]$$

$$\Longrightarrow [-1,1] \ni x \mapsto f_3(x) = f_2(x) + \frac{1}{2} = \frac{x^3}{2} + \frac{1}{2} \in [0,1]$$

$$\Longrightarrow [0,2] \ni x \mapsto f_4(x) = f_3(x-1) = \frac{(x-1)^3}{2} + \frac{1}{2} \in [0,1]$$

$$\Longrightarrow [0,1] \ni x \mapsto f(x) = f_4(2x) = \frac{(2x-1)^3}{2} + \frac{1}{2} \in [0,1].$$

Ex. 8.3.5, p. 154

Let $\delta > 0$. Thus $|y^{2^n}| < \delta$ for all $y \in I = [0,1] \cap (-\delta, \delta)$ and each $n \in \mathbb{N}$.

Ex. 8.3.6, p. 154

(a)

Let $\delta > 0$. Thus $|f^n(y) - f^n(1)| = |y - 1| < \delta$ for all $y \in I = [0, 1] \cap (1 - \delta, 1 + \delta)$ and each $n \in \mathbb{N}$.

(b)

Let $x \neq 1$ and $\delta > 0$. Thus $|f^n(y) - f^n(x)| = |y - x| < \delta$ for all $y \in I = [0,1] \cap (x - \delta, x + \delta)$ and each $n \in \mathbb{N}$.

Ex. 8.3.7, p. 154

First observe that all the iterates of f lie below the graph of id. Now use that id is not sensitive dependent anywhere. (See p. 152 and the last exercise).

Ex. 8.3.8, p. 154

Let $x \in [0,1]$, $\delta > 0$, $y \in I = [0,1] \cap (x - \delta, x + \delta)$ and $n \in \mathbb{N}$. Therefore, since

- $f^i(z) \in [0,1]$ and $|f'(f^i(z))| < 1$ for $i = 0,1,\ldots,n-1$,
- a composition of differentiable functions is a differentiable function, and
- $(f^n)'(z) = f'(z)f'(f(z))f'(f^2(z))\cdots f'(f^{n-1}(z))$

for each $z \in [0,1]$, it follows from **The Mean Value Theorem** that $|f^n(x) - f^n(y)| = |(f^n)'(z_n)||x - y| < \delta$ for some $z_n \in (\min\{x,y\}, \max\{x,y\})$.

Ex. 8.3.9, p. 154

If *f* is differentiable on [0,1], then there is an $x \in (0,1)$ such that f(1) - f(0) = f'(x)(1-0). Thus, since $0 \le \min\{f(0), f(1)\} \le \max\{f(0), f(1)\} \le 1$, there is an $x \in (0,1)$ such that $f'(x) \le 1$.

9

Ex. 9.1.1, p. 160

Use **Example 7.2.6** on p. 129.

Ex. 9.1.2, p. 160

- (a) Take $x \in \{0, 1\}$.
- (b) Choose $y \in I$ and $n \in \mathbb{N}$ such that $f^n(y) = 1$.

Ex. 9.1.3, p. 160

Let *S* be the set of all zeroes of all iterates of f (**Lemma 7.3.2**), $x \in S$ and I be an open-in-[0,1] interval containing x. Thus, since there is an $n_0 \in \mathbb{N}$ such that $f^n(x) = 0$ for every $n \geq n_0$, choose $y \in I$ and $n \geq n_0$ such that $f^n(y) = 1$.

Ex. 9.1.4, p. 160

- (a) The Spike Lemma.
- (b) It follows from the 'Wiggly \Leftrightarrow dense sets of zeroes' Lemma (see p. 133). In fact, if $I \subseteq [0,1]$ and S is the set of all zeroes of all iterates of f, since f is spreading, there is an $n \in \mathbb{N}$ and there is an $z \in I$ such that $f^n(z) = 0$, that is, $z \in S$.

Ex. 9.2.1, p. 164

None!

For the reasons, observe that $S \subset [0,1]$ is not dense in [0,1] if S is a finite set (just take an interval $I \subset [0,1]$ such that $S \cap I = \emptyset$), and

- (a) a periodic orbit is a finite set $S = \{x_0, x_1, \dots, x_{n-1}\}$ such that $f(x_{n-1}) = x_0$,
- (b) an eventually periodic orbit is a finite set $S = \{x_0, x_1, \dots, x_k, x_{k+1}, \dots, x_{k+n-1}\}$ such that $f(x_{k+n-1}) = x_k$,
- (c) for every open interval $J \subset [0,1]$ containing a fixed point p, an orbit converging to p is the union $S \cup S'$ such that $S = \{x_0, x_1, \dots, x_{n_0-1}\}$ and $S' = \{x_{n_0}, x_{n_0+1}, \dots\} \subset J$. (Here, take I such that $I \cap J = \emptyset$ as well).

Ex. 9.2.2, p. 164

 $(\exists I)(\exists J)(\forall n \in \mathbb{N}) \quad f^n(I) \cap J = \emptyset.$

Thus, to prove that f is not transitive, choose a pair of subintervals I and J of [0,1] such that $f^n(I) \cap J = \emptyset$ for all $n \in \mathbb{N}$.

Ex. 9.2.3, p. 164

Choose a pair of subintervals I and J of [0,1] such that $I \cap J = \emptyset$ and let $f = \mathrm{id}^m$ for $m \in \mathbb{N}$. Thus, since $f^n(I) \cap J = \mathrm{id}^{m+n}(I) \cap J = I \cap J = \emptyset$ for all $n \in \mathbb{N}$, $f = \mathrm{id}^m$ is not transitive for $m \in \{1, 2, \ldots\}$.

Ex. 9.2.4, p. 164

f is not transitive. In fact, choose J = [0,0.5) and I = [0.5,1]. Thus, since f(I) = I, $f^n(I) \cap J = I \cap J = \emptyset$ for all $n \in \mathbb{N}$. (See Figure 2)

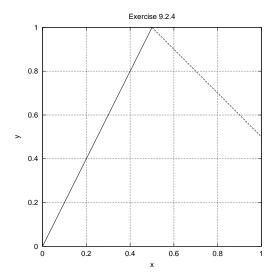


Figure 2: f(x) = 2x for $x \in [0, 0.5]$ and f(x) = 1.5 - x for $x \in [0.5, 1]$.

Ex. 9.2.5, p. 164

Choose a pair of subintervals I and J of [0,1] such that I is a small enough interval containing the fixed point and $I \cap J = \emptyset$. Thus, since $I \supseteq f(I) \supseteq f^2(I) \supseteq \cdots$, it follows that $f^n(I) \cap J = \emptyset$ for all $n \in \mathbb{N}$.

Ex. 9.2.6, p. 164

(a) Let $S_0 = D - \{x_0\}$ with $x_0 \in D$ and let I be a subinterval of [0,1]. If $x_0 \notin I$, then $I \cap S_0 \neq \emptyset$ since $I \cap D \neq \emptyset$. Otherwise, if $x_0 \in I$, take another subinterval J of [0,1] such that $J \subset I - \{x_0\}$. Thus $J \cap S_0 \neq \emptyset$ since $J \cap D \neq \emptyset$. Therefore, $I \cap S_0 \neq \emptyset$.

(b) Suppose $S_k = D - \{x_0, ..., x_k\}$ is dense in [0,1] if $\{x_0, ..., x_k\} \subset D$. Let $S_{k+1} = D - \{x_0, ..., x_{k+1}\}$ with $\{x_0, ..., x_{k+1}\} \subset D$ and let I be a subinterval of [0,1]. If $x_{k+1} \notin I$, then $I \cap S_{k+1} \neq \emptyset$ since $I \cap S_k \neq \emptyset$. Otherwise, if $x_{k+1} \in I$, take another subinterval I of [0,1] such that $I \subset I - \{x_{k+1}\}$. Thus $I \cap S_{k+1} \neq \emptyset$ since $I \cap S_k \neq \emptyset$. Therefore, $I \cap S_{k+1} \neq \emptyset$.

Ex. 9.2.7, p. 165

Consider $y_0 \in D = \{x_n \mid n \in \mathbb{N}_0\}$ such that $(x_0, x_1, ...)$ is a dense orbit and, for $y_0 = x_{n_0}$, let S = D -

 $\{x_0,\ldots,x_{n_0-1}\}$, which is a dense set from Exercise 6. Thus, if $y_n=x_{n_0+n}$ for all $n\in\mathbb{N}_0$, it follows that (y_0,y_1,\ldots) is a dense orbit.

Ex. 9.2.8, p. 165

Let I and J be a pair of subintervals of [0,1] and $(x_0,x_1,...)$ a dense orbit in [0,1]. Therefore I contains an element x_{n_0} of the dense orbit. Thus, since $f^k(x_{n_0}) \in f^k(I)$ for all $k \in \mathbb{N}$ and, from Exercise 7, $f^n(x_{n_0}) \in J$ for some $n \in \mathbb{N}$, it follows that $f^n(I) \cap J \neq \emptyset$.

Ex. 9.3.1, p. 167

- (a) Consider T_4 .
- (b) See Figure 3.

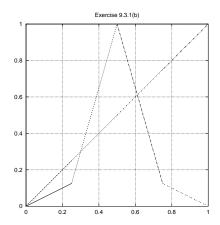


Figure 3: $f(x) = \frac{x}{2}$ for $x \in \left[0, \frac{1}{4}\right]$, $f(x) = \frac{7x}{2} - \frac{3}{4}$ for $x \in \left[\frac{1}{4}, \frac{1}{2}\right]$, $f(x) = -\frac{7x}{2} + \frac{11}{4}$ for $x \in \left[\frac{1}{2}, \frac{3}{4}\right]$, and $f(x) = \frac{-x+1}{2}$ for $x \in \left[\frac{3}{4}, 1\right]$.

(c) See Figure 4.

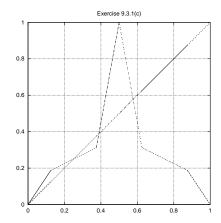


Figure 4: $f(x) = \frac{3x}{2}$ for $x \in \left[0, \frac{1}{8}\right]$, $f(x) = \frac{x}{2} + \frac{1}{8}$ for $x \in \left[\frac{1}{8}, \frac{3}{8}\right]$, $f(x) = \frac{11x}{2} - \frac{7}{4}$ for $x \in \left[\frac{3}{8}, \frac{1}{2}\right]$, $f(x) = -\frac{11x}{2} + \frac{15}{4}$ for $x \in \left[\frac{1}{2}, \frac{5}{8}\right]$, $f(x) = -\frac{x}{2} + \frac{5}{8}$ for $x \in \left[\frac{5}{8}, \frac{7}{8}\right]$, and $f(x) = \frac{-3x+3}{2}$ for $x \in \left[\frac{7}{8}, 1\right]$.

The least possible number of fixed points for a one-hump maps is two.

Ex. 9.3.2, p. 167

Since both Q_4 and T_4 have wiggly iterates (see **Example 7.2.6**), they are mappings whose periodic points are dense in [0,1]. Thus

$$[0,1] \times [0,1] \ni (x_1,x_2) \stackrel{(Q_4,T_4)}{\mapsto} (Q_4(x_1),T_4(x_2)) \in [0,1] \times [0,1]$$

is a mapping whose periodic points are dense in $[0,1] \times [0,1]$. In fact, let S_{Q_4} and S_{T_4} be the sets of periodic points of Q_4 and T_4 , $(x_1,x_2) \in [0,1] \times [0,1]$ and $B((x_1,x_2),r) \subset [0,1] \times [0,1] \times [0,1]$ be an open ball of radius r centered at (x_1,x_2) . Consider that I_1 and I_2 are intervals such that $(x_1,x_2) \in (I_1 \times I_2) \subset B((x_1,x_2),r)$. Therefore, since $(I_1 \times I_2) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$, it follows that $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$. Finally, $B((x_1,x_2),r) \cap (S_{Q_4} \times S_{T_4}) \neq \emptyset$.

-

Ex. 9.3.3, p. 167

Since $f^n - \text{id} : [z_i, y_i] \to \mathbb{R}$ is a continuos function, $(f^n - \text{id})(z_i) = -z_i \le 0$ (since $0 \le z_i < 1$) and $(f^n - \text{id})(y_i) = 1 - y_i > 0$ (since $0 < y_i < 1$), it follows that there is $x_i \in [z_i, y_i]$ such that $(f^n - \text{id})(x_i) = 0$, that is, $f^n(x_i) = \text{id}(x_i) = x_i$. Since $f^n - \text{id} : [y_i, z_{i+1}] \to \mathbb{R}$ is a continuos function, $(f^n - \text{id})(y_i) = 1 - y_i > 0$ (since $0 < y_i < 1$) and $(f^n - \text{id})(z_{i+1}) = -z_{i+1} < 0$ (since $0 < z_{i+1} \le 1$), it follows that there is $x_{i+1} \in [y_i, z_{i+1}]$ such that $(f^n - \text{id})(x_{i+1}) = 0$, that is, $f^n(x_{i+1}) = \text{id}(x_{i+1}) = x_{i+1}$.

Ex. 9.3.4, p. 167

(a) From Theorem 5.2.1, there is an open-in-[0,1] interval I containing p such that

$$|f^n(x_0) - p| = |x_n - p| < \dots < |x_2 - p| < |x_1 - p| < |x_0 - p|$$

for all $x_0 \in I - \{p\}$ and all $n \in \mathbb{N}$.

(b) Now suppose $J \subset I - \{p\}$ is an interval and $p_0 \in J$ is a fixed point of f. Thus $|f^n(p_0) - p| = |p_0 - p|$ for all $n \in \mathbb{N}$. This contradicts (a).

(c) See Exercice 9.3.1.(b)-(c).

Ex. 9.5.1, p. 175

If $\{u,v\} \subset f(I)$ and $w \in [\min\{u,v\}, \max\{u,v\}]$, then there is a $\{x,y\} \subset I$ such that f(x) = u and f(y) = v, and the IVT implies that there is a $z \in [\min\{x,y\}, \max\{x,y\}]$ such that f(z) = w. Thus $w \in f(I)$.

Ex. 9.5.2, p. 175

(a) $\{0,c,1\} \cap J = \emptyset$ since $f(0) = f^2(c) = f(1) = 0$. Thus either $J \subset (0,c)$ or $J \subset (c,1)$. Therefore, since f is strictly increasing on (0,c) and strictly decreasing on (c,1), either f is strictly increasing on J or strictly decreasing on J.

(b) f(J) is an interval contained in f((0,c)) = f((c,1)) = (0,1). Thus, if $J \subset (0,c)$, that is, f is strictly increasing on J, since $f(J) \subset f((c,1))$, then the IVT implies that there exists an interval $K \subset (c,1)$ such that f(K) = f(J) and f is strictly decreasing on K. Otherwise, if $J \subset (c,1)$, that is, f is strictly decreasing on J, since $f(J) \subset f((0,c))$, then the IVT implies that there exists an interval $K \subset (0,c)$ such that f(K) = f(J) and f is strictly increasing on K.

·----

10

Ex. 10.1.2, p. 184

 $f(x) = x^3$. (See Figure 6).

Ex. 10.1.3, p. 185

- (a) Use Ex. 9.2.5 and Lemma 9.2.2.
- (b) 0 is an attracting fixed point since f'(0) = 0.

Ex. 10.1.4, p. 185

g has an attracting fixed point by **Figure 10.1.5**.

Ex. 10.1.6, p. 185

Consider $f(x) = \sin x$ for $x \in I = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and a = 0. Thus (see Figure 5) $f'(x) = \cos x > 0$ for $x \in I$, $f''(a) = -\sin 0 = 0$ and $f'(a)f'''(a) = (\cos a)(-\cos a) = 1 \cdot (-1) < 0$.

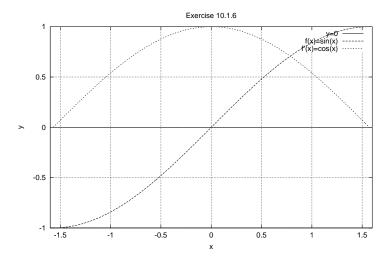


Figure 5: $f(x) = \sin x$ and $f'(x) = \cos x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Ex. 10.1.7, p. 185

It's similar to the previous exercise.

Ex. 10.1.8, p. 185

 2^{n-1} zeroes since f^n has 2^{n-1} humps and each one of the humps has its peak corresponding to the maximum of f^n .

Ex. 10.2.2, p. 189

Ex. 10.2.3, p. 189

Since $f'(x) = 3x^2 = 0$ iff x = 0, f''(x) = 6x and f'''(x) = 6, it follows that

$$S(f)(x) = 2 \cdot 3x^2 \cdot 6 - 3(6x)^2$$

= -72x^2 < 0

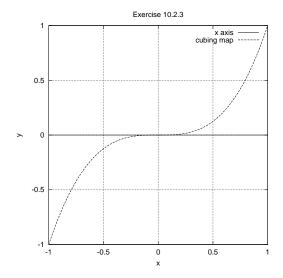


Figure 6: Cubing map.

for all $x \neq 0$. (See Figure 6).

Ex. 10.2.4, p. 189

If

$$A = f''' \circ g \cdot f' \circ g \cdot (g')^4 + 3f'' \circ g \cdot f' \circ g \cdot g'' \cdot (g')^2 + (f' \circ g)^2 \cdot g''' \cdot g'$$

and

$$B = 2(f'' \circ g)^2 \cdot (g')^4 + 4f'' \circ g \cdot f' \circ g \cdot g'' \cdot (g')^2 + 2(f' \circ g)^2 \cdot (g'')^2,$$

then $S(f \circ g)$ would be equal to

$$A + B = S(f) \circ g \cdot (g')^4 + (f' \circ g)^2 \cdot S(g) + 7f'' \circ g \cdot f' \circ g \cdot g'' \cdot (g')^2.$$

Therefore $S(f \circ g)$ would depend on $\boxed{7f'' \circ g \cdot f' \circ g \cdot g'' \cdot (g')^2}$. However, for $\boxed{S(f) \overset{\text{Def. 10.2.2}}{=} f'f''' + 2(f'')^2}$, it is even hard to find an $f:[0,1] \to [0,1]$ such that S(f) < 0 holds at all points of [0,1] for which $f' \neq 0$. For example, if $f(x) = \sin \pi x$, then $S(f)(x) = \pi(2 - 3\cos^2 \pi x) < 0$ for x sufficiently close to 0 or for x sufficiently close to 1, whereas S(f)(x) > 0 for x sufficiently close to $\frac{1}{2}$. As another example, if $a \neq 0$ and $f(x) = ax^2 + bx + c$, then $S(f)(x) = 4a^2 > 0$ for all x.

Ex. 10.2.5, p. 189

Concerning the first equality of the next exercise, take c = -1.

Ex. 10.2.6, p. 189

Use that $S(cf) = c^2 S(f)$ and S(f + c) = S(f).

Ex. 10.2.7-8, p. 189

It's similar to the *Proof* of **Theo. 10.2.4**.

Ex. 10.2.11, p. 190

Let
$$x \in I$$
 such that $f'(x) \neq 0$. Thus $(f'(x))^2 > 0$, $\left[\overline{S}(f)(x) < 0 \Longrightarrow S(f)(x) = 2(f'(x))^2 \overline{S}(f)(x) < 0\right]$ and $\left[S(f)(x) < 0 \Longrightarrow \overline{S}(f)(x) = \frac{S(f)(x)}{2(f'(x))^2} < 0\right]$.

Example, p. 192

 Q_{μ} has negative Schwarzian derivative (except at $x = \frac{1}{2}$) and $Q'_{\mu}(0) = \mu$. Does Q_{μ} have chaotic behaviour if $\mu > 1$?

In order to use the **Test for chaos**, p. 191, Q_{μ} must be a symmetric one-hump mapping (**Def. 7.2.1**, p. 126). Thus $Q_{\mu}(1/2)$ must be equal to 1, that is, $\mu = 4$.

Ex. 10.3.1, p. 192

If $f(x) = 1 - (2x - 1)^4$, then $f'(x) = -8(2x - 1)^3$, $f''(x) = -48(2x - 1)^2$ and f'''(x) = -192(2x - 1). Hence f'(0) = 8 > 1 and $S(f)(x) = (3072 - 6912)(2x - 1)^4 < 0$ for $x \ne \frac{1}{2}$.

If $f(x) = \sin(\pi x)$, then $f'(x) = \pi \cos(\pi x)$, $f''(x) = -\pi^2 \sin(\pi x)$ and $f'''(x) = -\pi^3 \cos(\pi x)$. Hence $f'(0) = \pi > 1$ and $S(f)(x) = -\pi^4 (2\cos^2(\pi x) + 3\sin^2(\pi x)) < 0$.

11

Erratum, l. -2, p. 213

"... (see Exercise 11.3.4) ..." should be "... (see Exercise 11.3.5) ...".

Ex. 11.3.4, p. 215

No for both items since

$$f(x) = T_4(x)$$
=\begin{cases} 2x & \text{if } x \in [0, 1/2] \\ 2 - 2x & \text{if } x \in (1/2, 1] \end{cases}

has two fixed points, whereas

$$g(x) = \begin{cases} 2x + 2 & \text{if } x \in [-1, -1/2] \\ -2x & \text{if } x \in (-1/2, 0] \end{cases}$$

has only one fixed point.

12

Ex. 12.1.5, p. 223

For $x \ge 0$, see **Example 12.1.6**. For x < 0,

$$h(f(x)) = h\left(\frac{x}{4}\right)$$
$$= -\sqrt{-\frac{x}{4}}$$
$$= -\frac{\sqrt{-x}}{2}$$
$$= \frac{h(x)}{2}$$
$$= g(h(x)).$$

Ex. 12.1.6, p. 223

(a) Clearly *h* is continuous at $x \neq 0$.

What about $\lim_{x\to 0} h(x)$?

Since $\phi(0) \ge 1$ and ϕ is either strictly increasing or strictly decreasing¹, it follows that $\phi(0) = 1$ (and ϕ is strictly increasing, which implies that h is strictly increasing², which implies that h is invertible if h is continuous). Thus

$$\lim_{x \to 0^+} h(x) = \lim_{x \to 0^+} \phi(x) = \phi(0) = 1 \text{ and } \lim_{x \to 0^-} h(x) = \lim_{x \to 0^-} \frac{1}{\phi(-x)} = \lim_{x \to 0^+} \frac{1}{\phi(u)} = \lim_{x \to 0^+} \frac{1}{\phi(u)} = \frac{1}{\phi(0)} = 1.$$

Now, since h is strictly increasing, h^{-1} is continuous³.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^+ \to \mathbb{R}^+$ with f(x) = -x and $g(x) = \frac{1}{x}$. Then:

• Since
$$h(0) = \phi(0) = 1$$
, $h(f(0)) = h(0) = \frac{1}{h(0)} = g(h(0))$;

• If
$$x > 0$$
, then $h(f(x)) = h(-x) = \frac{1}{\phi(x)} = g(\phi(x)) = g(h(x))$;

• If
$$x < 0$$
, then $h(f(x)) = h(-x) = \phi(-x) = \frac{1}{1/\phi(-x)} = \frac{1}{h(x)} = g(h(x))$.

(c) There are infinitely many such homeomorphisms h since there are infinitely many such strictly increasing maps $\phi:[0,\infty)\to[1,\infty)$.

Ex. 12.1.8, p. 224

If f is conjugate to g via h is denoted by $f \stackrel{h}{\sim} g$, then:

(i)
$$f \stackrel{id_I}{\sim} f$$
;

(ii)
$$f \stackrel{h}{\sim} g \Longrightarrow g \stackrel{h^{-1}}{\sim} f$$
;

(iii)
$$f_1 \stackrel{h_1}{\sim} f_2$$
 and $f_2 \stackrel{h_2}{\sim} f_3 \Longrightarrow f_1 \stackrel{h_2 \circ h_1}{\sim} f_3$.

Ex. 12.1.9, p. 224

From Example 12.1.3,

$$h \circ f = g \circ h \Longrightarrow h \circ f^2 = g^2 \circ h.$$

Therefore

$$h \circ f^{3} = h \circ f^{2} \circ f$$
$$= g^{2} \circ h \circ f$$
$$= g^{2} \circ g \circ h$$
$$= g^{3} \circ h.$$

Ex. 12.1.10, p. 224

Suppose $h \circ f = g \circ h$ and $h \circ f^n = g^n \circ h$ with $n \in \mathbb{N}$. Thus

$$h \circ f^{n+1} = h \circ f^n \circ f$$
$$= g^n \circ h \circ f$$
$$= g^n \circ g \circ h$$
$$= g^{n+1} \circ h.$$

Ex. 12.2.4, p. 237

$$x \in [z_i, z_{i+1}]$$
 $\stackrel{h}{\Longrightarrow}$ is increasing $h(x) \in [h(z_i), h(z_{i+1})]$ $\stackrel{\text{Lemma 12.2.5}}{=}$ $[w_i, w_{i+1}]$

Lemma 12.3.1, p. 238

¹From Calculus, if I is an interval and $f:I\to f(I)$ is a continuous function, then f is invertible iff f is either strictly increasing or strictly decreasing;

²If $0 \le x_1 < x_2$, then $h(x_1) = \phi(x_1) < \phi(x_2) = h(x_2)$. If $x_1 < x_2 < 0$, that is $0 < -x_2 < -x_1$, then $h(x_1) = \frac{1}{\phi(-x_1)} < \frac{1}{\phi(-x_2)} = h(x_2)$;

³From Calculus, if *I* is an interval and $f: I \to \mathbb{R}$ is strictly monotone, then $f^{-1}: f(I) \to \mathbb{R}$ is continuous.

"Each time the exponent n is increased by 1, f^n acquires one new zero between each of the old ones, as f is a one-hump mapping."

In fact, besides the zeroes of f^n are also zeroes of f^{n+1} (see Ex. 7.2.3, p. 130), f^n is a 2^{n-1} -hump mapping, thus it has $2^{n-1} + 1$ zeroes, whereas f^{n+1} is a 2^n -hump mapping, thus it has $2^n + 1$ zeroes.

Erratum, Def. 12.3.3, p. 240

"... where the h^n are ..." should be "... where the h_n are ...".

Erratum, order of compositions, p. 240 and p. 242

 $f \circ h = h \circ g$ should be $h \circ f = g \circ h$.

Ex. 12.3.1, p. 245

(a) Let $z = z_i$ be the ith zero of f^n . Thus $h_n(z) = h_n(z_i) = w_i$ is the ith zero of g^n , by **Matching Zeroes**. Hence, by **Lemma 12.3.1**, if m > n then $z = z_j$ and $h_n(z) = w_j$ are the jth zeroes of f^m and g^m for j > i, that is, $h_m(z) = h_m(z_j) = w_j = h_n(z)$ by **Matching Zeroes**.

(b) $h(z) = \lim_{n \to \infty} h_n(z)$.

(c) $n = 1, 2, ... \implies h(0) = h_n(0) = 0, h(1) = h_n(1) = 1.$

(d) Since h is continuous, if $u \in [h(0), h(1)]$ then there is a $z \in [0, 1]$ such that u = h(z), by the IVT.

Ex. 12.3.2, p. 245

If $\epsilon = \frac{1}{2}(h(a) - h_n(z))$ and $m \ge n$, use that h_m is strictly increasing and **Ex. 12.3.1** in order to obtain $h_m(a) < h_m(z) = h_n(z) < h(a) - \epsilon$.

Ex. 12.4.3, p. 253

(a) **Theo. 12.4.2**.

(b) Since x_0 is a periodic point for f with prime period n and there is a one-to-one correspondence between $X = \{f^i(x_0) \mid i = 0, ..., n-1\}$ and $Y = \{h(f^i(x_0)) \mid i = 0, ..., n-1\}$, X and Y have the same number (n) of elements. Now suppose that i < n is the prime period of $h(x_0)$ under g. Thus $h(f^i(x_0)) = g^i(h(x_0)) = h(x_0)$ and hence Y has less than n elements!

Ex. 12.4.5, p. 253

It suffices to prove the result given in the box that precedes **Theo. 12.4.3**. Let D be dense in [0,1] and $I \subseteq [0,1]$ be an interval. Since $h^{-1}(I) \subseteq [0,1]$ is an interval, there is a point $x \in D \cap h^{-1}(I)$. So $h(x) \in h(D) \cap I$. Therefore h(D) is dense in [0,1].

Ex. 12.4.7, p. 253

From **Ex. 9.5.1**, it follows that I' and J' are intervals as images of I and J under h^{-1} . Therefore, since the inverse image of an open set under h is open in its domain, which is a basic fact from General Topology, and $h^{-1}(I)$ and $h^{-1}(J)$ are both images under h^{-1} and inverse images under h, which comes from the fact that $h \circ h^{-1}$ and $h^{-1} \circ h$ are both identities, it follows that I' and I' are open intervals.

Let $x \in J' \cap f^n(I')$. Thus $y = h(x) \in h(J') \cap h(f^n(I'))$. Therefore, since there is a $z \in I'$ such that $y = h(f^n(z)) = g^n(h(z))$, it follows that $y \in h(J') \cap g^n(h(I'))$. Hence $y \in J \cap g^n(I)$, by $(h \circ h^{-1})|J = \mathrm{id}_J$, $(h \circ h^{-1})|I = \mathrm{id}_I$.

13

```
\alpha = 1 - 1/r, p. 262, l. 2
```

In fact, $\frac{r}{1/2}$ is the slope of 'the first half of the graph of T', that is, the slope of the line segment joining the points (0,0) and (1/2,r), which equals the slope of 'the first half of the triangle of base α and height r-1'.

Thus $\left| \frac{r}{1/2} = \frac{r-1}{\alpha/2} \right|$

Ex. 13.1.8, p. 264

See Ex. 13.3.3, p. 276.

Ex. 13.1.9, p. 264

General Version of Theorem 13.1.5

Let $T = T_{\mu}$ with $\mu > 4$. The graph of T^n consists of 2^{n-1} isosceles triangles, each of height $r = \frac{\mu}{4} > 1$ and base lenght $\left(\frac{1-\alpha}{2}\right)^{n-1}$ $(\alpha+(1-\alpha)=1)$ with $\alpha=1-\frac{1}{r}$ $(0<\alpha<1)$.

The domain of T^n can be obtained recursively from the results:

(a) dom $T^1 = [0, 1]$;

(b) dom T^{k+1} is the result of removing the open middle fractions α of all the maximal closed intervals in dom $T^{\hat{k}}$.

Proof: Concerning the lines of the original *Proof* of **Theorem 13.1.5**, put |a| *a fraction* $\frac{1-\alpha}{2}$ *of the length* |a| in place of one third of the length (line 8), put a fraction $\frac{1-\alpha}{2}$ in place of one third (line 11) and put $\frac{1-\alpha}{2}$ in place of 1/3 (line 11).

Erratum, Example 13.2.2, p. 265

"Let x_1 and x_2 be ..." should be "Let x_0 and x_1 be ...".

Ex. 13.2.3, p. 270

$$C_{n+1} = \operatorname{dom} f^{n+1}$$

$$= \operatorname{dom} f^n \circ f$$

$$= \{ x \in \operatorname{dom} f : f(x) \in \operatorname{dom} f^n \}$$

$$= \{ x \in [0,1] : f(x) \in C_n \}.$$

Ex. 13.2.4, p. 270

$$\bigcap_{n=1}^{\infty} C_n = \bigcap_{i=0}^{\infty} C_{i+1} \\
= C_1 \cap \left(\bigcap_{i=1}^{\infty} C_{i+1}\right) \\
= [0,1] \cap \left(\bigcap_{i=1}^{\infty} C_{i+1}\right) \\
= \bigcap_{i=1}^{\infty} C_{i+1} \\
= \bigcap_{n=1}^{\infty} C_{n+1};$$

- $\bigcap_{n=1}^{\infty} C_{n+1} \subset C_{n+1}$ for $n=1,2,\ldots \Longrightarrow f\left(\bigcap_{n=1}^{\infty} C_{n+1}\right) \subset f(C_{n+1});$
- Ex. 13.2.3.

Ex. 13.2.5, p. 271

 $f^1(C) \subset C$ and $f^n(C) \subset C$ is the induction hypothesis. Thus $f^{n+1}(C) = f(f^n(C)) \subset f(C) \subset C$.

Ex. 13.2.11, p. 271

 x_0 is a periodic point of $f \Longrightarrow x_1 = f(x_0)$ is a periodic point of f.

Ex. 13.2.12, p. 271

Let $x \in [0,1]$ be a zero of f^n , that is, $f^n(x) = 0$. Therefore $f^{n-1}(f(x)) = 0$, that is, f(x) is a zero of f^{n-1} .

Erratum, the line before Fig. 13.3.2, p. 274 "... in Exercise 13.3.5." should be "... in Exercise 13.3.6.". Ex. 13.3.1, p. 276 $(a)\longleftrightarrow (e'),$ $(b)\longleftrightarrow (c'),$ $(c)\longleftrightarrow (a'),$ $(d)\longleftrightarrow (b')$ and $(e)\longleftrightarrow (d').$ Ex. 13.3.3, p. 276 dom $T^1 = C_1$ and, for n = 1, 2, ..., dom $T^n = C_n$ is the union of the bases of 2^{n-1} isosceles triangles, which are the bases of humps for T^n , each of base length $(1/3)^{n-1}$. C_{n+1} is obtained from C_n by removing the open middle thirds of all the maximal closed intervals in C_n , which are the bases of humps for T^n . This leaves two closed intervals in C_{n+1} , each of length $(1/3)^{n-2}$, in place of each maximal closed interval in C_n . Thus $(1/3)^{n-1}$ is also the length of the longest interval in C_n and it $\to 0$ as $n \to \infty$. Ex. 13.3.4, p. 276 See the resolution of Ex. 13.1.9, the resolution of the last exercise and notice that $\left(\frac{1-\alpha}{2}\right)^{n-1} \to 0$ as $n \to \infty$. _____ Erratum, Ex. 13.4.8, p. 281 $|I \cap C_n \neq \emptyset|$ should be $|I \cap C \neq \emptyset|$. Ex. 13.4.8, p. 281 $S \subset C$ by **Corollary 13.2.10**. Since $I \cap C \neq \emptyset$, there is a hump of some f^n with base contained in I by the **Spike**

Lemma. Since the endpoints of such a base are zeroes of f^n , we have that $S \cap (I \cap C) \neq \emptyset$.