A Survival Guide to

Mathematics \& Climate
 2013 SIAM Edition Hans Kaper and Hans Engler

Partial scrutiny, Comments, Suggestions and Errata José Renato Ramos Barbosa
2019

Departamento de Matemática
Universidade Federal do Paraná Curitiba - Paraná - Brasil jrrb@ufpr.br

2
==12

Exercises, pp. 23-7
1.

$$
\begin{gathered}
\frac{h c}{\lambda k T}=\frac{(h \text { in Js })\left(c \text { in } \frac{\mathrm{m}}{\mathrm{~s}}\right)}{(\lambda \text { in m })\left(k \text { in } \frac{\mathrm{J}}{\mathrm{~K}}\right)(T \text { in K })} \text { in } \frac{\mathrm{Jm}}{\mathrm{~mJ}} \text { is dimensionless; } \\
\frac{h c^{2}}{\lambda^{5}}=\frac{(h \text { in Js })\left(c^{2} \text { in } \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}\right)}{\lambda^{5} \text { in } \mathrm{m}^{5}} \text { in } \frac{\mathrm{Js}^{-1} \mathrm{~m}^{2}}{\mathrm{~m}^{5}}=\mathrm{Wm}^{-3} \Longrightarrow B(\lambda, T) \text { has the dimension of radiance. }
\end{gathered}
$$

3.

$$
\begin{aligned}
F(T) & =\pi \int_{0}^{\infty} B(\lambda, T) d \lambda \\
& =2 \pi h c^{2} \int_{0}^{\infty} \frac{1}{\lambda^{5}\left(e^{h c / \lambda k T}-1\right)} d \lambda .
\end{aligned}
$$

Therefore

$$
x=\frac{h c}{\lambda k T}, \text { i.e., } \begin{aligned}
\lambda=\frac{h c}{x k T} & \Longrightarrow \frac{d \lambda}{d x}=-\frac{h c}{x^{2} k T} \text { and } \frac{1}{\lambda^{5}}=\left(\frac{k T}{h c}\right)^{5} x^{5} \\
& \Longrightarrow F(T)=2 \pi h c^{2}\left(\frac{h c}{k T}\right)\left(\frac{k^{5} T^{5}}{h^{5} c^{5}}\right)\left(-\int_{\infty}^{0} \frac{x^{5}}{x^{2}\left(e^{x}-1\right)} d x\right) \\
& \Longrightarrow F(T)=\frac{2 \pi k^{4} T^{4}}{h^{3} c^{2}}\left(\frac{1}{15} \pi^{4}\right) \\
& \Longrightarrow F(T)=\frac{2 \pi^{5} k^{4}}{15 h^{3} c^{2}} T^{4} .
\end{aligned}
$$

8. ($Q=\frac{S_{0}}{4}$ varies approximately between $341.375 \mathrm{Wm}^{-2}$ and $341.75 \mathrm{Wm}^{-2}$.)
(i) Since $T^{*}=T^{*}(Q)$ is increasing, ${ }^{1} T^{*}$ varies approximately between

$$
\left(\frac{(0.7)(341.375)}{(0.6)\left(5.67 \cdot 10^{-8}\right)}\right)^{1 / 4} \approx 289.5002 \mathrm{~K}
$$

and

$$
\left(\frac{(0.7)(341.75)}{(0.6)\left(5.67 \cdot 10^{-8}\right)}\right)^{1 / 4} \approx 289.5797 \mathrm{~K},
$$

whose difference is 0.0795 K .
(ii) Since $T^{*}(Q)=((1-\alpha) Q-A) / B$ is increasing, T^{*} varies approximately between

$$
\begin{aligned}
\frac{(0.7)(341.375)-(203.3)}{2.09} & \approx 17.0634 \text { degrees Celsius } \\
& \approx 290.2134 \mathrm{~K}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{(0.7)(341.75)-(203.3)}{2.09} & \approx 17.1890 \text { degrees Celsius } \\
& \approx 290.3390 \mathrm{~K},
\end{aligned}
$$

whose difference is 0.1256 degrees Celsius or Kelvin.
(iii) The heat capacity of the Earth's climate system quantifies the amount of incoming solar energy (heat) required to increase $T(t)$ by 1 degree Celsius and its actual value (assumed to be constant over the entire globe)

[^0]depends on the medium under consideration. ${ }^{2}$ For example, land heats up faster than water, which has to absorb a great deal of energy before its temperature rises. ${ }^{3}$ For this reason, the ocean takes a long time to change temperature significantly, whereas land can heat up very quickly.
10.
(i) Based on $\alpha(T)$ of section $\mathbf{2 . 5}$, let us consider
\[

$$
\begin{equation*}
f(x)=a+\frac{b}{2} \cdot \tanh (x) \tag{1}
\end{equation*}
$$

\]

as a function that connects the value $a-\frac{1}{2} b$ smoothly with the value $a+\frac{1}{2} b$.
(ii) In (1), for $\varepsilon>0$ sufficiently small, replace b and x by $b-\varepsilon$ and εx respectively.
(iii) $\tanh (x)$ is a rescaled $g(x)$. In fact, since

$$
\begin{align*}
\tanh (x) & =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& =\frac{e^{x}-\frac{1}{e^{x}}}{e^{x}+\frac{1}{e^{x}}} \\
& =\frac{e^{2 x}-1}{e^{2 x}+1} \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
g(x) & =\frac{1}{1+e^{-x}} \\
& =\frac{1}{1+\frac{1}{e^{x}}} \\
& =\frac{e^{x}}{e^{x}+1^{\prime}} \tag{3}\\
\tanh (x) & =2 g(2 x)-1 .
\end{align*}
$$

Furthermore, $\tanh (\mathbb{R})=(-1,1)$ and $g(\mathbb{R})=(0,1),{ }^{4}$ there is a diffeomorphism between $(-1,1)$ to $(0,1)$, as illustrated below,

$\tanh (x)$ is a diffeomorphism between the open intervals $(-\infty, \infty)$ and $(-1,1), g(x)$ is a diffeomorphism between the open intervals $(-\infty, \infty)$ and $(0,1)$, the inflection points of $\tanh (x)$ and $g(x)$ occur at the points $(0,0)$ and $(0,0.5)$, respectively, and the graphs of $\tanh (x)$ and $g(x)$ are symmetric with respect to the inflection points, ${ }^{5}$ as illustrated in the following figure.

[^1][^2]
12. If $x=T-T^{*}$ and $x \rightarrow 0$, that is, $T \rightarrow T^{*}$, then
\[

$$
\begin{aligned}
C \dot{x} & =C \dot{T} \\
& =\left(1-\alpha\left(x+T^{*}\right)\right) Q-\varepsilon \sigma\left(x+T^{*}\right)^{4} \\
& =\left(1-\alpha\left(T^{*}\right)-\alpha^{\prime}\left(T^{*}\right) x-\mathcal{O}\left(x^{2}\right)\right) Q-\varepsilon \sigma\left(x^{4}+4 x^{3} T^{*}+6 x^{2}\left(T^{*}\right)^{2}+4 x\left(T^{*}\right)^{3}+\left(T^{*}\right)^{4}\right) \\
& \approx\left(1-\alpha\left(T^{*}\right)\right) Q-\varepsilon \sigma\left(T^{*}\right)^{4}-\left(\alpha^{\prime}\left(T^{*}\right) Q+4 \varepsilon \sigma\left(T^{*}\right)^{3}\right) x
\end{aligned}
$$
\]

where $\left(1-\alpha\left(T^{*}\right)\right) Q-\varepsilon \sigma\left(T^{*}\right)^{4}=0$.
Without loss of generality, the general solution of $\dot{x}=(-D / C) x$ is $x=e^{(-D / C) t}$, which converges to 0 as $t \rightarrow \infty$ if $D>0 .{ }^{6}$

3

Comment, p. 36, 1st sentence after (3.7)
The general solution of

$$
\frac{d T_{0}}{d t}=-c T_{0}
$$

is given by

$$
T_{0}=e^{-c t}
$$

Therefore, since a particular solution of the first equation of (3.7) is given by

$$
\begin{equation*}
T_{0}=T_{0}^{*} \tag{4}
\end{equation*}
$$

its general solution is given by

$$
T_{0}=e^{-c t}+T_{0}^{*}
$$

Comment, p.37, (3.13)
By multiplying both sides of (3.12) by $\frac{\beta}{\alpha \Delta T}$, rewriting the expression within the absolute value bars of (3.12) as the product of $\alpha \Delta T$ and another expression, and using

$$
t=\frac{t^{\prime}}{2 \alpha k|\Delta T|^{\prime}}
$$

we get

$$
\frac{d}{d t}\left(\frac{\beta \Delta S}{\alpha \Delta T}\right)=\frac{2 \beta H}{\alpha \Delta T}-2 k\left|\alpha \Delta T\left(1-\frac{\beta \Delta S}{\alpha \Delta T}\right)\right| \frac{\beta \Delta S}{\alpha \Delta T} \Longrightarrow 2 \alpha k|\Delta T| \frac{d x}{d t^{\prime}}=\frac{2 \beta H}{\alpha \Delta T}-2 \alpha k|\Delta T||1-x| x
$$

Comment, p.38, (3.15)
For $x<1$, (3.13) becomes

$$
\begin{aligned}
\dot{x} & =\lambda-(1-x) x \\
& =\lambda-x+x^{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
\dot{y} & =\frac{d}{d t}\left(x-x^{*}\right) \\
& =\dot{x} \\
& =\lambda-\left(x^{*}+y\right)+\left(x^{*}+y\right)^{2} \\
& =\lambda-x^{*}-y+\left(x^{*}\right)^{2}+2 x^{*} y+y^{2} \\
& =\lambda-\left(1-x^{*}\right) x^{*}+\left(2 x^{*}-1\right) y+y^{2} .
\end{aligned}
$$

Now let y be small enough and note that $x^{*}<1$ satisfies (3.14). ${ }^{7}$
Comment, p.38, ultimate paragraph of 3.5.2
Since $\Delta T=2 T^{*}$ by the first sentence of section 3.5,

$$
\begin{aligned}
x & =\frac{\beta \Delta S}{\alpha \Delta T} \\
& =\frac{\beta \Delta S}{2 \alpha T^{*}}
\end{aligned}
$$

[^3]is the solution of (3.15) and rest of the paragraph (related to (3.15)) is analyzed by considering $x=x^{*}+y$ as $t \rightarrow \infty$.
and (3.5) can be rewritten as
\[

$$
\begin{aligned}
q & =k(\alpha \Delta T-\beta \Delta S) \\
& =k \alpha \Delta T\left(1-\frac{\beta \Delta S}{\alpha \Delta T}\right) \\
& =2 k \alpha T^{*}(1-x)
\end{aligned}
$$
\]

On the other hand, by $(3.9), 2 T^{*}=T_{2}^{*}-T_{1}^{*}$ is positive since the average temperature near the equator is higher than the average temperature near the poles. Therefore $q(1-x)>0$.

Exercises, pp. 39-40

3-4.

$$
\begin{aligned}
\frac{d}{d t}(\Delta T) & =\dot{T}_{2}-\dot{T}_{1} \\
& =c\left(T^{*}-T_{2}\right)-|q| \Delta T-c\left(-T^{*}-T_{1}\right)-|q| \Delta T \\
& =c\left(2 T^{*}-\Delta T\right)-2|q| \Delta T \\
& =-(c+2|q|) \Delta T+2 c T^{*} \\
\frac{d}{d t}(\Delta S) & =\dot{S}_{2}-\dot{S}_{1} \\
& =H+d\left(S^{*}-S_{2}\right)-|q| \Delta S+H-d\left(-S^{*}-S_{1}\right)-|q| \Delta S \\
& =2 H+d\left(2 S^{*}-\Delta S\right)-2|q| \Delta S \\
& =-(d+2|q|) \Delta S+2\left(H+d S^{*}\right)
\end{aligned}
$$

Now suppose that H, T^{*} and S^{*} become zero. ${ }^{8}$ So the flow q ceases to exist and the equations above become

$$
\begin{aligned}
& \frac{d}{d t}(\Delta T)=-c \Delta T \\
& \frac{d}{d t}(\Delta S)=-d \Delta S
\end{aligned}
$$

Therefore, for each $t \in \mathbb{R}$,

$$
\begin{aligned}
& \Delta T=c_{1} e^{-c t} \\
& \Delta S=c_{2} e^{-d t}
\end{aligned}
$$

where c_{i} is constant, $i=1,2$.

[^4]
4

Comment, 2nd paragraph of section 4.1, pp.41-42

$$
\begin{aligned}
\left(\dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{n-1}, \dot{x}_{n}\right) & =\left(x^{(1)}, x^{(2)}, \ldots, x^{(n-1)}, x^{(n)}\right) \\
& =\left(x_{2}, x_{3}, \ldots, x_{n}, g\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Comment, p. 43, (ii) and (iii)

Concerning the solutions,

$$
\begin{aligned}
\frac{d x}{d t}=x^{2} & \Longrightarrow \int x^{-2} d x=\int d t \\
& \Longrightarrow-\frac{1}{x}=t+\text { constant with constant }=-\frac{1}{x_{0}}-t_{0} \text { if } x\left(t_{0}\right)=x_{0} \\
& \Longrightarrow x=-\frac{1}{t-\frac{1+x_{0} t_{0}}{x_{0}}} .
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d x}{d t}=\sqrt{x} & \Longrightarrow \int x^{-1 / 2} d x=\int d t \\
& \Longrightarrow 2 \sqrt{x}=t+\text { constant with constant }=2 \sqrt{x_{0}}-t_{0} \text { if } x\left(t_{0}\right)=x_{0} \\
& \Longrightarrow 4 x=\left(t-t_{0}+2 \sqrt{x_{0}}\right)^{2} .
\end{aligned}
$$

Comments, pp.44-5

- 3rd paragraph, 1st sentence

$$
\begin{aligned}
f \text { is Lipschitz } & \Longrightarrow f \text { is continuous } \\
& \Longrightarrow \text { there exists a solution for the } \operatorname{IVP}\left\{\begin{array}{l}
\dot{x}=f(x), \\
x\left(t_{0}\right)=x_{0}
\end{array}\right. \text { (by Theo. 4.1). }
\end{aligned}
$$

Concerning the first implication above, for any $x_{i} \in D, i=1,2$, and $\varepsilon>0$, consider $\delta<\frac{\varepsilon}{k}$. Therefore

$$
\begin{aligned}
\left\|x_{1}-x_{2}\right\|<\delta \Longrightarrow\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| & \leq k\left\|x_{1}-x_{2}\right\| \\
& <k \delta \\
& <\varepsilon .
\end{aligned}
$$

- Theo. 4.3 can be rewritten as

Let f be C^{k} on D. ${ }^{9}$ Fix $t \in I\left(x_{0}\right) .{ }^{10}$ So there is a neighborhood U of x_{0} such that $x \xrightarrow{\phi_{t}} \phi_{t}(x):=\varphi(t, x)$ is C^{k} on U.
U could represent a very small open ball centered at x_{0}, consisting of initial conditions arbitrarily close to x_{0}. $\phi_{t}(U)$ represents the result of allowing U to evolve through t units of time (forward for $t>0$ or backward for $t<0$). The transition from U to $\phi_{t}(U)$ is as smooth as f.

[^5]

- 2nd paragraph of section 4.2

Let f be C^{k} on $D, k=1,2, \ldots$. A dynamical system associated with $\dot{x}=f(x)$ is the set consisting of the maps ϕ_{t}, obtained as described above, for each initial condition $x_{0} \in D$ and each $t \in I\left(x_{0}\right)$.

Comment, p.46, Def. 4.4

$$
\begin{aligned}
\omega(x) & =\left\{y \in D: \phi_{t_{n}}(x)=\varphi\left(t_{n}, x\right) \rightarrow y \text { for some sequence } t_{n} \rightarrow \infty\right\} \text { and } \\
\alpha(x) & =\left\{y \in D: \phi_{t_{n}}(x)=\varphi\left(t_{n}, x\right) \rightarrow y \text { for some sequence } t_{n} \rightarrow-\infty\right\} .
\end{aligned}
$$

Comment, p.49, (4.10)

The figure

illustrates an initial condition x_{0} which is either in the interior ($r<1$), boundary ($r=1$) or exterior $(r>1$) of the open ball centered at x_{1}^{*}. For $r \geq 0$, since $\dot{\theta} \geq 0, \theta$ is a increasing function. So, for the $r<1$ case, since $\dot{r}>0, r$ is strictly increasing, which implies that solutions $\varphi\left(t, x_{0}\right)$ that start near x_{1}^{*} will spiral away from the origin. ${ }^{11}$ For the $r=1$ case, since $\dot{r}=0$, solutions $\varphi\left(t, x_{0}\right)$ move along the boundary $r=1$ and will converge to x_{2}^{*} as time goes by. For the $r>1$ case, since $\dot{r}<0, r$ is strictly decreasing, which implies that solutions $\varphi\left(t, x_{0}\right)$ will eventually converge to x_{2}^{*}.

Comments, p. 51

- (4.13)

The fact that the only critical point is the origin is a direct consequence of assuming the existence of A^{-1} :

$$
\begin{aligned}
A x=0 & \Longrightarrow A^{-1} A x=A^{-1} 0 \\
& \Longrightarrow x=0 .
\end{aligned}
$$

[^6]- Last paragraph
$\mathbb{R}^{n^{2}}$ is isomorphic to the space $\mathbb{R}^{n \times n}$ of matrices of order $n .^{12}$ For example, consider the isomorphism

$$
\mathbb{R}^{n \times n} \ni\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \mapsto\left(a_{11}, a_{12}, \ldots, a_{1 n}, a_{21}, a_{22}, \ldots, a_{2 n}, \ldots, a_{n 1}, a_{n 2}, \ldots, a_{n n}\right) \in \mathbb{R}^{n^{2}}
$$

Since all norms in $\mathbb{R}^{n^{2}}$ are equivalent, we might also consider

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{M^{k}}{k!}=e^{M}
$$

with respect to the Euclidean norm.

Comments, p. 52

- (4.15)

Differentiate (4.14) with respect to t term by term!

- 1st paragraph after Theo. 4.4

Let J and P be real matrices with P invertible and $A=P J P^{-1}$. So $A^{k}=P J^{k} P^{-1}$ for $k=0,1,2, \ldots$. Therefore

$$
\begin{aligned}
e^{t A} & =P\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k}\right) P^{-1} \\
& =P e^{t J} P^{-1}
\end{aligned}
$$

by (4.14). For example, if J is the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$, then $e^{t J}$ is the diagonal matrix with diagonal entries $e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$.

- 2nd paragraph after Theo. 4.4
E^{s} and E^{u} are invariants under $e^{t A}$. In fact, for simplicity, let A be diagonalizable and consider an initial condition $x_{0} \in E^{s}$. So

$$
\begin{equation*}
x_{0}=\sum_{j=1}^{r} \alpha_{j} v_{i_{j}} \tag{5}
\end{equation*}
$$

is a linear combination of eigenvectors $v_{i_{1}}, \ldots, v_{i_{r}}$ associated with eingenvalues $\lambda_{i_{1}}, \ldots, \lambda_{i_{r}}$ of A which are in the left half of the complex plane, i.e.,

$$
\begin{equation*}
A v_{i_{j}}=\lambda_{i_{j}} v_{i_{j}} \tag{6}
\end{equation*}
$$

where the real part of $\lambda_{i_{j}}$ is negative for $j=1, \ldots, r$. Therefore

$$
\begin{aligned}
e^{t A} x_{0} & =\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k} x_{0} \\
& =\sum_{j=1}^{r} \alpha_{j} \sum_{k=0}^{\infty} \frac{t^{k} \lambda_{i_{j}}^{k}}{k!} v_{i_{j}} \\
& =\sum_{j=1}^{r} \alpha_{j} e^{\lambda_{i_{j} t}} v_{i_{j}} \in E^{s}
\end{aligned}
$$

by (5) and (6).

Comment/Erratum, p. 53, (i)

[^7]- 1st paragraph

Consider $e^{t J} y_{0}$ with nonzero $y_{0}=\left(y_{0,1}, y_{0,2}\right)$. Without loss of generality, suppose $y_{0,2} \neq 0$. Therefore

$$
\begin{aligned}
\left|y_{1}\right|^{\left|\lambda_{2}\right|} & =\left|y_{0,1} e^{\lambda_{1} t}\right|^{\left|\lambda_{2}\right|} \\
& =\left|y_{0,1} e^{-\left|\lambda_{1}\right| t}\right|^{\left|\lambda_{2}\right|} \\
& =\left|y_{0,1}\right|^{\left|\lambda_{2}\right|}\left|e^{-\left|\lambda_{2}\right| t}\right|^{\left|\lambda_{1}\right|} \\
& =\frac{\left|y_{0,1}\right|^{\left|\lambda_{2}\right|}}{\left|y_{0,2}\right|^{\left|\lambda_{1}\right|}\left|y_{0,2} e^{\lambda_{2} t}\right|^{\left|\lambda_{1}\right|}} \\
& =C\left|y_{2}\right|^{\left|\lambda_{1}\right|}
\end{aligned}
$$

- Antepenultimate sentence
$' 0<\lambda_{2}<\lambda_{2}$ ' should be ' $0<\lambda_{1}<\lambda_{2}{ }^{\prime}$.

Comments/Erratum, p. 54

- Sentence that precedes (i)
- Consider $J=\alpha I+\beta B$ with

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Note that the sequence with k-th term B^{k} begins with the terms

$$
B^{0}=I, B^{1}=B, B^{2}=-I, B^{3}=-B, B^{4}=I, B^{5}=B, B^{6}=-I, B^{7}=-B, \ldots
$$

and continues to repeat indefinitely. Therefore

$$
\begin{aligned}
e^{t J} & =e^{t(\alpha I+\beta B)} \\
& =e^{\alpha t I} e^{\beta t B} \\
& =\left(\sum_{k=0}^{\infty} \frac{(\alpha t)^{k}}{k!} I^{k}\right)\left(\sum_{k=0}^{\infty} \frac{(\beta t)^{k}}{k!} B^{k}\right) \\
& =e^{\alpha t} I\left(I+\beta t B+\frac{(\beta t)^{2}}{2!} B^{2}+\frac{(\beta t)^{3}}{3!} B^{3}+\frac{(\beta t)^{4}}{4!} B^{4}+\frac{(\beta t)^{5}}{5!} B^{5}+\cdots\right) \\
& =e^{\alpha t}\left(I+\beta t B-\frac{(\beta t)^{2}}{2!} I-\frac{(\beta t)^{3}}{3!} B+\frac{(\beta t)^{4}}{4!} I+\frac{(\beta t)^{5}}{5!} B-\cdots\right) \\
& =e^{\alpha t}\left(\left(1-\frac{(\beta t)^{2}}{2!}+\frac{(\beta t)^{4}}{4!}-\cdots\right) I+\left(\beta t-\frac{(\beta t)^{3}}{3!}+\frac{(\beta t)^{5}}{5!}-\cdots\right) B\right) \\
& =e^{\alpha t}((\cos \beta t) I+(\sin \beta t) B) .
\end{aligned}
$$

- The diagonal entry at the bottom right corner, $-\cos \beta t$, should be $\cos \beta t$.
- (ii)

The orbits are circles. In fact, for a nonzero initial condition

$$
\begin{gathered}
y_{0}=\binom{y_{0,1}}{y_{0,2}} \\
\binom{y_{1}(t)}{y_{2}(t)}=e^{t J} y_{0} \\
=\binom{y_{0,1} \cos \beta t+y_{0,2} \sin \beta t}{-y_{0,1} \sin \beta t+y_{0,2} \cos \beta t}
\end{gathered}
$$

with

$$
\begin{aligned}
y_{1}^{2}+y_{2}^{2} & =\left(y_{0,1}\right)^{2}\left(\cos ^{2} \beta t+\sin ^{2} \beta t\right)+\left(y_{0,2}\right)^{2}\left(\sin ^{2} \beta t+\cos ^{2} \beta t\right) \\
& =\left(\sqrt{\left(y_{0,1}\right)^{2}+\left(y_{0,2}\right)^{2}}\right)^{2}
\end{aligned}
$$

Comments, 4.6 .3 , pp. 55-6

- (i) means that A is non-diagonalizable, that is, \mathbb{R}^{2} does not have a basis consisting of eigenvectors of A. So the λ-eigenspace of A, which is either E^{s} or E^{u}, has dimension 1 . On the other hand, since $J^{0}=I$ and

$$
\begin{aligned}
& J^{k}=\left(\begin{array}{cc}
\lambda^{k} & 0 \\
k \lambda^{k-1} & \lambda^{k}
\end{array}\right) \text { for } k=1,2,3, \ldots \\
& e^{t J}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k} \\
&= I+\sum_{k=1}^{\infty}\left(\begin{array}{cc}
\frac{(t \lambda)^{k}}{k!} & 0 \\
\frac{t(t \lambda)^{k-1}}{(k-1)!} & \frac{(t \lambda)^{k}}{k!}
\end{array}\right) \\
&=\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
t e^{\lambda t} & e^{\lambda t}
\end{array}\right)
\end{aligned}
$$

and, if y_{0} is an initial condition,

$$
\lim _{t \rightarrow \pm \infty} e^{t J} y_{0}=(0,0)
$$

if $\lambda \lessgtr 0$.

- (ii) means that A is diagonalizable, that is, \mathbb{R}^{2} has a basis consisting of eigenvectors of A. So either $E^{s}=\mathbb{R}^{2}$ or $E^{u}=\mathbb{R}^{2}$. Furthermore, for each initial condition $x_{0} \in \mathbb{R}^{2}$, since $J=\lambda I$ and

$$
\begin{aligned}
A= & F^{-1} J F \\
= & F^{-1}(\lambda I) F \\
= & \lambda F^{-1} I F \\
= & \lambda F^{-1} F \\
= & \lambda I \\
& \\
e^{t A} x_{0} & =e^{t J} x_{0} \\
& =e^{\lambda t I} x_{0} \\
& =e^{\lambda t} I x_{0} \\
& =e^{\lambda t} x_{0}
\end{aligned}
$$

is a scalar multiple of x_{0} for every $t \in \mathbb{R}$.

Exercises, pp. 58-62

1. Firstly,

$$
\begin{aligned}
X_{1}=x \text { and } X_{2}=\dot{x} & \Longrightarrow\left[\begin{array}{l}
\dot{X}_{1} \\
\dot{X}_{2}
\end{array}\right]=\left[\begin{array}{l}
X_{2} \\
X_{1}
\end{array}\right] \\
& \Longrightarrow \dot{X}=A X \text { with } X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

So, by subsection 4.6.1, $\lambda_{1}=-1$ and $\lambda_{2}=1$,

$$
\begin{gathered}
J=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \\
e^{t J}=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right]
\end{gathered}
$$

and the orbits are similar to the ones of Figure 4.8 with a saddle point at the origin as the only fixed point. Furthermore, concerning the trajectory

$$
\left\{\left(t, e^{t A} X_{0}\right): t \in I\left(X_{0}\right)\right\}
$$

of an initial condition $X_{0},{ }^{13}$ it is worth noting that, since $A^{2 k}=I(2 \times 2$ identity matrix $)$ and $A^{2 k+1}=A$ for $k=0,1,2, \ldots$,

$$
\begin{aligned}
e^{t A} & =\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k} \\
& =\sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!} I+\sum_{k=0}^{\infty} \frac{t^{2 k+1}}{(2 k+1)!} A \\
& =(\cosh t) I+(\sinh t) A \\
& =\left[\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right]
\end{aligned}
$$

As an illustration, let us consider the solution with $X_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$:

$$
\begin{aligned}
X_{1}(t) & =\cosh t+2 \sinh t \\
& =\frac{1}{2}\left(3 e^{t}-e^{-t}\right) \\
X_{2}(t) & =\sinh t+2 \cosh t \\
& =\frac{1}{2}\left(3 e^{t}+e^{-t}\right)
\end{aligned}
$$

3. Consider (4.5), p. 42. Therefore:

- $x_{2}=0$ and $\sin x_{1}=0$ give us the fixed points

$$
\left(x_{1}^{*}, x_{2}^{*}\right)=(k \pi, 0) \text { for } k \in \mathbb{Z} ;
$$

In Figure 4.3, p. 46, $\boldsymbol{A}=(0,0)$ and $\boldsymbol{B}=(\pm \pi, 0)$.

- $\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$ is the linearization of

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}+\mathcal{O}\left(x_{1}^{2}\right) .
\end{array}\right.
$$

Furthermore, by subsection 4.6.2, $\lambda_{1}=i$ and $\lambda_{2}=-i, A=J$,

$$
e^{t J}=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

and the orbits are similar to the ones of Figure 4.10, p. 55, with a center at the origin as the only fixed point.

[^8]So the phase portrait around $x^{*} \in\{A, B\}$ and the phase portrait of Figure 4.10 (left) are locally similar.
5.
(i) On the one hand, a first integral is any function that is constant along the solutions of an ODE. So, if $F(x, y)$ is constant on a solution curve, $\frac{d F}{d t}=\dot{x} F_{x}+\dot{y} F_{y}$ equals zero by the chain rule. Then

$$
\begin{equation*}
\frac{\dot{y}}{\dot{x}}=-\frac{F_{x}}{F_{y}} \tag{7}
\end{equation*}
$$

provided that $\dot{x} F_{y} \neq 0$. On the other hand, by considering $y=\dot{x}$, the equations of the exercise can be written as $(\dot{x}, \dot{y})=f(x, y)$ with $\dot{x}=y$ and

$$
\begin{array}{ll}
\dot{y}=-x-x^{2}, & \dot{y}=-x+x^{2} \\
\dot{y}=-x-x^{3}, & \dot{y}=-x+x^{3}
\end{array}
$$

respectively. So, firstly, consider

$$
\left\{\begin{array}{l}
\dot{x}=y, \tag{8}\\
\dot{y}=-x-x^{2} .
\end{array}\right.
$$

Therefore, by (7) and due to fact that

$$
\begin{aligned}
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} & \Longrightarrow \frac{d y}{d x}=-\frac{x+x^{2}}{y} \\
& \Longrightarrow \int y d y=-\int\left(x+x^{2}\right) d x \\
& \Longrightarrow \frac{y^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{3}}{3}=\text { constant }
\end{aligned}
$$

$F(x, y)=\frac{y^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{3}}{3}$ is the first integral of (8). ${ }^{14}$ (The next figure depicts level curves $F(x, y)=c, c \in$ $\{-1,0,1,2\}$.)

The mirror image of those curves in respect to the y-axis are level curves of the first integral of the system

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{9}\\
\dot{y}=-x+x^{2} .
\end{array}\right.
$$

Now, consider

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{10}\\
\dot{y}=-x-x^{3}
\end{array}\right.
$$

[^9]Therefore, by (7) and due to fact that

$$
\begin{aligned}
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} & \Longrightarrow \frac{d y}{d x}=-\frac{x+x^{3}}{y} \\
& \Longrightarrow \int y d y=-\int\left(x+x^{3}\right) d x \\
& \Longrightarrow \frac{y^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{4}}{4}=\text { constant }
\end{aligned}
$$

$F(x, y)=\frac{y^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{4}}{4}$ is the first integral of (10). ${ }^{15}$ (The next figure depicts level curves $F(x, y)=c, c \in$ $\{0.5,1,2\}$.)

Finally, consider

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{11}\\
\dot{y}=-x+x^{3} .
\end{array}\right.
$$

Therefore, by (7) and due to fact that

$$
\begin{aligned}
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} & \Longrightarrow \frac{d y}{d x}=-\frac{x-x^{3}}{y} \\
& \Longrightarrow \int y d y=-\int\left(x-x^{3}\right) d x \\
& \Longrightarrow \frac{y^{2}}{2}+\frac{x^{2}}{2}-\frac{x^{4}}{4}=\text { constant }
\end{aligned}
$$

$F(x, y)=\frac{y^{2}}{2}+\frac{x^{2}}{2}-\frac{x^{4}}{4}$ is the first integral of (11). ${ }^{16}$ (The next figure depicts some level curves of the first integral.)

(ii) By considering $f(x, y)=(0,0)$, the critical points of (8), (9), (10) and (11) are obtained, respectively, via:

- $-x(1+x)=0$ and $y=0 \Longrightarrow\left(x^{*}, y^{*}\right) \in\{(0,0),(-1,0)\} ;$
- $-x(1-x)=0$ and $y=0 \Longrightarrow\left(x^{*}, y^{*}\right) \in\{(0,0),(1,0)\}$;

[^10]- $-x\left(1+x^{2}\right)=0$ and $y=0 \Longrightarrow\left(x^{*}, y^{*}\right)=(0,0)$;
- $-x\left(1-x^{2}\right)=0$ and $y=0 \Longrightarrow\left(x^{*}, y^{*}\right) \in\{(0,0),(\mp 1,0)\}$.
(iii) By definition, $P \in \mathbb{R}^{n}$ is a critical point of a real valued function F of several variables if $\nabla F(P)=0$. So, since the critical points of the first integral $F(x, y)$ are obtained via $\left(F_{x}, F_{y}\right)=(0,0)$, we have to solve

$$
\begin{aligned}
& \left(x+x^{2}, y\right)=(0,0), \quad\left(x-x^{2}, y\right)=(0,0) \\
& \left(x+x^{3}, y\right)=(0,0), \quad\left(x-x^{3}, y\right)=(0,0)
\end{aligned}
$$

By (ii), $P=\left(x^{*}, y^{*}\right)$ in each case.
(iv) Concerning (8), (9), (10) and (11), $D f\left(x^{*}, y^{*}\right)$ equals

$$
\left(\begin{array}{cc}
0 & 1 \tag{12}\\
-1-2 x^{*} & 0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{cc}
0 & 1 \\
0 & 1 \\
-1+2 x^{*} & 0
\end{array}\right)
$$

respectively. So, first, if $x^{*}=0$, then $\pm i$ are the eigenvalues of each matrix of (12) and the origin is a center. Now, if $x^{*}=-1$ (respectively, $x^{*}=1$), then ± 1 are the eigenvalues of the first (respectively, second) matrix of (12), implying that $\left(x^{*}, y^{*}\right)$ is a saddle point. Finally, if $x^{*}=\mp 1$, then $\pm \sqrt{2}$ are de eigenvalues of the fourth matrix of (12), implying that $\left(x^{*}, y^{*}\right)$ is a saddle point.
(v) Let us consider a tabular presentation of the 2nd derivative test for real-valued functions $F(x, y)$ with $F_{x x}$, $F_{x y}, F_{y x}$ and $F_{y y}$ continuous around a critical point $X^{*}=\left(x^{*}, y^{*}\right)$ of F :

$F_{x x}\left(X^{*}\right) F_{y y}\left(X^{*}\right)-\left(F_{x y}\left(X^{*}\right)\right)^{2}$	$F_{x x}\left(X^{*}\right)$	X^{*}
positive	positive	local minimum
positive	negative	local maximum
negative	positive/negative	saddle
zero	whatever	no information

Therefore:

- For the 1st integral of (8), $X^{*} \in\{(0,0),(-1,0)\}, F_{x x}=1+2 x, F_{x y}=0, F_{y y}=1$ and $F_{x x} F_{y y}-\left(F_{x y}\right)^{2}=2 x$. Then $X^{*}=(-1,0)$ is a saddle point, confirming the nomenclature of (iv), but there is no information about the origin.
- For the 1 st integral of (9), $X^{*} \in\{(0,0),(1,0)\}, F_{x x}=1-2 x, F_{x y}=0, F_{y y}=1$ and $F_{x x} F_{y y}-\left(F_{x y}\right)^{2}=-2 x$. Then $X^{*}=(1,0)$ is a saddle point, confirming the nomenclature of (iv), but there is no information about the origin.
- For the 1 st integral of (10), $X^{*}=(0,0), F_{x x}=1+3 x^{2}, F_{x y}=0, F_{y y}=1$ and $F_{x x} F_{y y}-\left(F_{x y}\right)^{2}=3 x^{2}$. Then there is no information about the origin.
- For the 1st integral of (11), $X^{*} \in\{(0,0),(\mp 1,0)\}, F_{x x}=1-3 x^{2}, F_{x y}=0, F_{y y}=1$ and $F_{x x} F_{y y}-\left(F_{x y}\right)^{2}=$ $-3 x^{2}$. Then $X^{*}=(\mp 1,0)$ are saddle points, confirming the nomenclature of (iv), but there is no information about the origin.

18.

(i) The method of variation of parameters for a non-homogeneous 1st order linear equation $\dot{x}+p(t)=f(t)$ gives us the general solution

$$
x(t)=A e^{P(t)}+v(t) e^{P(t)}
$$

of the equation where A is a constant, $P(t)$ is an antiderivative of $-p(t)$ and $v(t)$ is an antiderivative of $f(t) e^{-P(t)}$. So, since $p(t)=1$ and $f(t)=\cos t$ here, $P(t)=-t$ and

$$
\begin{aligned}
v(t) & =\int \cos t e^{t} d t \\
& =\frac{\sin t+\cos t}{2} e^{t}
\end{aligned}
$$

Therefore

$$
x(t)=A e^{-t}+\frac{\sin t+\cos t}{2}
$$

and, for $x(0)=x_{0}$,

$$
\begin{equation*}
x(t)=\left(x_{0}-\frac{1}{2}\right) e^{-t}+\frac{\sin t+\cos t}{2} \tag{13}
\end{equation*}
$$

(ii) Take $x_{0}=\frac{1}{2}$ in (13). Otherwise, (13) is not periodic.
(iii) For arbitrarily large t, the first summand of (13) becomes arbitrarily small and the second one becomes bounded.
19.
(i) $x+2 \beta \dot{x}+\ddot{x}$ equals

$$
\begin{gathered}
a \cos \omega t+b \sin \omega t+e^{-\beta t}\left(c_{1} \cos \lambda t+c_{2} \sin \lambda t\right) \\
\left.+\quad+\quad(-a \sin \omega t+b \cos \omega t)+e^{-\beta t}\left((-\beta)\left(c_{1} \cos \lambda t+c_{2} \sin \lambda t\right)+\lambda\left(-c_{1} \sin \lambda t+c_{2} \cos \lambda t\right)\right)\right) \\
+ \\
\left(-\omega^{2}\right)(a \cos \omega t+b \sin \omega t) \\
+ \\
e^{-\beta t}\left(\left(\beta^{2}-\lambda^{2}\right)\left(c_{1} \cos \lambda t+c_{2} \sin \lambda t\right)+(-2 \beta \lambda)\left(-c_{1} \sin \lambda t+c_{2} \cos \lambda t\right)\right)
\end{gathered}
$$

which equals

$$
\begin{gathered}
a\left(\cos \omega t-2 \beta \omega \sin \omega t-\omega^{2} \cos \omega t\right) \\
+ \\
b\left(\sin \omega t+2 \beta \omega \cos \omega t-\omega^{2} \sin \omega t\right) \\
+ \\
e^{-\beta t}\left(\left(1-2 \beta^{2}+\beta^{2}-\lambda^{2}\right)\left(c_{1} \cos \lambda t+c_{2} \sin \lambda t\right)+(2 \beta-2 \beta) \lambda\left(-c_{1} \sin \lambda t+c_{2} \cos \lambda t\right)\right)
\end{gathered}
$$

which equals

$$
\gamma \cos \omega t
$$

for λ, a and b given in the exercise.
(ii) Note that $x(t)$ (given in (i)) is also a solution of (4.19) for $\beta=0$. Therefore, if $x_{\beta}(t):=x(t)$ for $\beta \in[0,1)$, $x_{0}(t)$ is periodic, $x_{\beta}(t)$ is not periodic and

$$
\lim _{t \rightarrow \infty} x_{\beta}(t)=x_{0}(t)
$$

for each $\beta \neq 0$.

5

Comments, pp. 64-8
Firstly, consider

$$
\begin{equation*}
\frac{d \varphi}{d t}=f(\lambda, \varphi(t)) \tag{14}
\end{equation*}
$$

- 5.2.1
$f(\lambda, x)=x(\lambda-x)$. So $f(\lambda, x)=0$ implies that $x^{*} \in\{0, \lambda\}$ for each $\lambda \in \mathbb{R}$. Now, consider $\lambda<0$. Therefore, by Fig. 5.1 (left) and (14),

$$
\begin{aligned}
\varphi(t)<\lambda & \Longrightarrow f(\lambda, \varphi(t))<0 \\
& \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing } \\
\varphi(t) \in(\lambda, 0) & \Longrightarrow f(\lambda, \varphi(t))>0 \\
& \Longrightarrow \frac{d \varphi}{d t}>0 \\
& \Longrightarrow \varphi(t) \text { is increasing }
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(t)>0 & \Longrightarrow f(\lambda, \varphi(t))<0 \\
& \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing. }
\end{aligned}
$$

Analogously, for $\lambda>0$,

$$
\begin{aligned}
\varphi(t)<0 & \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing, } \\
\varphi(t) \in(0, \lambda) & \Longrightarrow \frac{d \varphi}{d t}>0 \\
& \Longrightarrow \varphi(t) \text { is increasing }
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(t)>\lambda & \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing }
\end{aligned}
$$

and, for $\lambda=0$,

$$
\begin{aligned}
\varphi(t)<0 & \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing. }
\end{aligned}
$$

- 5.2.2-4

Use the same reason as above and consider the following points:

- Concerning (5.4), if

$$
\begin{aligned}
f(\lambda, x) & =\lambda-x^{2} \\
& =0
\end{aligned}
$$

then

* $\lambda<0 \Longrightarrow \nexists x^{*}$,
* $\lambda=0 \Longrightarrow x^{*}=0$,
* $\lambda>0 \Longrightarrow x^{*}= \pm \sqrt{\lambda}$;
- Concerning (5.6), if

$$
\begin{aligned}
f(\lambda, x) & =x\left(\mu-x^{2}\right) \\
& =0
\end{aligned}
$$

then

* $\mu \leq 0 \Longrightarrow x^{*}=0$,
$* \mu>0 \Longrightarrow x^{*} \in\{0, \pm \sqrt{\mu}\}$;
- Concerning (5.7), if

$$
\begin{aligned}
f(\lambda, x) & =x\left(\mu+x^{2}\right) \\
& =0
\end{aligned}
$$

then
$* \mu<0 \Longrightarrow x^{*} \in\{0, \pm \sqrt{-\mu}\}$,

* $\mu \geq 0 \Longrightarrow x^{*}=0$;
- Concerning (5.5), λ^{*} can be checked by solving

$$
\lambda=x^{3}-x \text { for } x= \pm \frac{1}{\sqrt{3}}
$$

from the system of page 67. So

$$
\begin{aligned}
\lambda & =\frac{1}{3 \sqrt{3}}-\frac{1}{\sqrt{3}} \\
& =\frac{1-3}{3 \sqrt{3}} \\
& =-\frac{2}{\sqrt{27}} \\
& =-\sqrt{\frac{4}{27}}
\end{aligned}
$$

or

$$
\begin{aligned}
\lambda & =-\frac{1}{3 \sqrt{3}}+\frac{1}{\sqrt{3}} \\
& =-\left(\frac{1}{3 \sqrt{3}}-\frac{1}{\sqrt{3}}\right) \\
& =\sqrt{\frac{4}{27}} .
\end{aligned}
$$

Errata/Comments, p. 71, 5.2.6

- The authors (Kapler and Engler) provided an errata correcting the first equation of (5.9):

$$
\lambda x_{1} \text { should be } \lambda .{ }^{17}
$$

[^11]Then, if you add the two equations,

$$
\lambda x_{1}-x_{1} x_{2}=0
$$

With that correction, consider

$$
\left\{\begin{array}{r}
\lambda-x_{1}^{2}+x_{1} x_{2}=0 \tag{15}\\
x_{1}^{2}-2 x_{1} x_{2}=0
\end{array}\right.
$$

Then, if you add the two equations of (15),

$$
\lambda-x_{1} x_{2}=0 .
$$

Now, substitute $x_{1} x_{2}=\lambda$ into the first equation of (15) to obtain

$$
x_{1}^{2}-2 \lambda=0 .
$$

Therefore

$$
x_{1}= \pm \sqrt{2 \lambda}
$$

for $\lambda>0$ and, since $x_{1} x_{2}=\lambda$,

$$
\begin{aligned}
x_{2} & = \pm \frac{\lambda}{\sqrt{2 \lambda}} \\
& = \pm \frac{\sqrt{2 \lambda}}{2} .
\end{aligned}
$$

- As discussed in the preceding subsections, where $f(\lambda, x)$ was scalar, solution branches were expected to meet at points (λ, x^{*}) where

$$
\left\{\begin{aligned}
f\left(\lambda, x^{*}\right) & =0, \\
\frac{\partial f}{\partial x}\left(\lambda, x^{*}\right) & =0 .
\end{aligned}\right.
$$

Such points were candidates for bifurcation points. Here, the candidates for bifurcation points of planar vector fields are obtained by solving

$$
\left\{\begin{aligned}
f\left(\lambda, x^{*}\right) & =0, \\
\operatorname{det}\left(D f\left(\lambda, x^{*}\right)\right) & =0 .
\end{aligned}\right.
$$

- Consider T and D as in section 4.6. Then the discriminant

$$
T^{2}-4 D=\left(\frac{49}{2}-16\right) \lambda
$$

is positive. Therefore, since $D>0$, the eigenvalues of $D f\left(\lambda, x_{ \pm}^{*}\right)$ are real with the same sign and the critical points $x_{ \pm}^{*}$ are nodes: $T \lessgtr 0$ imply that the branch of x_{+}^{*}-solutions consists of stable nodes but, contrary to what is affirmed in the book, the branch of x_{-}^{*}-solutions consists of unstable nodes.

Comments, p. 72

- 1st paragraph

The positivity of the amplitude is used for discarding the minus sign in

$$
\lambda-r^{2}=0 \Longrightarrow r= \pm \sqrt{\lambda} .
$$

Now, substitute $x_{1} x_{2}=\lambda x_{1}$ into the first equation of the system. So

$$
\lambda x_{1}-x_{1}^{2}+\lambda x_{1}=0,
$$

which implies that

$$
\begin{aligned}
x_{1}^{2}-2 \lambda x_{1}=0 & \Longrightarrow\left(x_{1}-2 \lambda\right) x_{1}=0 \\
& \Longrightarrow \underline{x_{1}=2 \lambda} \text { or } x_{1}=0
\end{aligned}
$$

By substituting $x_{1}=2 \lambda$ into the second equation of the system, it follows that

$$
\begin{aligned}
4 \lambda^{2}-4 \lambda x_{2}=0 & \Longrightarrow \lambda\left(\lambda-x_{2}\right)=0 \\
& \Longrightarrow \lambda=0 \text { or } \underline{x_{2}}=\lambda
\end{aligned}
$$

Furthermore, we must add λ to the 1,1 entry of $D f(\lambda, x)$, which implies that $\operatorname{det}(D f(\lambda, x))=-2 \lambda x_{1}+2 x_{1}^{2}$.

- 2nd paragraph

If I represents the 2×2 identity matrix, consider

$$
\begin{aligned}
p(\ell) & =\operatorname{det}(A(\lambda)-\ell I) \\
& =\ell^{2}-2 \lambda \ell+\lambda^{2}+1 .
\end{aligned}
$$

So, due to the fact that the discriminant of $p(\ell)=0$ is equal to $-4, A(\lambda)$ has a pair of complex conjugate eigenvalues:

$$
\begin{aligned}
\ell & =\frac{2 \lambda \pm 2 i}{2} \\
& =\lambda \pm i .
\end{aligned}
$$

- (5.12)

$$
\begin{aligned}
\dot{r} & =\frac{d}{d t}\left(\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}\right) \\
& =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2}\left(2 x_{1} \dot{x}_{1}+2 x_{2} \dot{x}_{2}\right) \\
& =\frac{\left(x_{1}^{2}+x_{2}^{2}\right)\left(\lambda-x_{1}^{2}-x_{2}^{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}} \\
= & \frac{r^{2}\left(\lambda-r^{2}\right)}{r}, \\
\dot{\theta} & =\frac{d}{d t}\left(\arctan \left(x_{2} / x_{1}\right)\right) \\
& =\frac{1}{1+\left(x_{2} / x_{1}\right)^{2}} \cdot \frac{\dot{x}_{2} x_{1}-x_{2} \dot{x}_{1}}{x_{1}^{2}} \\
& =\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}} \cdot \frac{-x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}} \\
& =-\frac{x_{1}^{2}+x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}} .
\end{aligned}
$$

- 1st sentence after (5.14)

See the solid line in the first quadrant in Figure 5.4 (right), p. 68.

Exercises, pp.75-6

1. Consider $f(\lambda, x)=\lambda+x^{2}$. So $f(\lambda, x)=0$ implies that $x^{*} \in\{0, \pm \sqrt{-\lambda}\}$ exists only for $\lambda \leq 0$:

$$
\begin{aligned}
\lambda+x^{2}=0 & \Longrightarrow x^{2}=-\lambda \\
& \Longrightarrow x= \pm \sqrt{-\lambda}
\end{aligned}
$$

So the phase portraits for $\lambda \in\{-1,0\}$

and equation (14), p. 17 of this text, tell us that

$$
\begin{aligned}
\varphi(t)<-\sqrt{-\lambda} & \Longrightarrow f(\lambda, \varphi(t))>0 \\
& \Longrightarrow \frac{d \varphi}{d t}>0 \\
& \Longrightarrow \varphi(t) \text { is increasing }
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(t)>-\sqrt{-\lambda} & \Longrightarrow f(\lambda, \varphi(t))<0 \\
& \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing }
\end{aligned}
$$

(meaning $x^{*}=-\sqrt{-\lambda}$ is stable), whereas

$$
\begin{aligned}
\varphi(t)<\sqrt{-\lambda} & \Longrightarrow f(\lambda, \varphi(t))<0 \\
& \Longrightarrow \frac{d \varphi}{d t}<0 \\
& \Longrightarrow \varphi(t) \text { is decreasing }
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(t)>\sqrt{-\lambda} & \Longrightarrow f(\lambda, \varphi(t))>0 \\
& \Longrightarrow \frac{d \varphi}{d t}>0 \\
& \Longrightarrow \varphi(t) \text { is increasing }
\end{aligned}
$$

(meaning $x^{*}=\sqrt{-\lambda}$ is unstable). Furthermore, $x^{*}=0$ is clearly unstable. The previous reasoning along with $f_{x}(\lambda, x)=2 x=0$ (meaning $x^{*}=0$ is the candidate for bifurcation point) imply that there are two fixed points for $\lambda<0: x_{-}^{*}=-\sqrt{-\lambda}$ (stable) and $x_{+}^{*}=\sqrt{-\lambda}$ (unstable). They merge with each other at $\lambda=0$ and, from this unstable point on, there are no fixed points as depicted in the following bifurcation diagram:

2. Consider $f(\lambda, x)=\sin x-\lambda$. So $f(\lambda, x)=0$ implies that $x^{*}=\arcsin \lambda$ exists only for

$$
\lambda=\sin x \in[-1,1]
$$

So there are no fixed points for $\lambda \in[-2,-1) \cup(1,2]$ and the phase portraits can be analyzed by horizontally translating the graph of $f(0, x)=\sin x$ (meaning shifting the graph of $f(0, x)$ left or right in the direction of the x-axis) in order to obtain the graph of $f(\lambda, x)=\sin x-\lambda$ (as a function of x) with $(\lambda, x) \in[-1,1] \times[-4 \pi, 4 \pi]$. Note that $f(\lambda, x)$ changes sign at $\left(x^{*}, 0\right)$:

- x^{*} is stable where $f(\lambda, x)$ changes sign from positive to negative, ${ }^{18}$
- x^{*} is unstable where $f(\lambda, x)$ changes sign from negative to positive. ${ }^{19}$

Now, concerning the bifurcation points, consider $f_{x}(\lambda, x)=\cos x=0$. Then, due to the fact that $x \in[-4 \pi, 4 \pi]$, $x^{*} \in\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}\right\}$, which implies that $\lambda= \pm 1$ are the candidates for bifurcation points. This fact and the previous reasonig allow us to depict bifurcation diagrams as follows:

[^12]
where the values displayed on the vertical axes measure $x^{*} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Hence, the vertical axis of the first diagram represents $x^{*}+\pi \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$, whereas the vertical axis of the third diagram represents $x^{*}-\pi \in$ $\left[-\frac{3 \pi}{2},-\frac{\pi}{2}\right]$. Furthermore, compared to the three previous diagrams, the bifurcation diagrams for:

- $x^{*} \in\left[\frac{3 \pi}{2}, \frac{5 \pi}{2}\right]$ and $x^{*} \in\left[-\frac{5 \pi}{2},-\frac{3 \pi}{2}\right]$ are identical to the second one;
- $x^{*} \in\left[\frac{5 \pi}{2}, \frac{7 \pi}{2}\right]$ and $x^{*} \in\left[-\frac{7 \pi}{2},-\frac{5 \pi}{2}\right]$ are identical to the first/third one;
- $x^{*} \in\left[\frac{7 \pi}{2}, 4 \pi\right]$ (respectively, $x^{*} \in\left[-4 \pi,-\frac{7 \pi}{2}\right]$) is identical to the first (respectively, second) half of the second diagram.

3. Since $f(\lambda, x)=x\left(\lambda+x^{2}-x^{4}\right)$,

$$
x^{*} \in\left\{0, \pm \sqrt{\frac{1 \pm \sqrt{1+4 \lambda}}{2}}\right\}
$$

where $x^{*}=0$ exists for $-1<\lambda<1$, whereas the other fixed points exist for $-\frac{1}{4} \leq \lambda<1,{ }^{20}$ provided that $-2<x^{*}<2 .^{21}$ Then:

- $-1<\lambda<-\frac{1}{4} \Longrightarrow$ there is only one fixed point: $x^{*}=0$;
- $\lambda=-\frac{1}{4} \Longrightarrow$ there are three fixed points: $x^{*} \in\left\{0, \pm \sqrt{\frac{1}{2}}\right\}$;
- $-\frac{1}{4}<\lambda<0 \Longrightarrow$ there are five fixed points for each such λ;
- $\lambda=0 \Longrightarrow$ there are three fixed points: $x^{*} \in\{0, \pm 1\}$;
- $0<\lambda<1 \Longrightarrow$ there are three fixed points for each such $\lambda: x^{*} \in\left\{0, \pm \sqrt{\frac{1+\sqrt{1+4 \lambda}}{2}}\right\}$.
(So the number of fixed points changes three times as λ varies between -1 and 1 .) Now, in order to analyze the stability of such fixed points via sign diagrams, consider the phase portraits for $\lambda \in\{-0.5,-0.25,-0.2,0.5\}$:

[^13]with $1+4 \lambda \geq 0$ and $-1<\lambda<1$.
${ }^{21}$ As a matter of fact, $x^{*} \in(-2,2)$ for
\[

$$
\begin{aligned}
-\frac{1}{4} \leq \lambda<1 & \Longleftrightarrow 0 \leq 1+4 \lambda<5 \\
& \Longleftrightarrow 0 \leq \sqrt{1+4 \lambda}<\sqrt{5}
\end{aligned}
$$
\]

Therefore:

- $x^{*}=0$ is unstable (respectively, stable) for $\lambda<0$ (respectively, $\lambda>0$);
- each x^{*} is unstable for $\lambda=-0.25$;
- the fixed points farthest from (respectively, closest to) $x^{*}=0$ are unstable (respectively, stable) for $-0.25<\lambda \leq 0$;
- the nonzero fixed points are unstable for $0<\lambda<1$.

On the other hand, concerning the candidates for bifurcation points, consider $f_{x}(\lambda, x)=5 x^{4}-3 x^{2}-\lambda$ and note that

$$
f_{x}(0,0)=0 \text { and } f_{x}\left(\mp \frac{1}{\sqrt{2}},-\frac{1}{4}\right)=0 .
$$

The previous reasoning, along with the equations $x=0$ and $\lambda+x^{2}-x^{4}=0$, give us the bifurcation diagram

for $\left(x^{*}, \lambda\right) \in\left(-\frac{\sqrt{1+\sqrt{5}}}{2}, \frac{\sqrt{1+\sqrt{5}}}{2}\right) \times(-1,1) .{ }^{22}$
4.

Let $f(\lambda, x)=\sin x-\lambda x$ with $\lambda \in[0.5,2]$. So $x^{*}=0$ is a fixed point for each λ and, since

$$
\begin{aligned}
f(\lambda, x) & =(1-\lambda) x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
& =x\left(1-\lambda-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)
\end{aligned}
$$

[^14]there are two more fixed points if and only if $1-\lambda>0$ (due to the fact that $-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots$ is an even function with a concave down graph). Now, in order to analyze the stability of the fixed points via sign diagrams, consider the phase portraits for $\lambda \in\{0.5,0.75,1,1.5,2\}$:

with $x^{*}=0$ unstable and $x^{*} \approx \pm 1.8955$ stable,

with $x^{*}=0$ unstable and $x^{*} \approx \pm 1.2757$ stable,

with $x^{*}=0$ stable,

with $x^{*}=0$ stable, and

with $x^{*}=0$ stable. Therefore everything indicates that there is a pitchfork bifurcation at $\lambda=1$ which is similar to the mirror image of the subcritical pitchfork bifurcation of Figure 5.5, p.69, with respect to the y-axis and with $\lambda-1$ in place of $\mu .{ }^{23}$
5.
(i) Consider $f(\lambda, x)=\lambda x\left(\lambda-x^{2}\right)\left(\lambda+x^{2}\right) \cdot{ }^{24}$ So
\[

x^{*}=\left\{$$
\begin{array}{l}
0 \text { for each } \lambda \\
\sqrt{\lambda} \text { for } \lambda>0 \\
-\sqrt{-\lambda} \text { for } \lambda<0
\end{array}
$$\right.
\]

The following two graphs represent the phase portraits for $\lambda \lessgtr 0(\lambda=\mp 1$ in the figures $)$. The figures show us that $x^{*}=0$ changes from stable to unstable at $\lambda=0, x^{*}=-\sqrt{-\lambda}$ is unstable and nonexistent for $\lambda>0$, whereas $x^{*}=\sqrt{\lambda}$ is stable and nonexistent for $\lambda<0$.

[^15]to (5.7), p. 68.
${ }^{24} f(\lambda, x)=\lambda^{3} x-\lambda x^{5}$.

On the other hand, the candidates for bifurcation points are obtained by

$$
\begin{aligned}
f_{x}(\lambda, x)=0 & \Longrightarrow \lambda^{3}-5 \lambda x^{4}=0 \\
& \Longrightarrow \lambda\left(\lambda^{2}-5 x^{4}\right)=0 \\
& \Longrightarrow \lambda \in\left\{0, \pm \sqrt{5} x^{2}\right\}
\end{aligned}
$$

Therefore the previous analysis confirms Figure 5.9 (left) with $\lambda=0$ as the bifurcation point.
(ii) It looks like that the bifurcation diagram of Figure 5.9 (right) is a rescaled version of the bifurcation diagram of Figure 5.4 (right), which is given rise by the vector field $f(\lambda, x)=x\left(\lambda-x^{2}\right)$, after being rotated through an angle of $\pi / 4$ radians in anti-clockwise direction about the origin. So let us analyze the equations $x=0$ and $\lambda-x^{2}=0$, which are building blocks of the bifurcation diagram, after being subjected to such rotation. Clearly, $x=0$ becomes $x=\lambda$, whereas $\lambda-x^{2}=0$ becomes $x^{2}+\lambda^{2}-2 x \lambda-\sqrt{2} x-\sqrt{2} \lambda=0 .{ }^{25}$ Therefore, concerning Figure 5.9, the vector field which gives rise to the bifurcation diagram (on the right) is

$$
f(\lambda, x)=(x-\lambda)\left(x^{2}+\lambda^{2}-2 x \lambda-\sqrt{2} x-\sqrt{2} \lambda\right)
$$

[^16]\[

\left[$$
\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}
$$\right]\left[$$
\begin{array}{l}
x \\
\lambda
\end{array}
$$\right]=\left[$$
\begin{array}{l}
x^{\prime} \\
\lambda^{\prime}
\end{array}
$$\right]
\]

6

Comment, p.77, penultimate sentence

Consider p.36, 1st sentence along with (3.8) and (3.9). Therefore

$$
\begin{aligned}
\bar{T}_{2}^{*} & =T_{2}^{*}-T_{0}^{*} \\
& =T_{2}^{*}-\frac{1}{2}\left(T_{1}^{*}+T_{2}^{*}\right) \\
& =\frac{1}{2}\left(T_{2}^{*}-T_{1}^{*}\right) \\
& :=T^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{T}_{1}^{*} & =T_{1}^{*}-T_{0}^{*} \\
& =T_{1}^{*}-\frac{1}{2}\left(T_{1}^{*}+T_{2}^{*}\right) \\
& =\frac{1}{2}\left(T_{1}^{*}-T_{2}^{*}\right) \\
& =-T^{*} .
\end{aligned}
$$

Similarly,

$$
\bar{S}_{2}^{*}=S^{*} \text { and } \bar{S}_{1}^{*}=-S^{*}
$$

Comments, p. 78

- Sentence that follows (6.3) Since

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2}\left(T_{1}+T_{2}\right)\right)=-c\left(\frac{1}{2}\left(T_{1}+T_{2}\right)\right) \text { and } \\
& \frac{d}{d t}\left(\frac{1}{2}\left(S_{1}+S_{2}\right)\right)=-d\left(\frac{1}{2}\left(S_{1}+S_{2}\right)\right) \\
& \frac{1}{2}\left(T_{1}+T_{2}\right)=\text { constant } \cdot e^{-c t} \longrightarrow 0 \text { and } \\
& \frac{1}{2}\left(S_{1}+S_{2}\right)=\text { constant } \cdot e^{-d t} \longrightarrow 0
\end{aligned}
$$

when $t \longrightarrow \infty$.

- (6.6)

$$
\begin{aligned}
\dot{x} & =\frac{d x}{d t^{\prime}} \\
& =\frac{1}{c \Delta S^{*}}\left(\frac{d \Delta S}{d t}\right) \\
& =\frac{d}{c}(1-x)-\left|\frac{2 q}{c}\right| x \\
\dot{y} & =\frac{d y}{d t^{\prime}} \\
& =\frac{1}{c \Delta T^{*}}\left(\frac{d \Delta T}{d t}\right) \\
& =1-y-\left|\frac{2 q}{c}\right| y .
\end{aligned}
$$

Erratum, p. 79, right after (6.8)
λf^{*} should be equal to $R x^{*}-y^{*}$.
Comments, p. 80

- (6.11)

The 1,1 entry of A is obtained by

$$
\begin{aligned}
\frac{\partial}{\partial x}(\delta(1-x)-|f| x) & =\frac{\partial}{\partial x}\left(\delta-\delta x \mp \frac{1}{\lambda}\left(R x^{2}-x y\right)\right) \\
& =-\delta \mp \frac{1}{\lambda}(2 R x-y) \\
& =-\delta \mp \frac{1}{\lambda}((R x-y)+R x) \\
& =-\delta-\left(\pm \frac{R x-y}{\lambda}\right) \mp \frac{R x}{\lambda} \\
& =-(\delta+|f|) \mp \frac{R x}{\lambda} .
\end{aligned}
$$

Computing the 1,2 and 2,1 entries of A is straightforward. Finally, the 2,2 entry of A is obtained by

$$
\begin{aligned}
\frac{\partial}{\partial y}(1-y-|f| y) & =\frac{\partial}{\partial y}\left(1-y \mp \frac{1}{\lambda}\left(R x y-y^{2}\right)\right) \\
& =-1 \mp \frac{1}{\lambda}(R x-2 y) \\
& =-1 \mp \frac{1}{\lambda}((R x-y)-y) \\
& =-1-\left(\pm \frac{R x-y}{\lambda}\right) \pm \frac{y}{\lambda} \\
& =-(1+|f|) \pm \frac{y}{\lambda} .
\end{aligned}
$$

- (6.12)

$$
\begin{aligned}
D & =\delta+\delta\left|f^{*}\right|+\left|f^{*}\right|+\left|f^{*}\right|^{2} \pm\left(\frac{R x^{*}}{\lambda}-\frac{\delta y^{*}}{\lambda}\right)+\left|f^{*}\right|\left(\pm \frac{R x^{*}-y^{*}}{\lambda}\right) \\
& =\delta+\delta\left|f^{*}\right|+\left|f^{*}\right|+2\left|f^{*}\right|^{2} \pm\left(\frac{R x^{*}}{\lambda}-\frac{\delta y^{*}}{\lambda}\right) \pm\left(-\frac{y^{*}}{\lambda}+\frac{y^{*}}{\lambda}\right) \\
& =\delta+\delta\left|f^{*}\right|+2\left|f^{*}\right|+2\left|f^{*}\right|^{2} \pm(1-\delta) \frac{y^{*}}{\lambda}
\end{aligned}
$$

- Penultimate and ultimate sentences

Since $f^{*}>0$ and $\delta>0$,

$$
\left(\delta+2\left|f^{*}\right|\right)\left(1+\left|f^{*}\right|\right)>0
$$

and, since $\delta \in(0,1], y^{*}>0$ and $\lambda>0,{ }^{26}$

$$
\frac{(1-\delta) y^{*}}{\lambda} \geq 0
$$

So $D>0$. Furthermore, since

$$
\begin{aligned}
T^{2} & =(1+\delta)^{2}+6(1+\delta) f^{*}+9\left(f^{*}\right)^{2} \\
& =1+2 \delta+\delta^{2}+6 f^{*}+6 \delta f^{*}+9\left(f^{*}\right)^{2}
\end{aligned}
$$

[^17]and
\[

$$
\begin{aligned}
-4 D & =-4 \delta-4 \delta f^{*}-8 f^{*}-8\left(f^{*}\right)^{2}-4(1-\delta) \frac{y^{*}}{\lambda} \\
T^{2}-4 D & =1-2 \delta+\delta^{2}-2 f^{*}+2 \delta f^{*}+\left(f^{*}\right)^{2}-4(1-\delta) \frac{y^{*}}{\lambda} \\
& =(1-\delta)^{2}-2(1-\delta) f^{*}+\left(f^{*}\right)^{2}-4(1-\delta)\left(\frac{\frac{1}{1+f^{*}}}{\lambda}\right) \\
& =\left((1-\delta)-f^{*}\right)^{2}-\frac{4(1-\delta)}{\lambda\left(1+f^{*}\right)}
\end{aligned}
$$
\]

Now, note that $T^{2}-4 D>0$ for $\delta=1$. So, here,

$$
\begin{equation*}
\delta, 1-\delta \in(0,1) \tag{16}
\end{equation*}
$$

Let us prove that $T^{2}-4 D<0$ holds with some simple heuristics. So, on the one hand,

$$
\begin{aligned}
\left((1-\delta)-f^{*}\right)^{2}<\frac{4(1-\delta)}{\lambda\left(1+f^{*}\right)} & \Longleftrightarrow \lambda\left(1+f^{*}\right)<4\left(\frac{1-\delta}{\left((1-\delta)-f^{*}\right)^{2}}\right) \\
& \Longleftrightarrow \lambda f^{*}<4\left(\frac{1-\delta}{\left((1-\delta)-f^{*}\right)^{2}}\right)-\lambda
\end{aligned}
$$

On the other hand, by subsection 6.2.1 along with Figure $6.1(f>0),{ }^{27}$

$$
\lambda f^{*}=\phi\left(f^{*}\right) \Longrightarrow 0<\lambda f^{*}<1
$$

Then $T^{2}-4 D<0$ if

$$
\begin{equation*}
1<4\left(\frac{1-\delta}{\left((1-\delta)-f^{*}\right)^{2}}\right)-\lambda \tag{17}
\end{equation*}
$$

which is equivalent to

$$
\left((1-\delta)-f^{*}\right)^{2}<\frac{4}{\lambda+1}(1-\delta) \Longleftrightarrow(1-\delta)^{2}-\left(2 f^{*}+\frac{4}{\lambda+1}\right)(1-\delta)+\left(f^{*}\right)^{2}<0
$$

with positive roots

$$
\begin{equation*}
1-\delta_{ \pm}=\frac{2 f^{*}+\frac{4}{\lambda+1} \pm \sqrt{\left(2 f^{*}+\frac{4}{\lambda+1}\right)^{2}-4\left(f^{*}\right)^{2}}}{2} \tag{18}
\end{equation*}
$$

So (17) holds for each $1-\delta \in\left(1-\delta_{-}, 1-\delta_{+}\right)$. Then (17) holds for each $\delta \in\left(\delta_{+}, \delta_{-}\right) \subset(0,1){ }^{28}$ Therefore $T^{2}-4 D<0$ for each $f^{*}>0$.

Comment, p. 81, 3rd sentence

$$
\frac{d D}{d f^{*}}=-\delta-2+4 f^{*}-\frac{1-\delta}{\lambda\left(1-f^{*}\right)^{2}}
$$

is negative for $f^{*} \in(-\infty, 0)$,

$$
\lim _{f^{*} \rightarrow-\infty} D=+\infty \text { and } \lim _{f^{*} \rightarrow 0} D=\delta-\frac{1-\delta}{\lambda}
$$

which is negative if $\lambda \in(0,1)$ is small enough. ${ }^{29}$
Erratum/Comments, p. 82, 3rd paragraph

[^18]- 4th sentence ${ }^{30}$

Interchange ' S-mode' and ' T-mode'.

- Last four sentences
- "..., a reversal of the flow, ..."
f depends on $q .{ }^{31}$
- "... an increase of the temperature anomaly."

See Figure 6.3. ${ }^{32}$

- "... the salinity anomaly will also increase."

Here, x^{*} depends on $y^{*} .{ }^{33}$

- "... salinity anomaly on the vertical axis, ..."

See the previous comment.

Exercises, pp. 83-6

1.

$$
\begin{aligned}
\phi_{+}(0) & =\frac{\delta R}{\delta}-1 \\
& =R-1 \\
& >0 \text { if } R>1 ; \\
\left.\frac{d \phi_{+}}{d f}\right|_{f=0} & =-\frac{\delta R}{(\delta+f)^{2}}+\left.\frac{1}{(1+f)^{2}}\right|_{f=0} \\
& =-\frac{\delta R}{\delta^{2}}+1 \\
& =-\frac{R}{\delta}+1 \\
& <0 \text { if } R>\delta ; \\
\lim _{f \rightarrow \infty} \phi_{+}(f) & =\lim _{f \rightarrow \infty} \frac{\delta R(1+f)-(\delta+f)}{(\delta+f)(1+f)} \\
& =\lim _{f \rightarrow \infty} \frac{(\delta R-1) f+\delta R-\delta}{f^{2}+(\delta+1) f+\delta} \\
& =\lim _{f \rightarrow \infty} \frac{\frac{\delta R-1}{f}}{1} \\
& =0^{-} \text {if } \delta R<1 .
\end{aligned}
$$

The critical point ' c ' satisfying (6.9) (for $\lambda=\frac{1}{5}, R=2$ and $\delta=\frac{1}{6}$) is shown in figures 6.1 and 6.2 , which are consistent with the properties above. In fact, the graph of ϕ curves up as it moves toward ' c^{\prime}, ${ }^{34}$ crosses the f-axis, keeps curving up a little bit more and approaches the f-axis asymptotically. ${ }^{35}$ Since $\lambda \in(0, \infty)$, the graphs of ϕ and λf have exactly one point of intersection, which is ' c '. Furthermore, concerning $f \in[0, \infty)$, ' c ' is close to the equiflow line $f=0$ and the phase portrait does not have another steady state close to any equiflow line.
2.

If $\delta=\frac{1}{6}$ and $R=\frac{3}{2}, \lambda f=\phi(f)$ has exactly two (respectively, one) negative solutions (respectively, solution)

[^19]$f=f^{*}$ for each $\lambda \in\left(0, \frac{4}{5}\right)$ (respectively, for $\lambda=\frac{4}{5}$). In fact,
\[

$$
\begin{aligned}
\lambda f & =\phi(f) \\
& =\frac{\frac{1}{4}}{\frac{1}{6}-f}-\frac{1}{1-f} \\
& =\frac{\frac{1}{2}}{\frac{1-6 f}{3}}-\frac{1}{1-f} \\
& =\frac{3(1-f)-2(1-6 f)}{2(1-6 f)(1-f)} \\
& =\frac{9 f+1}{2\left(6 f^{2}-7 f+1\right)} .
\end{aligned}
$$
\]

So, let us find the negative roots f^{*} of

$$
p(\lambda, f)=12 \lambda f^{3}-14 \lambda f^{2}+(2 \lambda-9) f-1
$$

for

$$
\lambda \in\left\{\frac{1}{20}, \frac{1}{10}, \frac{1}{5}, \frac{3}{10}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{7}{10}, \frac{4}{5}\right\}
$$

that is, the cubic polynomials

$$
\begin{aligned}
0.6 f^{3}-0.7 f^{2}-8.9 f-1 & =0, \\
1.2 f^{3}-1.4 f^{2}-8.8 f-1 & =0, \\
12 f^{3}-14 f^{2}-43 f-5 & =0, \\
3.6 f^{3}-4.2 f^{2}-8.4 f-1 & =0, \\
24 f^{3}-28 f^{2}-41 f-5 & =0, \\
6 f^{3}-7 f^{2}-8 f-1 & =0, \\
36 f^{3}-42 f^{2}-39 f-5 & =0, \\
8.4 f^{3}-9.8 f^{2}-7.6 f-1 & =0 \text { and } \\
48 f^{3}-56 f^{2}-37 f-5 & =0 .
\end{aligned}
$$

The negative roots of these polynomials are given by

$$
\begin{gathered}
f^{*} \approx-3.246,-0.113, \\
f^{*} \approx-2.115,-0.116, \\
f^{*} \approx-1.316,-0.126, \\
f^{*} \approx-0.961,-0.128, \\
f^{*} \approx-0.747,-0.136, \\
f^{*} \approx-0.598,-0.146, \\
f^{*} \approx-0.482,-0.159, \\
f^{*} \approx-0.383,-0.180 \text { and } \\
f^{*}=-\frac{1}{4},
\end{gathered}
$$

respectively. Furthermore, note that $\lambda=\frac{4}{5}$ is a candidate for bifurcation point since, at $(\lambda, f)=\left(\frac{4}{5},-\frac{1}{4}\right)$,

$$
\left\{\begin{aligned}
p(\lambda, f) & =0 ; \\
\frac{\partial p}{\partial f} & =0 .
\end{aligned}\right.
$$

This analysis and the comments on page 81 allow us to consider the following bifurcation diagram: ${ }^{36}$

[^20]
3.

Firstly, by (6.8), p. 79, note that x_{i}^{*} and y_{i}^{*} are positive for each $i \in\{1,2,3\}$. Secondly, since $f_{1}^{*}<f_{2}^{*}<0$, that is, $-f_{1}^{*}>-f_{2}^{*}>0$, it follows that, on the one hand,

$$
\begin{aligned}
1-f_{1}^{*}>1-f_{2}^{*}>1 & \Longrightarrow 0<\frac{1}{1-f_{1}^{*}}<\frac{1}{1-f_{2}^{*}}<1 \\
& \Longrightarrow 0<y_{1}^{*}<y_{2}^{*}<1
\end{aligned}
$$

and, on the other hand, since $\delta>0$,

$$
\begin{aligned}
-f_{1}^{*}+\delta>-f_{2}^{*}+\delta>\delta & \Longrightarrow \frac{\delta-f_{1}^{*}}{\delta}>\frac{\delta-f_{2}^{*}}{\delta}>1 \\
& \Longrightarrow \frac{1}{x_{1}^{*}}>\frac{1}{x_{2}^{*}}>1 \\
& \Longrightarrow 0<x_{1}^{*}<x_{2}^{*}<1
\end{aligned}
$$

Now, note that

$$
\begin{aligned}
y_{2}^{*}<y_{3}^{*} & \Longleftrightarrow \frac{1}{1-f_{2}^{*}}<\frac{1}{1+f_{3}^{*}} \\
& \Longleftrightarrow 1+f_{3}^{*}<1-f_{2}^{*} \\
& \Longleftrightarrow f_{3}^{*}<-f_{2}^{*} \\
& \Longleftrightarrow f_{3}^{*}+\delta<-f_{2}^{*}+\delta \\
& \Longleftrightarrow \frac{1}{\delta-f_{2}^{*}}<\frac{1}{\delta+f_{3}^{*}} \\
& \Longleftrightarrow \frac{\delta}{\delta-f_{2}^{*}}<\frac{\delta}{\delta+f_{3}^{*}} \\
& \Longleftrightarrow x_{2}^{*}<x_{3}^{*}
\end{aligned}
$$

Similarly, $y_{2}^{*}=y_{3}^{*} \Longleftrightarrow x_{2}^{*}=x_{3}^{*}$ and $y_{2}^{*}>y_{3}^{*} \Longleftrightarrow x_{2}^{*}>x_{3}^{*}$. However, if $x_{2}^{*}=x_{3}^{*}$ and $y_{2}^{*}=y_{3}^{*}$, then $f_{2}^{*}=f_{3}^{*}$, which is a contradiction. In the same vein, $x_{2}^{*}>x_{3}^{*}$ and $y_{2}^{*}>y_{3}^{*}$ also contradicts the hypothesis $f_{2}^{*}<0<f_{3}^{*}$.
4.

Since $\delta>1$ and $R>1, \delta R>1$. So

$$
\begin{equation*}
\delta R-1>0, \delta>0 \text { and } 1-R<0 \tag{19}
\end{equation*}
$$

Now, concerning (6.9), a necessary condition for finding three points of intersection is that the graph of $\phi(f)$
dips below the horizontal axis, $\phi(f)=0$ for some $f>0 .{ }^{37}$ However,

$$
\begin{aligned}
\phi\left(f^{*}\right)=0 & \Longrightarrow \frac{\delta R}{\delta+\left|f^{*}\right|}=\frac{1}{1+\left|f^{*}\right|} \\
& \Longrightarrow(\delta R-1)\left|f^{*}\right|=\delta(1-R),
\end{aligned}
$$

which contradicts (19) for $f^{*}>0$. Therefore (6.6) has only one equilibrium solution with $f^{*}>0$. Furthermore, f^{*} is a stable node. In fact, $T<0$ and, since $1-\delta<0$ and $\lambda>0, D>0$ and $T^{2}-4 D>0 .{ }^{38}$

[^21]
7

===12

Comments, pp. 88-90

- 7.2, 2nd bullet, 1st paragraph

By the existence and uniqueness theorems, ${ }^{39}$

$$
\varphi(t)=\left(0,0, e^{\beta t}\right), t \in \mathbb{R},
$$

is the unique solution of (7.1) passing through the point $\left(0,0, z_{0}\right)$.

- 2nd sentence after (7.2)

Being a subset of \mathbb{R}^{n},

$$
\mathscr{D} \text { is closed and bounded } \Longleftrightarrow \mathscr{D} \text { is compact, }
$$

which implies that $\phi_{t}(\mathscr{D})$ is compact. ${ }^{40}$ Furthermore, since the intersection of a decreasing family of compact sets is compact, ${ }^{41} \mathscr{A}$ is compact by (7.2). ${ }^{42}$

- (7.3)

For each $c \in \mathbb{R}$, the level surface of value c for V, that is,

$$
V^{-1}(\{c\})=\left\{P \in \mathbb{R}^{3}: V(P)=c\right\},
$$

is an ellipsoid.

- (7.4)

Note that

$$
\begin{aligned}
\frac{d}{d t}\left(V\left(\phi_{t}(P)\right)\right. & =\nabla V\left(\left(\phi_{t}(P)\right) \cdot \frac{d}{d t}\left(\phi_{t}(P)\right)\right. \\
& =\left\|\nabla V\left(\phi_{t}(P)\right)\right\|\left\|\frac{d}{d t}\left(\phi_{t}(P)\right)\right\| \cos \theta,
\end{aligned}
$$

where θ is the smallest angle between the gradient $\nabla V\left(\phi_{t}((P))\right.$ and the velocity vector $\frac{d}{d t}\left(\phi_{t}(P)\right)$. Therefore, since $\nabla V\left(\phi_{t}(P)\right)$ is perpendicular to the level surface of value $V\left(\phi_{t}(P)\right)$ at $\phi_{t}(P)$, that is, the ellipsoid $V^{-1}\left(\left\{\phi_{t}(P)\right\}\right)$ at $\phi_{t}(P)$, if $\frac{d}{d t}\left(V\left(\phi_{t}(P)\right)<0\right.$, the vector field is directed inward at $\phi_{t}(P)$.

- \mathscr{E} and m
\mathscr{E} being open, m may not exist. So, concerning the definition of \mathscr{E}, change $<$ to \leq.
- 1st sentence after (7.5)

Suppose $\mathscr{E} \not \subset \mathscr{D}$. So, there exists some $P \in \mathscr{E}$ such that $V(P)>m$, which contradicts the definition of m.

- 7.3
- 1st sentence and ' $C_{ \pm}{ }^{\prime}$

Let the right-hand sides of Eq. (7.1) be zero. So, from the first equation, $x=y$. Then, the second equation becomes $x(\rho-1-z)=0$, which implies that $z=\rho-1$ for $x \neq 0$, and the third equation becomes $-\beta z+x^{2}=0$. Therefore,

$$
x^{2}=\beta(\rho-1) .
$$

- 1st sentence after (7.7)
$(1+\sigma)^{2}>4(1-\rho) \sigma$ must hold for $0<\rho<1<1+\beta<\sigma$.
- (7.8)

For example, $A_{21}=1$ since $\frac{\partial}{\partial x}(\rho x-y-x z)$ at C_{+}is equal to $\rho-(\rho-1)$.

[^22]- (ii) for (7.9)

On the one hand,

$$
\rho<\rho_{H} \Longrightarrow \rho<\rho_{H} \sigma .
$$

On the other hand

$$
\begin{aligned}
(1+\beta+\sigma) \beta(\rho+\sigma)>2 \beta(\rho-1) \sigma & \Longleftrightarrow(1+\beta+\sigma)(\rho+\sigma)>2(\rho-1) \sigma \\
& \Longleftrightarrow(1+\beta+\sigma-2 \sigma) \rho>-(1+\beta+\sigma+2) \sigma \\
& \Longleftrightarrow-(\sigma-\beta-1) \rho>-(\sigma+\beta+3) \sigma \\
& \Longleftrightarrow \rho<\frac{\sigma+\beta+3}{\sigma-\beta-1} \sigma .
\end{aligned}
$$

Exercises, pp. 92-94

1.

(i) By Definition 7.1, p. 88, a trapping set \mathscr{D} is a closed connected set in \mathbb{R}^{n}. Besides being closed, let \mathscr{D} be bounded. So, since \mathscr{D} is compact and ϕ_{t} is continuous, $\phi_{t}(\mathscr{D})$ is compact. Now, consider $t_{0} \in \mathbb{R}$ and let T be as in Definition 7.1. Therefore,

$$
\phi_{t}\left(\phi_{t_{0}}(\mathscr{D})\right) \subset \phi_{t_{0}}(\mathscr{D}) \text { for all } t \geq T .
$$

In fact, consider $z \in \phi_{t}\left(\phi_{t_{0}}(\mathscr{D})\right)$. Then, there is a point $y \in \phi_{t_{0}}(\mathscr{D})$ such that $z=\phi_{t}(y)$. Therefore, since there is a point $x \in \mathscr{D}$ such that $y=\phi_{t_{0}}(x)$,

$$
\begin{aligned}
z & =\phi_{t}\left(\phi_{t_{0}}(x)\right) \\
& =\phi_{t+t_{0}}(x) \\
& =\phi_{t_{0}+t}(x) \\
& =\phi_{t_{0}}\left(\phi_{t}(x)\right) \in \phi_{t_{0}}(\mathscr{D})
\end{aligned}
$$

because, by Definition 7.1,

$$
x \in \mathscr{D} \Longrightarrow \phi_{t}(x) \in \mathscr{D} .
$$

9

Comments, p. 109

- (9.8)

The criterion is to minimize (9.2) with

$$
f\left(\mathbf{x}_{i} ; \boldsymbol{\alpha}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\alpha}, i=1, \ldots, n,
$$

which can be written as

$$
\begin{aligned}
\sum_{i=1}^{n} \varepsilon_{i}^{2} & =\varepsilon^{T} \varepsilon \\
& =(\mathbf{y}-\mathbf{X} \boldsymbol{\alpha})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\alpha}) \\
& =\mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{X} \boldsymbol{\alpha}-\boldsymbol{\alpha}^{T} \mathbf{X}^{T} \mathbf{y}+\boldsymbol{\alpha}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\alpha} \\
& =\mathbf{y}^{T} \mathbf{y}-2 \mathbf{y}^{T} \mathbf{X} \boldsymbol{\alpha}+\boldsymbol{\alpha}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\alpha} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\nabla_{\boldsymbol{\alpha}}\left(\sum_{i=1}^{n} \varepsilon_{i}^{2}\right)=\mathbf{0} & \Longrightarrow-2 \mathbf{y}^{T} \mathbf{X}+2 \boldsymbol{\alpha}^{T} \mathbf{X}^{T} \mathbf{X}=\mathbf{0} \\
& \Longrightarrow \mathbf{X}^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{X} \boldsymbol{\alpha}
\end{aligned}
$$

- (9.9)

The invertibility of $\mathbf{X}^{T} \mathbf{X}$ means that \mathbf{X} should have rank $p .{ }^{43}$ This requires in particular that $n \geq p .{ }^{44}$

Comments, p. 110, 9.3

Suppose that $\nabla_{\boldsymbol{\alpha}} Q_{2}=\mathbf{0}$. Therefore

$$
\begin{aligned}
\frac{\partial Q_{2}}{\partial \alpha_{1}}=0 & \Longrightarrow-2 \sum_{i=1}^{n}\left(y_{i}-\alpha_{1}-\alpha_{2} x_{i}\right)=0 \\
& \Longrightarrow \sum_{i=1}^{n} y_{i}=n \alpha_{1}+\alpha_{2} \sum_{i=1}^{n} x_{i} \\
& \Longrightarrow \bar{y}=\alpha_{1}+\alpha_{2} \bar{x},
\end{aligned}
$$

which confirms (9.13), and, furthermore,

$$
\begin{aligned}
\frac{\partial Q_{2}}{\partial \alpha_{2}}=0 & \Longrightarrow-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\alpha_{1}-\alpha_{2} x_{i}\right)=0 \\
& \Longrightarrow \sum_{i=1}^{n}\left(x_{i} y_{i}-x_{i}\left(\bar{y}-\alpha_{2} \bar{x}\right)-\alpha_{2} x_{i}^{2}\right)=0 \\
& \Longrightarrow \sum_{i=1}^{n}\left(x_{i} y_{i}-x_{i} \bar{y}\right)-\alpha_{2} \sum_{i=1}^{n}\left(x_{i}^{2}-x_{i} \bar{x}\right)=0 \\
& \Longrightarrow \alpha_{2}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}} .
\end{aligned}
$$

Concerning (9.12), it is worth recalling that the correlation coefficient can be defined as

$$
r_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

[^23]Now, consider the last paragraph. Note that

$$
\begin{aligned}
\hat{y}-\bar{y} & =\hat{\alpha}_{2}(x-\bar{x}) \\
& =r_{x y} \frac{s_{y}}{s_{x}}(x-\bar{x})
\end{aligned}
$$

is (9.14) with \hat{y} in place of y.
===1

[^0]: ${ }^{1}$ Cf. (2.9).

[^1]: ${ }^{2}$ See p. 15.
 ${ }^{3}$ Heat capacity can also be defined as resistance to temperature change.
 ${ }^{4}$ Note that, by (2) and (3),

 $$
 \begin{aligned}
 \lim _{x \rightarrow-\infty} \tanh (x) & =\frac{0-1}{0+1} \\
 & =-1 ; \\
 \lim _{x \rightarrow \infty} \tanh (x) & =\lim _{x \rightarrow \infty} \frac{2 e^{2 x}}{2 e^{2 x}} \text { (L'Hôpital's Rule) } \\
 & =1 ; \\
 \lim _{x \rightarrow-\infty} g(x) & =\frac{0}{0+1} \\
 & =0 ; \\
 \lim _{x \rightarrow \infty} g(x) & =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}} \text { (L'Hôpital's Rule) } \\
 & =1 .
 \end{aligned}
 $$

[^2]: ${ }^{5}$ In fact, $\tanh (x)$ is an odd function!

[^3]: ${ }^{7}$ A similar reasoning can be applied with respect to $x>1$. In any case,

 $$
 y=e^{ \pm\left(2 x^{*}-1\right) t}, \quad x^{*} \lessgtr 1
 $$

[^4]: ${ }^{8}$ The authors (Kaper and Engler) provided an errata where, concerning this exercise, it is also assumed that both T^{*} and S^{*} vanish!

[^5]: ${ }^{9}$ In particular, f is Lipschitz on D if $k \geq 1$.
 ${ }^{10}$ By Lemma 4.1, $I\left(x_{0}\right)$ represents the domain of the solution $\varphi\left(t, x_{0}\right)=\varphi\left(t ; 0, x_{0}\right)$ for the IVP

 $$
 \left\{\begin{array}{l}
 \dot{x}=f(x) \\
 x(0)=x_{0}
 \end{array}\right.
 $$

[^6]: ${ }^{11} x_{1}^{*}$ is called an unstable spiral point.

[^7]: ${ }^{12} L\left(\mathbb{R}^{n}\right)$ often denotes the space of linear operators on \mathbb{R}^{n}, which is also isomorphic to $\mathbb{R}^{n \times n}$.

[^8]: ${ }^{13}$ Cf. Def. 4.2, p. 45.

[^9]: ${ }^{14}$ In fact, $F_{x}=x+x^{2}$ and $F_{y}=y$ confirm (7).

[^10]: ${ }^{15}$ In fact, $F_{x}=x+x^{3}$ and $F_{y}=y$ confirm (7).
 ${ }^{16}$ In fact, $F_{x}=x-x^{3}$ and $F_{y}=y$ confirm (7).

[^11]: ${ }^{17}$ The manner the equation is presented in the book give us $x^{*}=(2 \lambda, \lambda)$. In fact, consider

 $$
 \left\{\begin{array}{r}
 \lambda x_{1}-x_{1}^{2}+x_{1} x_{2}=0 \\
 x_{1}^{2}-2 x_{1} x_{2}=0
 \end{array}\right.
 $$

[^12]: ${ }^{18}$ This takes place in an interval where $f(\lambda, x)$ is decreasing.
 ${ }^{19}$ This takes place in an iterval where $f(\lambda, x)$ is increasing.

[^13]: ${ }^{20}$ In fact, consider the biquadratic equation $x^{4}-x^{2}-\lambda=0$ and the change of variable $x^{2}=t$. So

 $$
 t^{2}-t-\lambda=0 \Longrightarrow t=\frac{1 \pm \sqrt{1+4 \lambda}}{2}
 $$

[^14]: ${ }^{22}$ Note that the bifurcation diagram is rotated about the origin at $\pi / 2$ radians CCW.

[^15]: ${ }^{23}$ As a matter of fact, compare

 $$
 f(\lambda, x)=-\left((\lambda-1) x+\frac{x^{3}}{3!}\right)+\mathcal{O}\left(x^{5}\right)
 $$

[^16]: ${ }^{25}$ Consider the parabola $\lambda^{\prime}=x^{\prime 2}$ and the rotation

[^17]: ${ }^{26} \delta \in(0,1]$ and $y^{*}>0 \Longleftarrow 1.5$ and (6.8), p.79;
 $\lambda>0 \Longleftarrow \lambda=\frac{c}{2 \alpha k\left(2 T^{*}\right)}$, p. 78, and T^{*} is the temperature anomaly in the basin surrounding Box $2, \mathrm{p} .77$.

[^18]: ${ }^{27}$ Since $\delta \neq 1$, points like e and g are not considered here!
 ${ }^{28}$ On the one hand, if $\delta_{-}>1$, then $1-\delta_{-}<0$, which contradicts (18). On the other hand, if $\delta_{+}<0$, then δ can take nonpositive values, which is a contradiction because $\delta \in(0,1)$.
 ${ }^{29}$ See (16)!

[^19]: ${ }^{30}$ The one after "..., $y^{*}=\frac{4}{5} . "$.
 ${ }^{31}$ See p. 78.
 ${ }^{32}$ See the anomaly component y^{*} on the right.
 ${ }^{33}$ See (6.7), p. 78.
 ${ }^{34}$ Which is consistent with the first two properties.
 ${ }^{35}$ Which is consistent with the ultimate property.

[^20]: ${ }^{36}$ Note the consistency with the bifurcation diagram of figure 6.3 (left), p. 82 .

[^21]: ${ }^{37}$ See p. 79.
 ${ }^{38}$ See p. 80, last paragraph.

[^22]: ${ }^{39}$ Cf. pp. 43-4.
 ${ }^{40}$ Because ϕ_{t} is continuous.
 ${ }^{41}$ By the Cantor Intersection Theorem.
 ${ }^{42}$ See 7.5, 1.(ii).

[^23]: ${ }^{43} \mathrm{So}$, in that case, the nullity of $\mathbf{X} \in \mathbb{R}^{n \times p}$ is zero. Therefore, due to the fact that the kernel of $\mathbf{X}^{T} \mathbf{X}$ is contained in the kernel of \mathbf{X}, the rank of $\mathbf{X}^{T} \mathbf{X} \in \mathbb{R}^{p \times p}$ is also p.
 ${ }^{44}$ That is, the number of parameters is smaller than or equal to the number of observations.

