A Survival Guide to

DYnAMICAL SYstems Revised and Reissued 2013 Dover Edition Shlomo Sternberg

Partial scrutiny, Comments, Suggestions and Errata José Renato Ramos Barbosa

2016

Departamento de Matemática
Universidade Federal do Paraná
Curitiba - Paraná - Brasil
jrrb@ufpr.br

 1==12
==10=1
Comment, p. 11
The tangent to the curve $G=\left\{(x, y) \in \mathbb{R}^{2} \mid y=P(x)\right\}$ at $(x, y)=\left(x_{n}, P\left(x_{n}\right)\right)$ is given by

$$
T_{n}=\left\{(x, y) \in \mathbb{R}^{2} \mid P^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+(-1)\left(y-P\left(x_{n}\right)\right)=0\right\} .
$$

Therefore, for $(x, y) \in T_{n}$ with $y=0$, we have $x=x_{n+1}$ from Newton's method.
==12
Comment, p. 12, 1. -1
As a matter of fact, the inequality is strict, that is,

$$
\left|x_{\text {new }}-z\right|<\frac{\mu}{2}
$$

Hence, since

$$
x_{\text {new }} \in\left(z-\frac{\mu}{2}, z+\frac{\mu}{2}\right),
$$

if we denote the next iterate by $x_{\text {newer }}$, that is,

$$
x_{\text {newer }}:=x_{\text {new }}-\frac{f\left(x_{\text {new }}\right)}{f^{\prime}\left(x_{\text {new }}\right)},
$$

it follows that

$$
\left|x_{\text {newer }}-z\right|<\frac{\mu}{4} .
$$

This iteration goes on and each Newton step more than halves the distance to z.
$==$
Erratum, p. 13, 1st sentence of 1.2.3
Change to "Now let f be a function ...".
==12
Comment, p. 21, 11. -2 and -1
To start the sequence of Newton steps, Proposition 1.2.1 considers $x_{0}=0$ as the initial guess (starting point). Then, in case $P(z)=0$ holds for some z with $x_{n} \rightarrow z$, (1.14) means

$$
\left|P\left(x_{0}\right)-P(z)\right| \leq K^{-5},
$$

that is, $P(0)$ within K^{-5} of $P(z)$.
==12
Comments, p. 22

- (1.26)
$x_{0}=0$ is the initial guess after a shifting of coordinates and it is most likely that $P\left(x_{0}\right) \neq 0$ (when considering P as a single function of $x)$. $u=\mathbf{0}$ is supposed to be a zero of $P(u, 0)$.
- 1st sentences right after (1.26)

The inequality with $x_{0}=0$ guarantees that (1.14) holds. Hence Proposition 1.2.1 guarantees the existence of a zero: there is a point z which is the limit of the sequence of Newton steps with initial guess $x_{0}=0$:

$$
P(u, z)=0, \quad x_{n} \rightarrow z \quad \text { and } \quad x_{0}=0 .
$$

Therefore 1.2.3 implies that the convergence to z also takes place for the sequence of Newton steps with initial guess $x_{0} \neq 0$ provided that $\left|x_{0}-z\right|$ is sufficiently small. (Furthermore, since $|z| \leq\left|x_{0}-z\right|+\left|x_{0}\right|$, notice that $|z|$ is also small enough. So both $x_{0} \neq 0$ and z must be sufficiently close to $x_{0}=0$!)

Errata, p. 23

- 1st line after (1.29)
$" \ldots u=0, \ldots "$ should be $" \ldots u=\mathbf{0}, \ldots "$.
- 1. -9
"..., say $\in \mathbb{R}^{n}, \ldots$ ". should be "..., say $u \in \mathbb{R}^{n}, \ldots$ ".

2

Erratum, p. 34
2.1.1 does not deal with the $\mu=1$ case.

Comment, p. 38, 1l. -6 and -5
The value of $f(\mu)=\mu^{2}(4-\mu)$, since $f^{\prime}(\mu)=\mu(8-3 \mu)$ and $f^{\prime \prime}(8 / 3)<0$, increases from $f(2)=8$ to $f(8 / 3)>$ 9 and decreases from $f(8 / 3)$ to $f(3)=9$.

Erratum, p. 40, Figure 2.5
$L_{\mu}^{(2)}$ should be $L_{\mu}^{\circ 2}$.
Comments, p. 40
As a matter of fact, (2.3) refers to the discriminant Δ of the quadratic function (which precedes it) with zeros

$$
p_{2 \pm}=\frac{-\left(\mu^{2}+\mu\right) \pm \sqrt{\Delta}}{-2 \mu^{2}}
$$

2.1.7 The double root comes from the fact that $\Delta=0$ for $\mu=3$.
2.1.8 1. -1

$$
\text { For } \mu>3, \text { since } \sqrt{(\mu+1)(\mu-3)}=\sqrt{\mu^{2}-2 \mu-3}<\sqrt{\mu^{2}-2 \mu+1}=\mu-1
$$

$$
\begin{aligned}
0 & <\frac{1}{\mu}=\frac{1}{2}+\frac{1}{2 \mu}-\frac{\mu-1}{2 \mu} \\
& <p_{2-} \\
& <p_{2+} \\
& <\frac{1}{2}+\frac{1}{2 \mu}+\frac{\mu-1}{2 \mu}=1
\end{aligned}
$$

Erratum, p. 41

$L_{\mu}^{(2)}$ should be $L_{\mu}^{\circ 2}$.
Comments, p. 41, last two sentences of 2.1.8

$$
\begin{aligned}
\left(L_{3}^{\circ 2}\right)^{\prime}\left(p_{2 \pm}\right) & =\left(L_{3}^{\circ 2}\right)^{\prime}\left(\frac{2}{3}\right) \\
& =L_{3}^{\prime}(2 / 3) L_{3}^{\prime}(2 / 3) \\
& =(-1)(-1) \\
& =1
\end{aligned}
$$

Furthermore, consider the graph of $g(\mu)=-\mu^{2}+2 \mu+4$ for $\mu \in[3,1+\sqrt{6}]$.

Erratum, p. 43, 2.1.10
Shouldn't p_{2+} be p_{2-} ?

Erratum, p. 45, Figure 2.9
Change μ to r or vice versa.
Comment, p. 49, $\mu^{\prime \prime}(0)$
If $\gamma(x)=(x, \mu(x))$ and $\Gamma(x, \mu)$ denotes $-\frac{P_{x}}{P_{\mu}}$, then $\mu^{\prime}(x)=\Gamma(\gamma(x))$. Hence

$$
\begin{aligned}
\mu^{\prime \prime}(0) & =\gamma^{\prime}(0) \cdot \nabla \Gamma(\gamma(0)) \\
& =1 \cdot \Gamma_{x}(0, \mu(0))+\mu^{\prime}(0) \cdot \Gamma_{\mu}(0, \mu(0)) \\
& =\Gamma_{x}(0,0)+0 \\
& =-\frac{P_{x x}(0,0) \cdot P_{\mu}(0,0)-P_{x}(0,0) \cdot P_{x \mu}(0,0)}{\left(P_{\mu}(0,0)\right)^{2}} \\
& =-\frac{P_{x x}(0,0)}{P_{\mu}(0,0)}+\frac{0 \cdot P_{x \mu}(0,0)}{\left(P_{\mu}(0,0)\right)^{2}} \\
& =-\frac{\partial^{2} P / \partial x^{2}}{\partial P / \partial \mu}(0,0) .
\end{aligned}
$$

Comment, p. 52, first paragraph of 2.3.2
See the paragraph starting with "Before embarking ..." on p. 47.
Comment, p. 54, Step I
(2.7) holds since $P(x, \mu)$ is well-defined via the first paragraph of 2.3.2.

Comment, p. 56
l. 6

The chain rule implies that

$$
\left.\frac{d}{d x}\left(\frac{\partial F^{\circ 2}}{\partial x}(x, v(x))\right)\right|_{x=0}=\frac{\partial^{2} F^{\circ 2}}{\partial x^{2}}(0,0) \cdot 1+\frac{\partial^{2} F^{\circ 2}}{\partial \mu \partial x}(0,0) \cdot v^{\prime}(0) . .^{1}
$$

[^0]1. 7

By considering 1.6, p. 53, and 1. -3, p. 52, it follows that

$$
\begin{aligned}
\frac{\partial F^{\circ 2}}{\partial x}(0,0) & =\left(\frac{\partial F}{\partial x}(0,0)\right)^{2} \\
& =1 \\
& =(\lambda(0))^{2}
\end{aligned}
$$

Comment, pp. 56-7, 1st sentence of 2.4
Suppose (2.10) holds. Therefore, if ' denotes differentiation with respect to x and $p=\frac{1}{2}$, then

$$
\begin{aligned}
\left(L_{\mu}^{\circ 2^{n-1}}\right)^{\prime}(p) & =L_{\mu}^{\prime}(p) L_{\mu}^{\prime}\left(L_{\mu}(p)\right) \cdots L_{\mu}^{\prime}\left(L_{\mu}^{\circ\left(2^{n-1}-1\right)}(p)\right) \\
& =0
\end{aligned}
$$

since $L_{\mu}^{\prime}(p)=0$, which implies that p is a superattractive periodic point of period $2^{n-1.2}$
Comment, p. 58, 11. 9-12
Consider s_{n} is a solution of (2.10) for which $\frac{1}{2}$ has period $2^{i-1}<2^{n-1}$. Therefore $L_{s_{n}}{ }^{2}{ }^{i-1}(1 / 2)=1 / 2$ and, since $\left(L_{s_{n}}^{\circ 2^{i-1}}\right)^{\prime}(1 / 2)=0$, it follows that $s_{n}=s_{i}$ with $i<n!$

Erratum, p. 58, 1. -1

As a matter of fact, since the superattractive value s_{r} is the solution of the equation (for μ) $f_{\mu}^{\circ 2^{r-1}}\left(X_{m}\right)=X_{m},{ }^{3}$ then

$$
f_{s_{r}}^{\circ 2^{r-1}}\left(X_{m}\right)-X_{m}=0
$$

Since d_{r} denotes the difference between X_{m} and the next nearest point on the superstable 2^{r} orbit, which is the orbit $\left\{X_{m}, f_{s_{r}}\left(X_{m}\right), \ldots, f_{s_{r}}^{\circ 2^{r-1}-1}\left(X_{m}\right)\right\}$, then

$$
d_{r}=f_{s_{r}}^{\circ j}\left(X_{m}\right)-X_{m} \text { for } j \in\left\{1, \ldots, 2^{r-1}-1\right\}
$$

Erratum, p. 61, 1. 12
It seems the insertion of 2^{r+1} is unnecessary! It should be just

$$
\mathcal{R}\left(g_{k}\right)(y)=\lim (-\alpha)^{r+1} g_{s_{k+r}}^{2^{r+1}}\left(y /(-\alpha)^{r+1}\right)=g_{k-1}(y)
$$

since $g_{k}(y)=\lim (-\alpha)^{r} g_{s_{k+r}}^{2^{r}}\left(y /(-\alpha)^{r}\right)$ implies that

$$
g_{k-1}(y)=\lim (-\alpha)^{r} g_{s_{k-1+r}}^{2^{r}}\left(y /(-\alpha)^{r}\right) \underbrace{\mathbf{r}=r-1}_{=} \lim (-\alpha)^{\mathbf{r}+1} g_{s_{k+\mathbf{r}}}^{2^{\mathbf{r}+1}}\left(y /(-\alpha)^{\mathbf{r}+1}\right) .
$$

[^1]3

==10=1

Comments, p. 63, Proof of Lemma 3.1.2

- Negating the existence of the greatest point $c \in J$ with $f(c)=a$ leads us to an increasing sequence $\left\{c_{n}\right\}$ in J, which converges to $\sup \left\{c_{n} \mid n \in \mathbb{N}\right\}=s \in J$ since J is compact, such that $f\left(c_{n}\right)=a$ for all n. Then $f(s)=a$ since the sequence $\left\{f\left(c_{n}\right)\right\}$ converges to both $f(s)$ and a. Therefore s is the greatest point $c \in J$ with $f(c)=a$!
- "Then we may take $L=[c, d]$."

If $f([c, d])=\left[a^{\prime}, b^{\prime}\right]$, then The Intermediate Value Theorem guarantees that $\left[a^{\prime}, b^{\prime}\right] \supseteq[a, b]$. Hence, if $a^{\prime}<a$, there exists $c^{\prime}>c$ with $f\left(c^{\prime}\right)=a,{ }^{4}$ which is a contradiction. Therefore, $a^{\prime}=a$. Similarly, $b^{\prime}=b$.

Comments/Errata, p. 64

- Notation

Where do we use $\langle a, b\rangle$ from this point on?

- Proof of Theo. 3.1.1
" $f\left(I_{0}\right) \supset I_{1}, \quad f\left(I_{1}\right) \supset I_{0} \cup I_{1} . "$
Apply The Intermediate Value Theorem. ${ }^{5}$
"Finally, since $f\left(I_{1}\right) \supset I_{0}$, there is a compact interval $A_{n} \subset I_{1}$ with $f\left(A_{n}\right)=A_{n-1}$."
(Note the insertion of the second comma - the one in bold.)
In fact, $I_{0} \supset A_{n-1} .{ }^{6}$
"By Lemma 3.1.1, $f^{\circ n}$ has a fixed point, x, in A_{n}."
(Note the use of the adopted notation in place of f^{n}.)
In fact

$$
\begin{aligned}
A_{n} \subset I_{1} & =f^{\circ(n-2)}\left(A_{n-2}\right) \\
& =f^{\circ(n-2)}\left(f\left(A_{n-1}\right)\right) \\
& =f^{\circ(n-1)}\left(A_{n-1}\right) \\
& =f^{\circ(n-1)}\left(f\left(A_{n}\right)\right) \\
& =f^{\circ n}\left(A_{n}\right) .
\end{aligned}
$$

"But $f(x)$ lies in I_{0} and all the higher iterates up to n lie in I_{1} so the period can not be smaller than n." In fact, on the one hand $f(x) \in I_{0}$ since $x \in A_{n}$ and $f\left(A_{n}\right)=A_{n-1} \subset I_{0}$. On the other hand, if $f^{\circ i}(x)=x \in A_{n} \subset I_{1}$ for some index $1<i<n$, then $f^{\circ(i+1)}(x)=f(x) \in I_{0}$, which is absurd since $f^{\circ 2}(x), \ldots, f^{\circ n}(x) \in I_{1}$.

Erratum, p. 67, 1. -3

The denominator $\left[f^{\prime}(g(x)) g^{\prime}(x)\right.$ should be $\left[f^{\prime}(g(x))\right] g^{\prime}(x)$ or $f^{\prime}(g(x)) g^{\prime}(x)$.
===12
Errata, p. 68

[^2]- Proof of Lemma 3.2.1, last sentence

Write The reverse occurs at a relative maximum. .

- Proof of Lemma 3.2.3, first sentence 'fixed' should be 'critical'.

Comment, p. 69

- Proof of Lemma 3.2.3
"By the mean value theorem, there is a point s with $r<s<t$ such that $g^{\prime}(s)<1$."
In fact, if $f(x)=g(x)-x$, there is a point s in the open interval (r, t) at which

$$
\begin{aligned}
g^{\prime}(s)-1 & =f^{\prime}(s) \\
& =\frac{f(t)-f(r)}{t-r} \\
& =\frac{g(t)-t-(g(r)-r)}{t-r} \\
& <0 .
\end{aligned}
$$

- Proof of Lemma 3.2.4

Suppose first that the set $C\left(f^{\circ 2}\right)$ of all critical points of $f^{\circ 2}$ is infinite. On the other hand, the set $C(f)$ consisting of all critical points of f is finite by hypothesis. Therefore there can be only finitely many elements of $C\left(f^{\circ 2}\right)$ in $C(f)$ and

$$
\left\{x \in C\left(f^{\circ 2}\right) \mid f(x) \in C(f)\right\}
$$

is an infinite set whose image under f cannot be infinite, which is a contradiction by the second sentence of the proof.

- last sentence, "So there are three possibilities: ..."

On the one hand, neither $g(L)$ nor $g(R)$ is in (L, R). In fact, suppose otherwise. So one or both of them are attracted to p by g. Then one or both of the endpoints of (L, R) are attracted to p by g, which contradicts the maximality of (L, R). On the other hand, $g(\{L, R\}) \subset\{L, R\} .{ }^{7}$ In fact, L and R are accumulation points of (L, R). Hence there are sequences L_{1}, L_{2}, \ldots and R_{1}, R_{2}, \ldots in (L, R) with $L_{n} \rightarrow L$ and $R_{n} \rightarrow R$ as $n \rightarrow \infty$. Then, since g is continuous, $g\left(L_{n}\right) \rightarrow g(L)$ and $g\left(R_{n}\right) \rightarrow g(R)$ as $n \rightarrow \infty$. Now suppose $|g(L)-L|>0$ and $|g(L)-R|>0$. So there is some index n_{0} such that $g\left(L_{n_{0}}\right)$ is not in $(L, R) .{ }^{8}$ Therefore, since $L_{n_{0}}$ is attracted to p by g, it follows that $g\left(L_{n_{0}}\right)$ is attracted to p by g, which contradicts the maximality of (L, R). Similarly, the supposition that $g(R) \notin\{L, R\}$ contradicts the maximal choice of (L, R).

Erratum, p. 70, 1. 2
"... $z, f(z), \ldots f^{\circ m-1}(z) \ldots$... should be ${ }^{\prime \prime} \ldots z, f(z), \ldots, f^{\circ(m-1)}(z) \ldots "$.

[^3]

4

Erratum, p. 79, Prop. 4.1.1
"Let $f=a x^{2}+b x+d . "$ should be "Let $f(x)=a x^{2}+b x+d . "$.

Erratum, p. 82, Figure 4.3
The graph of $V(x)$ with the proper scale for the y-axis should be:

The diagonal $D=\{(x, y) \in[0,1] \times[0,1] \mid y=x\}$ traverses the narrow rectangle $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right] \times[0,1]$, which contains the graph of the surjective restriction of $T^{\circ n}$ to $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]$. Since the image of this restriction is the unit interval $[0,1]$, its graph intersects D.

Erratum, p. 85
In the verification of $T \circ S=T \circ T$, seven commas (at the very end of each line) and a period (at the very end of the 8th line) are missing!

Erratum, p. 86
Change S^{k} to $S^{\circ k}$ twice.

Comment, p. 88, the sentence right before Going to the unit circle

Since S is chaotic on $[0,1]$, the commutative diagram at the bottom of the page 84 gives us an alternative proof that T is chaotic.

Comment/Errata, p. 90, Proof of Prop. 4.4.1 with $\delta=c / 4$

- 1.6
$1 \leq n j-k \leq n$ since $n(j-1) \leq k \leq n j-1$.
- 1. 11 ($f^{-(n j-k)}\left(W_{n j-k}\right)$ should be $\left(f^{-(n j-k)}\left(W_{n j-k}\right)\right)$.
- 11. 13-16 and 20

Replace $f^{n j}$ by $f^{\circ n j}$ eight times and, at the very beginning, replace $f^{n j-k}$ by $f^{\circ(n j-k)}$ once.

- last sentence, "So ... $m=n j$."
n should be m in the enunciation of Prop. 4.4.1, p. 89.

Comments/Erratum, Proof of Prop. 4.5.1, pp. 91-2

- 2 nd sentence, "If $\left(x_{0}, y_{0}\right) \ldots y_{1}=g\left(y_{0}\right) . "$
$\left(x_{1}, y_{1}\right)$ satisfies $y=h(x)$ since

$$
\begin{aligned}
y_{1} & =g\left(y_{0}\right) \\
& =g\left(h\left(x_{0}\right)\right) \\
& =h\left(f\left(x_{0}\right)\right) \\
& =h\left(x_{1}\right) .
\end{aligned}
$$

- 4th sentence, "By hypothesis ... zero."

By continuity, if $\lim _{n \rightarrow+\infty} x_{n}=p$, then

$$
\begin{aligned}
f(p) & =\lim _{n \rightarrow+\infty} f\left(x_{n}\right) \\
& =\lim _{n \rightarrow+\infty} x_{n+1} \\
& =p .
\end{aligned}
$$

Hence $p=0$.

- 9th sentence, "Extend $\ldots x_{2} \leq x \leq x_{1}$."

The extension of h to $\left[x_{2}, x_{1}\right]$ is well-defined since $f^{-1}(x) \in\left[x_{1}, x_{0}\right]$ for $x \in\left[x_{2}, x_{1}\right]$. ${ }^{9}$

- 12th sentence, "Continuing $\ldots h=g^{n} \circ h \circ f^{-n} . "$

At the very end, $h=g^{\circ n} \circ h \circ f^{-n}$ is more consistent with the adopted notation.

- last sentence

Let us verify for $\left[x_{3}, x_{2}\right]$. It follows from:

$$
h=g^{\circ 2} \circ h \circ f^{-2} \text { implies that } h \circ f=g \circ h .
$$

In fact, on the one hand, $f^{-1}(x) \in\left[x_{2}, x_{1}\right]$ for $x \in\left[x_{3}, x_{2}\right]$. Furthermore, concerning $\left[x_{2}, x_{1}\right], g \circ h=h \circ f$ holds. On the other hand, if $x \in\left[x_{3}, x_{2}\right]$, then

$$
\begin{aligned}
(h \circ f)(x) & =\left(g^{\circ 2} \circ h \circ f^{-2} \circ f\right)(x) \\
& =\left(g \circ(g \circ h) \circ f^{-1} \circ f^{-1} \circ f\right)(x) \\
& =\left(g \circ(g \circ h) \circ f^{-1}\right)(x) \\
& =g\left((g \circ h)\left(f^{-1}(x)\right)\right) \\
& =g\left((h \circ f)\left(f^{-1}(x)\right)\right) \\
& =\left(g \circ h \circ f \circ f^{-1}\right)(x) \\
& =(g \circ h)(x)
\end{aligned}
$$

Comments/Erratum, p. 94

- 5th sentence,
"For $-2 \leq c \leq 1 / 4$, the iterate of any point in $\left[-p_{+}, p_{+}\right]$remains in the interval $\left[-p_{+}, p_{+}\right] . "$
Let $|x| \leq p_{+}$. On the one hand,

$$
x^{2}+c \leq p_{+}^{2}+c=\frac{1}{4}+\frac{\sqrt{1-4 c}}{2}+\frac{1}{4}-c+c=p_{+} .
$$

${ }^{9} f^{-1}\left(x_{2}\right)=x_{1}, f^{-1}\left(x_{1}\right)=x_{0}$ and f^{-1} is a continuous strictly increasing function on $\left[x_{2}, x_{1}\right]$.

On the other hand, since $x^{2}+c \geq-p_{+}$for $c \geq 0$ (because $-p_{+}$is negative) and $x^{2}+c \geq c$, it suffices to prove that $c \geq-p_{+}$for $-2 \leq c<0$. In fact, suppose otherwise. Hence

$$
c<-\frac{1+\sqrt{1-4 c}}{2} \Rightarrow-(2 c+1)>\sqrt{1-4 c}
$$

which does not hold if $2 c+1 \geq 0$, that is, if $c \geq-\frac{1}{2}$. So suppose that $-2 \leq c<-\frac{1}{2}$. Therefore

$$
\begin{aligned}
-(2 c+1)>\sqrt{1-4 c} & \Rightarrow 4 c^{2}+4 c+1>1-4 c \\
& \Rightarrow 4 c(c+2)>0,
\end{aligned}
$$

which is a contradiction since $4 c<0$ and $c+2 \geq 0$ for $-2 \leq c<-\frac{1}{2}$.

- 7th sentence, "To visualize the what is going on, ..."

It should be just "To visualize what is going on, ...".

- 8th sentence, "The bottom of the graph will protrude below the bottom of the square."

It follows since $c<-p_{+}$for $c<-2$. In fact, suppose otherwise.

- last sentence
A_{2} is open since, under a continuous function, the inverse image of an open set (in the codomain) is always an open set (in the domain).

Erratum, p. 95, 1. -3
In order to be consistent with a previous notation (p.90, 1.1), $Q_{c}^{-o n}\left(A_{1}\right)$ should be just $Q_{c}^{-n}\left(A_{1}\right)$.
Errata/Comment, p. 100

- 1.1

Replace itenerary by itinerary.

- 1.4

As a matter of fact, by abuse of notation, S may used in place of $\mathbf{S h}$ as can be seen on $p .87$.

- 1l. $-1,-3$ and -4

In order to be consistent with a previous notation (p. 90, 1. 1), $Q_{c}^{-o n}$ should be just Q_{c}^{-n}. Similarly, $Q_{c}^{-o(n-1)}$ should be changed.

Erratum, p. 101, Theo. 4.6.2
Change Q_{c}^{n} to $Q_{c}^{\circ n}$.

5

Suggestion, p. 103

The 4th sentence should end as in

$$
\text { "... in } I_{k}, k=1, \ldots, N . "
$$

since the 3 rd sentence considers I_{k} for $k=1, \ldots, N-1$ separetely from I_{N}.
===12
Comment, p. 105, The push forward of a discrete measure, last sentence
Using (5.2), we have

$$
\left(F_{*} \mu\right)(I)=\sum_{y_{\ell} \in F^{-1}(I)} n\left(y_{\ell}\right) .
$$

Comment, p. 106

- (5.3) and (5.4)
- x_{k} is used, twice, instead of just x, to make clear that the sum is over k;
- If (5.4) holds, then we can put each of the two densities, ρ and σ, in the other's place by (5.3).
- Back to the histogram

Suppose that $\rho \approx$ constant on I_{k}. Therefore

$$
\begin{aligned}
p\left(I_{k}\right) & =\int_{I_{k}} \rho(x) d x \\
& \approx \rho(x) \int_{\frac{k-1}{N}}^{\frac{k}{N}} d t=\rho(x) \cdot \frac{1}{N} .
\end{aligned}
$$

For N large enough, the previous supposition is a possible one.

Comments, p. 108

- First proof of (i)

Note that

$$
\begin{aligned}
\rho(F(x)) & =\frac{1}{\pi \sqrt{4 x(1-x)(1-4 x(1-x))}} \\
& =\frac{2}{\pi 4|1-2 x| \sqrt{x(1-x)}} \\
& =\frac{1+1}{\pi 4|1-2 x| \sqrt{x(1-x)}} \\
& =\frac{\frac{1}{\pi \sqrt{x(1-x)}}}{4|1-2 x|}+\frac{\frac{1}{\pi \sqrt{(1-x) x}}}{4|-1+2 x|} \\
& =\frac{\rho(x)}{\left|F^{\prime}(x)\right|}+\frac{\rho(1-x)}{\left|F^{\prime}(1-x)\right|} .
\end{aligned}
$$

- Second proof of (i), 4th sentence, "In other words $\ldots v$ has density $\rho(x) \equiv 1$." In fact, the measure of I is just the length of I, which means that $v(I)=\int_{I} d x$.

Comment, p. 109, Proof of (ii)
At the very end, we are dealing with a constant sequence of Riemann sums which converges to both $\int f(t) d t$, whose convergence follows from the continuity of f, and the constant $f(x)$. Then

$$
f(x)=\int f(t) d t
$$

is just a consequence of the uniqueness of the limit of any sequence.

Comment, p. 110, What about (iii)?

To fix ideas, let (X, \mathcal{B}, μ) be a probability space. Therefore:

- X is a set of possible outcomes;
- \mathcal{B} is a set of events, which are sets of outcomes;
- μ assigns probabilities to each event in \mathcal{B}.

Furthermore, let $T: X \rightarrow X$ be an ergodic transformation with respect to an invariant measure, μ. Then:

- $T_{*} \mu=\mu$;
- $\forall A \in \mathcal{B}$ such that $T^{-1}(A)=A$, either $\mu(A)=0$ or $\mu(A)=1$.

An ergodic theorem describes the limiting behavior of a sequence

$$
\frac{1}{n} \sum_{i=0}^{n-1} f \circ T^{i}
$$

(as $n \rightarrow \infty$) and depends on the function f (for example, it may be assumed that f is integrable, or square integrable (L^{2}), or continuous) and the type of convergence used in the theorem (for example, pointwise, L^{2} or uniform convergence).
The Birkhoff Ergodic Theorem deals with pointwise convergence of the previous sequence of partial sums for integrable functions f if $\mu(X)$ is finite. ${ }^{10}$ It says that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i}(x)\right)=\hat{f}(x) \text { for almost all } x
$$

with

$$
\hat{f}=\frac{1}{\mu(X)} \int f \mu
$$

Comment, pp. 110-111, "Indeed, applying ... as $n \rightarrow \infty$ "
Since U is an isometry,

$$
\frac{\left\|U^{n} f\right\|}{n}=\frac{\|f\|}{n} \rightarrow 0
$$

as $n \rightarrow \infty$.
Comments, p. 112

- Lemma 5.3.2

The denseness of $D \cup I$ is a consequence of a well-known result (in Functional Analysis) which says that the orthogonal complement of the orthogonal complement of $S \subset H$ is the closure of S. Therefore

$$
\begin{aligned}
\overline{D \cup I} & =(D \cup I)^{\perp \perp} \\
& =0^{\perp} \\
& =H .
\end{aligned}
$$

[^4]- Lemma 5.3.3 and Lemma 5.3.4

Let S be the set of elements for which the limit in (5.8) exists. Consider that $f \in H$. So the denseness of S guarantees the existence of a sequence in S which converges to f. Then the closeness of S implies that $f \in S$. Therefore $S=H$.

Erratum, p. 113, (5.9)
A $d x$ is missing right after the integrand.

Erratum, p. 121
The 2nd Proof o Prop. 5.4.3 is, in fact, the Proof o Prop. 5.4.4.

6

Suggestion, p. 129, 6.1, 1st sentence
Either change \mathbb{R} to $\mathbb{R}^{+} \cup\{0\}$, twice, or put the word 'non-negative', which is placed right before the word 'real', right before the word 'function'.

Suggestion, p. 130, Open balls, the topology on a pseudo-metric space X., 1st sentence
Concerning "..., the (open) ball of radius r about $x \ldots$...", the word 'about' should be written in boldface.

Comment, p. 131, the sentence that precedes An example.,
"Clearly a Lipschitz map is uniformly continuous."
In fact, for $\epsilon>0$, consider $\delta \leq \frac{\epsilon}{C+1}$.
Comments, p. 132

- Identifying points at zero distance., "It is also open, that is, it maps open sets to open sets."

If A is open and $\overline{\{x\}} \in A / R$, then $B_{r}(\overline{\{x\}}) \subset A / R$ for each $B_{r}(x) \subset A .{ }^{11}$ Therefore A / R is open.

- Prop. 6.1.1
$F=p \circ f$ where $p: f(Y) \ni x \mapsto \overline{\{x\}} \in f(Y) / R$.
$==$
Comment, p. 133, Complete metric spaces., $d\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right):=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$
Since \mathbb{R} is complete, the Cauchy sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges. ${ }^{12}$ Therefore $d_{X_{\text {seq }}}$ is well-defined.

Comment, p. 134, last sentence before the definition of a contraction map,
"The inequality will continue to hold for this value of C which is known as the Lipschitz constant of f and denoted by $\operatorname{Lip}(f)$."

In fact, on the one hand,

$$
d_{Y}(f(x), f(x))=0=\operatorname{Lip}(f) d_{X}(x, x) \quad \forall x \in X .
$$

On the other hand, as a lower bound of $\left\{C \mid d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq C d_{X}\left(x_{1}, x_{2}\right) \forall x_{1}, x_{2} \in X\right\}$,

$$
\frac{d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)}{d_{X}\left(x_{1}, x_{2}\right)} \leq \operatorname{Lip}(f) \quad \forall x_{1}, x_{2} \in X \text { with } x_{1} \neq x_{2} .
$$

Erratum/Comment, p. 136

- Cor. 6.3.1, Proof

Prop. should be Theo., twice.

[^5]for all x, y, z in X.

- 6.4

Since $\left(S, d_{S}\right)$ and $\left(X, d_{X}\right)$ are metric spaces, then $\left(S \times X, d_{S \times X}\right)$ is a metric space with

$$
d_{S \times X}\left(\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right)\right)=d_{S}\left(s_{1}, s_{2}\right)+d_{X}\left(x_{1}, x_{2}\right)
$$

for all points $\left(s_{1}, x_{1}\right)$ and $\left(s_{2}, x_{2}\right)$ in $S \times X$.

Errata/Comment, p. 137

- Proof of Theo. 6.4.1
- In the middle of the proof, a) is missing right before \leq;
- At the very end of the proof, change Prop. to Cor..
- "..., wish to conclude the existence of an inverse to $F, \ldots "$, , 1. -10 Isn't a 1st person (subject) pronoun missing before the word wish?
- "... the mean value theorem ...", 13,14 ll. -5 and -4

> If V and W are normed linear spaces, and if F is from $B_{r}(\alpha) \subset V$ to W with F differentiable and $\left\|d F_{\beta}\right\| \leq \epsilon$ for every $\beta \in B_{r}(\alpha)$, then $\|F(\beta+\xi)-F(\beta)\| \leq \epsilon\|\xi\|$ whenever $\beta, \beta+\xi \in B_{r}(\alpha)$.

Erratum/Comments/Suggestion, Theo. 6.5.1 and its Proof, p. 138

- "..., $\operatorname{Lip}[v]<\lambda<1$." , 1st sentence of the proof

Either the first $<$ should be the equal sign $=$ or the $=$ of (6.2) on p .137 should be the inequality sign $<$.

- 3rd sentence of the proof In fact,

$$
\begin{aligned}
(\mathrm{id}+v) \circ(\mathrm{id}+w)=\mathrm{id} & \Leftrightarrow \mathrm{id} \circ(\mathrm{id}+w)+v \circ(\mathrm{id}+w)=\mathrm{id} \\
& \Leftrightarrow \mathrm{id}+w+v \circ(\mathrm{id}+w)=\mathrm{id} \\
& \Leftrightarrow w=-v \circ(\mathrm{id}+w) .
\end{aligned}
$$

- "Let X be the space of continuous maps of $\overline{B_{s}(0)} \rightarrow E \ldots$...", 4th sentence of the proof Use either
"Let X be the space of continuous maps u from $\overline{B_{s}(0)}$ to $E \ldots$..."
or
"Let X be the space of continuous maps $u: \overline{B_{s}(0)} \rightarrow E \ldots$..."
- "Then X is a complete metric space relative to the sup norm, ...", 5th sentence of the proof The completeness of X follows from a classical result of Functional Analysis provided that E is complete. In fact, by hypothesis, E is a Banach space.

Errata/Suggestions/Comment, p. 139

- The setup., 3rd sentence
" \ldots and y ranges over and open ball ..." should be "... and y ranges over an open ball ...".

[^6]- The method., 2nd, 3rd and last sentences
- "... map from $A \times B \rightarrow Y$..." should be "... map from $A \times B$ to Y...";
- $K(x, y) y=y$ should be $K(x, y)=y$;
- "The mean value theorem ...", 1. -1 See the previous footnote.

Suggestion/Errata, p. 140

Concerning the underlined text:

- "... $\left\|K\left(x, y_{1}\right)-K\left(x, y_{2}\right)\right\| \leq\left\|y_{1}-y_{2}\right\| \underline{C}, \quad 0 \leq C<1, \forall \underline{s} \in S, \ldots "$ should be

$$
\text { "... ||K(x, } \left.y_{1}\right)-K\left(x, y_{2}\right) \| \leq \underline{C}| | y_{1}-y_{2}| |, \quad 0 \leq C<1, \forall y_{1}, y_{2} \in B_{1}, \ldots " ;
$$

- "... $y_{x} \in B$ such that $K(x, \underline{y})=y_{x}, \ldots "$ should be "... $y_{x} \in B$ such that $K\left(x, \underline{y_{x}}\right)=y_{x}, \ldots "$.
===12
Erratum, p. 141, l. 4
Concerning "..., and the the right ...", delete the extra 'the'.
Comment/Errata, p. 142
- 1 st sentence
- Notice that F is bounded on $\overline{L \times U}$, which contains $L \times U$;
- Based on the rest of the proof from here, $L=J$.
- At the very end of the proof, $\delta(m+c r) \leq 1$ should be $\delta(m+c r) \leq r$.

7

===12

Comments, pp. 143-4

- Illustration for A_{ϵ} (where A is a closed ball):

- $d(A, B)$ and $h(A, B)$ are well-defined. In fact, the maxima are achieved since both A and B are bounded.
- Illustration for $d(A, B) \neq d(B, A)$ (where A and B are closed balls):

- Proof of (7.3).

Using set-builder notation and propositional logic, we have

$$
\left\{\epsilon \mid A \subset C_{\epsilon}, B \subset D_{\epsilon}, C \subset A_{\epsilon} \text { and } D \subset B_{\epsilon}\right\} \subset\left\{\epsilon \mid A \cup B \subset(C \cup D)_{\epsilon} \text { and } C \cup D \subset(A \cup B)_{\epsilon}\right\} .
$$

Therefore, the infimum of the latter is less than or equal to the infimum of the former.

Comment/Suggestion, p. 145

- A sketch of the proof of completeness.
$A \neq \varnothing$. In fact, since $\left\{A_{n}\right\}$ is Cauchy with respect to h, by selecting a subsequence if necessary, we may assume that, for each index n,

$$
h\left(A_{n}, A_{n+1}\right)<2^{-n},
$$

that is,

$$
A_{n} \subset\left(A_{n+1}\right)_{2^{-n}} \quad \text { and } \quad A_{n+1} \subset\left(A_{n}\right)_{2^{-n}} .
$$

Then, for any natural number N, there is a sequence $\left\{x_{n}\right\}_{n \geq N}$ in (X, d) such that $x_{n} \in A_{n}$ and $d\left(x_{n}, x_{n+1}\right)<$ 2^{-n} for each index $n \geq N$. Any such sequence is Cauchy with respect to d and thus converges to some $x \in X$ (due to the completeness of (X, d)).

- 7.1.1, at the very end of the 2nd line ' K ' should be ' K '.
- Put ' X ' right after 'space';
- 'Lifschitz' should be 'Lipschitz';
- ' $K_{n}(a)$ ' should be ' $K_{n}(A)$ ';
- At the very end, an ' i ' is missing in 'Lipschtz'.

Errata, p. 148, 7.3.2
- 1 st line after $A_{1}=T A_{0}$ "... be deleting ..." should be "... by deleting ...";
- 4th line after $A_{1}=T A_{0}$ 'sussive' should be 'successive';
- 7th line after $A_{1}=T A_{0}$ Put ' $=$ ' right after ' B_{0} '.

In fact, if $\epsilon \leq \delta$, then a countable cover \mathcal{B}_{ϵ} by balls of radius at most ϵ is also a countable cover \mathcal{B}_{δ} by balls of radius at most δ. Thus the set of all $m_{t}\left(\mathcal{B}_{\epsilon}\right)$ is a subset of the set of all $m_{t}\left(\mathcal{B}_{\delta}\right)$. Therefore

$$
M_{t, \epsilon} \geq M_{t, \delta} .
$$

8

===12

Comment, p. 159, 1st sentence

The theory presented here is built on complete metric spaces, which were defined in chapter 6. So, it is worth recalling that, a Banach space is a normed linear space which is complete with respect to the metric derived from its norm.

Erratum/Comment, p. 160

- The equation

$$
L(u):=A u-u \circ(A+\phi)
$$

is displayed twice. So (8.6) should be the equation number to

$$
L(u)=\phi-\psi(\mathrm{id}+u)
$$

and the 2nd sentence that starts with

> 'So we wish ...'
should be deleted.

- 1. -1

$$
\begin{aligned}
\left\|L^{-1}\right\| \cdot \operatorname{Lip}[\psi] & <\frac{\left\|A^{-1}\right\|}{(1-a)} \cdot \epsilon \\
& <\frac{\left\|A^{-1}\right\|}{1-a} \cdot \frac{1-a}{\left\|A^{-1}\right\|} \\
& <1 \\
& \Downarrow \\
2\left\|L^{-1}\right\| \cdot \operatorname{Lip}[\psi]- & \left\|L^{-1}\right\| \cdot \operatorname{Lip}[\psi]<1 \\
& \Downarrow \\
\left\|L^{-1}\right\| \cdot \operatorname{Lip}[\psi] & <\frac{\left\|L^{-1}\right\| \cdot \operatorname{Lip}[\psi]+1}{2}:=c \\
& <1 .
\end{aligned}
$$

Errata/Comment, p. 161

- At the very begining, there is a subjacent hypothesis for the conclusion of the existence and uniqueness of the solution to (8.5): X is complete.
- $\left\|A^{-1}\right\|$, right before the sentence which ends in (8.8), should be $\left\|M^{-1} A^{-1}\right\|$.
- The map $A+\phi$ is injective.
- The 1st ' \geq ', 1. -5, comes from

$$
\begin{aligned}
\|x\| & =\left\|A^{-1} A x\right\| \\
& \leq\left\|A^{-1}\right\|\|A x\|
\end{aligned}
$$

- The 2nd ' \geq ', 1. -3, comes from

$$
\begin{aligned}
\|A x+\phi(x)-A y-\phi(y)\|+\operatorname{Lip}[\phi]\|x-y\| & \geq\|A(x-y)+\phi(x)-\phi(y)\|+\|\phi(x)-\phi(y)\| \\
& \geq\|A(x-y)+\phi(x)-\phi(y)+\phi(y)-\phi(x)\| \\
& \geq\|A(x-y)\| \\
& \geq \frac{1}{\left\|A^{-1}\right\|}\|x-y\| ;
\end{aligned}
$$

- The 3rd ' \geq ', 1. -2, comes from

$$
\begin{aligned}
\operatorname{Lip}[\phi]<\frac{1-a}{\left\|A^{-1}\right\|} & \Rightarrow \frac{1-a}{\left\|A^{-1}\right\|}-\operatorname{Lip}[\phi]>0 \\
& \Rightarrow \frac{a}{\left\|A^{-1}\right\|}+\frac{1-a}{\left\|A^{-1}\right\|}-\operatorname{Lip}[\phi]>\frac{a}{\left\|A^{-1}\right\|}
\end{aligned}
$$

- '(8.4.', 1. -1

Put a parentheses right after ' 4 '.

Errata/Comments, p. 162

- The map $A+\phi$ is surjective with continuous inverse.
- Remove the period for estimate (8.4).
- The contraction argument follows from

$$
\begin{aligned}
\left\|A^{-1}\left(y-\phi\left(x_{1}\right)\right)-A^{-1}\left(y-\phi\left(x_{2}\right)\right)\right\| & =\left\|A^{-1}\left(\phi\left(x_{2}\right)-\phi\left(x_{1}\right)\right)\right\| \\
& \leq\left\|A^{-1}\right\|\left\|\phi\left(x_{2}\right)-\phi\left(x_{1}\right)\right\| \\
& \leq\left\|A^{-1}\right\| \operatorname{Lip}[\phi]\left\|x_{2}-x_{1}\right\| \\
& \leq\left\|A^{-1}\right\| \epsilon\left\|x_{2}-x_{1}\right\| \\
& \leq(1-a)\left\|x_{1}-x_{2}\right\| .
\end{aligned}
$$

- 3rd line after estimate (8.4)

Change "... A+ ϕ a \ldots "' to "... $A+\phi$ is a...$"$ ".

- Concerning the item that completes the proof of the lemma, notice that:
- $N N^{-1} f=A^{-1} A_{s} f \circ(A+\phi)^{-1} \circ(A+\phi)=f$ and $N^{-1} N f=A_{s} A^{-1} f \circ(A+\phi) \circ(A+\phi)^{-1}=f ;$
- Via the sup norm on Y,

$$
\left\|N^{-1} f\right\|=\sup \left\{\left\|N^{-1} f x\right\|: x \in E\right\} \text { and }\|f\|=\sup \{\|f y\|: y \in E\} .
$$

Hence, since

$$
\begin{aligned}
\left\|N^{-1} f x\right\| & =\left\|A_{s} f \circ(A+\phi)^{-1} x\right\| \\
& \leq\left\|A_{s}\right\| \cdot\left\|f \circ(A+\phi)^{-1} x\right\| \\
& \leq a\|f\|,
\end{aligned}
$$

it follows that $\left\|N^{-1} f\right\| \leq a\|f\|$.

Comment, pp. 162-3
Concerning the convergence, the geometric series corresponding to $\left(I-N^{-1}\right)^{-1}$ used $\left\|N^{-1}\right\| \leq a$, which was obtained by

$$
N^{-1} f=A_{s} f \circ(A+\phi)^{-1},\left\|A_{s}\right\| \leq a \Rightarrow\left\|N^{-1} f\right\| \leq a\|f\|
$$

Similarly, the geometric series corresponding to $(I-Q)^{-1}$ uses $\|Q\| \leq a$, which is obtained by

$$
Q g=A_{u}^{-1} g \circ(A+\phi),\left\|A_{u}^{-1}\right\| \leq a \Rightarrow\|Q g\| \leq a\|g\| .
$$

Errata/Comment, p. 163

- Before the completion of the proof of the 1st part of Theorem 8.1.1:
- \| $M_{u} \|$ and $\|M\|$ should be $\left\|M_{u}^{-1}\right\|$ and $\left\|M^{-1}\right\|$, respectively;
- $M^{-1}=M_{s}^{-1} \oplus M_{u}^{-1}$ has the maximum property, that is,

$$
\left\|M^{-1}\right\|=\max \left\{\left\|M_{s}^{-1}\right\|,\left\|M_{u}^{-1}\right\|\right\}
$$

- Right after the completion of the proof of the 1st part of Theorem 8.1.1:

Since $X \ni u \mapsto \mathcal{F}_{0}(u):=u(0) \in E$ is a continuous linear functional, if $K u=u$, then

$$
K^{n} u_{0} \rightarrow u \Rightarrow \mathcal{F}_{0}\left(K^{n} u_{0}\right) \rightarrow \mathcal{F}_{0}(u)=u(0)
$$

for any point $u_{0} \in X .{ }^{15}$ In particular, if $u_{0}(0)=0$, then $K^{n} u_{0}(0)=0$ for each index n. So $u(0)=0$.

- 1st line of 8.1.2

Remove 'differentiable,'.

Errata/Suggestions/Comment, p. 164

- Plan of the proof., 1 st line after ' $K>2$.'

Remove the first 'the'.

- Checking the Lipschitz constant.

- The next figure illustrates the graph of a possible $\rho(t)$ and has three parts:

1. a horizontal semi-line with endpoint $(0.5,1)$;
2. a curve from $(0.5,1)$ to $(1,0)$ which leaves at an angle of 0° and arrives at an angle of 180°;
3. a horinzontal semi-line with endpoint $(1,0)$.

Notice that $\rho(t) \leq 1$ for all $t \in \mathbb{R}$.

- 1. -2 follows from the MVT (see my footnote 14) since
$\left|\rho^{\prime}(t)\right|<K \forall t \in \mathbb{R},\left|\left\|x_{1}\right\|-\left\|x_{2}\right\|\right| \leq\left\|x_{1}-x_{2}\right\|, \quad\left\|d \phi_{x}\right\|<\frac{\epsilon}{2 K} \forall x \in B(0, r)$ and $\rho\left(\frac{\left\|x_{2}\right\|}{r}\right) \leq 1$.
- 1. -1

Change ' $\left|\left|x_{1}-x_{2}\right|^{\prime}\right.$ to ' $| \mid x_{1}-x_{2} \|^{\prime}$.

[^7]Erratum, p. 165, last line before (8.10)
Change "... are ..." to "... be ...".

Comments/Suggestion/Errata, p. 166

- More details in the linear case.
- As far as $\left\|A^{n} x\right\|=\left\|A^{n} x_{s}\right\|+\left\|A^{n} x_{u}\right\|$ is concerned, if E is a Banach space with a norm $\|\cdot\|_{E}$, then

$$
x_{s}+x_{u} \mapsto\left\|x_{s}+x_{u}\right\|_{\oplus}:=\left\|x_{s}\right\|_{E}+\left\|x_{u}\right\|_{E}
$$

defines a norm on E.

- Consider $c=\frac{1}{a}$ since

$$
\left\|x_{u}\right\|=\left\|A_{u}^{-1} A_{u} x_{u}\right\| \leq\left\|A_{u}^{-1}\right\| \cdot\left\|A_{u} x_{u}\right\| \leq a\left\|A_{u} x_{u}\right\| \Rightarrow\left\|A x_{u}\right\| \geq \frac{1}{a}\left\|x_{u}\right\| .
$$

Furthermore, observe that $c>1$.

- Back to the general case.
- 3rd sentence
"... and homeomorphism ..." should be "... and a homeomorphism ...".
- 4th sentence

Firstly, change:

* ' U ' to ' B_{r} ';
* ' $h(x) \in S(A)^{\prime}$ to ' $h(x) \in S \cap V^{\prime}$.

Now, notice that r and V can be taken such that V is bounded. ${ }^{16}$ Then, as B_{r} in the linear case,

$$
A^{n} y \in V \forall n \geq 0 \Leftrightarrow y \in S \cap V
$$

Therefore the 4 th sentence can be rewritten as

$$
\begin{aligned}
f^{n}(x) \in B_{r} \forall n \geq 0 & \Leftrightarrow A^{n} h(x) \in V \forall n \geq 0 \\
& \Leftrightarrow h(x) \in S \cap V \\
& \Leftrightarrow A^{n} h(x) \rightarrow 0 .
\end{aligned}
$$

(Concerning the last \Leftrightarrow, the proof of \Rightarrow follows from (8.11), p. 165, since $S=W^{s}(0, A)$. On the other hand, since $h(x) \in V$ by definition, it remains to show that $h(x) \in S$ in order to prove \Leftarrow. In fact, if $h(x)=y_{s} \oplus y_{u}$, then $\left\|A^{n} y_{s}\right\|+\left\|A^{n} y_{u}\right\| \rightarrow 0$. Hence $y_{u}=0$, which means that $h(x)=y_{s} \in S$.)

- 1. -2 In fact, H is the restriction of h^{-1} to $S \cap V$.

Errata/Comment, p. 167

- An important remark.
- 2nd line before (8.14)
"... $p \in f^{-n}\left[B_{r}^{s}(p)\right] \ldots$..." should be "... $x \in f^{-n}\left[B_{r}^{s}(p)\right] \ldots$.
- 1st line after (8.14)

At the end of p .166 , it was proved that $B_{r}^{s}(p)$ is a topological submanifold via h, which is a homeomorphism. Then
$W^{S}(p)$ is a topological submanifold
by (8.14). Theorem 8.2.1 confirms it with a map which is Lipschitz, a stronger condition than continuity.

[^8]- 4th line after (8.14)

At the very end, change 'Her' to 'Here'.

- 6th line after (8.14), "... in[?,Shub]"
* a space between 'in' and '[' is missing;
* the bibliografical reference related to ' $?$ ' is missing;
* a period is missing right after ' $]$ '.
- 1. -1

At the very end, a ' c ' is missing in 'charater'.

- The Lipschitzian case., 5 lines before (8.15)

Change ' s ' to ' r '.

Errata/Suggestions/Comment, p. 168

- Theo. 8.2.1.
- 1.1

Concerning $\epsilon(a)$ and $\delta(a, \epsilon, r)$, change ' a ' to ' c ' (since the bound $a, \mathrm{p} .167$, is replaced by c from now on).
-1.3
' $g: E_{u}(r) \rightarrow E_{s}(r)^{\prime}$ should be ' $g: U(r) \rightarrow S(r)^{\prime}$.

- 1.6

Change ' f '1' to ' f '.

- 1.9
* Change ' $U(p)$ ' to ' $U(r)^{\prime}$ ';
* It is worth noting that, as a "cograph",

$$
\operatorname{graph}(g) \subset S(r) \times U(r)
$$

which is identified with

$$
S(r) \oplus U(r) \subset S \oplus U
$$

Furthermore, graph (g) has the subspace topology inherited from E and it has a single coordinate chart given by

$$
\left(\operatorname{graph}(g), p_{u}\right)
$$

where p_{u} is the projection onto U. On the other hand, $p_{u}^{-1}(x)=(g(x), x)$ is continuous if and only if g is continuous, which is the case here since g is Lipschitz by (i). To summarize: $\operatorname{graph}(g)$ is a topological submanifold.

- The idea of the proof.
- 1.4

A comma is used to represent 'such that', which is usually represented by a vertical bar (|) or a slash (/) or a colon (:). So, it should be, for example,

$$
\operatorname{graph}(v)=\{(v(x), x) \mid x \in U(r)\}
$$

- 1.6

The shorthand notation represents

$$
f[\operatorname{graph}(v)]=\{f(v(x), x) \mid x \in U(r)\}=\left\{\left(f_{s}(v(x), x), f_{u}(v(x), x)\right) \mid x \in U(r)\right\}
$$

- 1. -9

Change "... map of $U(r) \rightarrow E \ldots$ to "... map $U(r) \rightarrow E \ldots$ or "... map of $U(r)$ to $E \ldots$...".

- 1. - 7

Change "... map of $U(r) \rightarrow U . "$ to "... map $U(r) \rightarrow U . "$ or "... map of $U(r)$ to $U . "$.

- 1. -6

It should be

$$
f[\operatorname{graph}(v)]=\left\{\left(f_{s} \circ(v, i d)\left(\left[f_{u} \circ(v, i d)\right]^{-1}(y)\right), y\right) \mid y \in U(r)\right\}=\operatorname{graph}\left[G_{f}(v)\right]
$$

Errata/Suggestion, p. 169

- 2 lines before Lemma 8.2.1
"... direc ..." should be "... direct ...".
- Lemma 8.2.2
- 2 lines before (8.18)
' $f_{u} \circ(v, i d): E_{u}(r) \rightarrow E_{u}$ ' should be ' $f_{u} \circ(v, i d): U(r) \rightarrow U^{\prime}$.
- 2 lines after (8.18)
* ' $f_{u}-A_{u}$ ' should be ' $f_{u} \circ(v, i d)-A_{u}$ ';
* The last ' $<$ ' should be ' \leq '.
- 3 lines after (8.18)
"By the Lipschitz implicit function theorem ..." should be
"By the Lipschitz inverse function theorem, Theorem 6.5.1, ..."

9

==12
==12
Erratum/Comment, p. 176, 9.1.1

- 1st sentence
"... matrix square ..." should be "... square matrix ...".
- last two sentences

Since $T \geq 0$ by definition, $T^{l} \geq 0$ for each non-negative integer l. Therefore, once K is big enough, the irreducibility hypothesis guarantees that, for any i, j, there is a $k=k(i, j)$ such that

$$
\left[(I+T)^{K}\right]_{i j}=\left[\sum_{\substack{l=0 \\ l \neq k}}^{K}\binom{K}{l}\left(T^{l}\right)_{i j}\right]+\binom{K}{k}\left(T^{k}\right)_{i j}
$$

is positive.

Comment, p. 176, Theorem 9.1.1.5

As usual, ' $S \leq T^{\prime}$ means that $T-S$ is a non-negative matrix.
Comments, p. 177

- (9.1)

Consider $j \in\{1, \ldots, n\}$ and

$$
\frac{(T z)_{j}}{z_{j}}=\min \left\{\frac{(T z)_{i}}{z_{i}}: 1 \leq i \leq n \text { with } z_{i} \neq 0\right\} .
$$

Since $z \geq 0$ and, by definition, $T \geq 0$, it follows that $(T z)_{i} \geq 0$ for each $i \in\{1, \ldots n\}$. So, whatever i we choose,

$$
\frac{(T z)_{j}}{z_{j}} \cdot z_{i} \leq(T z)_{i}
$$

holds, even if $z_{i}=0$. Thus

$$
\frac{(T z)_{j}}{z_{j}} z \leq T z .
$$

Then $\{s: s z \leq T z\} \neq \varnothing$ and

$$
\frac{(T z)_{j}}{z_{j}}=\max \{s: s z \leq T z\} .
$$

In fact, suppose otherwise. Hence, there is a number s such that $T z \geq s z$ and $s>\frac{(T z)_{j}}{z_{j}}$. Therefore

$$
\begin{aligned}
(T z)_{j} & \geq s z_{j} \\
& >(T z)_{j}!
\end{aligned}
$$

- 1st sentence after (9.1)

Whenever convenient, as far as $L(z)$ is concerned, we may restrict our attention to the case where $z \in C$. As an example, a maximum value of L on C is, in fact, the maximum value of L on all of Q.

- 1. 4
${ }^{\prime}|\lambda| y_{i} \mid$ ' should be ${ }^{\prime}|\lambda|\left|y_{i}\right|^{\prime}$.
- Showing that $\lambda_{\max }\left(T^{\dagger}\right)=\lambda_{\max }(T)$.

This result is clearly correct since taking transpose does not change the eigenvalues of a matrix. However, in order to show that the result holds, the book's argument is made in such a way that it is also used for Proving the first two assertions in item 4 of the theorem., p. 179.

Comments/Errata/Suggestion, p. 179

- Proving the first two assertions in item 4 of the theorem.
- 1st paragraph
* The subjacent hypothesis is that w is as described on p. 178;
* At the very end, remove the extra 'then' in "... then then ...".
- 2nd paragraph Change ' $n-1$ ' to ' k '.
- last paragraph
* Concerning "If $\mu=\lambda_{\max }$ then $w^{\dagger}\left(T y-\lambda_{\max } y\right)=0$ but $T y-\lambda_{\max } y \leq 0 \ldots$ ". only ' $T y-\lambda_{\max } y \leq$ 0^{\prime} comes from the hypothesis ' $\mu=\lambda_{\max }{ }^{\prime}$, whereas ' $w^{\dagger}\left(T y-\lambda_{\max } y\right)=0^{\prime}$ has to do with the first displayed formula of p. 179;
* '4)' and ' 2)' should be ' 4 .'and '2.'.
- In order to maintain the notation compatible with Theorem 9.1.1.6 and p. 180, in the last two paragraphs,

$$
\text { ' } T_{i}^{\prime} \text { and ' } \Lambda_{i} \text { ' should be ' } T_{(i)} \text { ' and ' } \Lambda_{(i)} \text { '. }
$$

Comments/Erratum, p. 180

- 1st displayed formula

See $\lambda I-T$ as a parametric curve with parameter λ, det as a real function of n^{2} real variables and $\operatorname{det}(\lambda I-$ $T)$ as the composite function (det o curve) (λ). Therefore

$$
\begin{aligned}
\frac{d}{d \lambda} \operatorname{det}(\lambda I-T) & =\nabla \operatorname{det}(\lambda I-T) \cdot \frac{d}{d \lambda} \operatorname{curve}(\lambda) \\
& =\nabla \operatorname{det}(\lambda I-T) \cdot I
\end{aligned}
$$

where both factors can be seen as vectors in $\mathbb{R}^{n^{2}}$. Furthermore, notice that

$$
(\nabla \operatorname{det}(\lambda I-T))_{i i}=\frac{\partial}{\partial \lambda_{i}} \operatorname{det}(\lambda I-T)
$$

for each $i=1, \ldots, n$.

- Showing that $\lambda_{\max }$ has algebraic (and hence geometric) multiplicity one.
- 1st sentence

Since T is an $n \times n$ matrix, if $\lambda_{i, 1}, \ldots, \lambda_{i, n-1}$ are the eigenvalues of $T_{(i)}$ and $j \in\{1, \ldots, n-1\}$, then:

* $\left|\lambda_{i, j}\right|<\lambda_{\max }$ by Theorem 9.1.1.6;
* $\operatorname{det}\left(\lambda I-T_{(i)}\right)=\prod_{j=1}^{n-1}\left(\lambda-\lambda_{i, j}\right)^{n_{j}}$, where n_{j} is a positive integer which depends on $\lambda_{i, j}$.

Therefore, since the roots of a polynomial with real coefficients occur in conjugate pairs,

$$
\operatorname{det}\left(\lambda_{\max } I-T_{(i)}\right)>0
$$

- '2)' should be '2.' ${ }^{17}$
- Proof of the last assertion of the theorem., 1st sentence

Clearly, $T^{k} y=\lambda^{k} y$ if $T y=\lambda y$.

Errata, p. 181

- 1.2

A period is missing right after ' x ';

- 1. -6

A double apostrophe is missing right after ' v_{j} '.

Comment/Erratum, p. 182

- Paths and powers., 2nd paragraph
(The result follows by induction on ℓ.) The case $\ell=1$ is trivial. Now suppose that the result holds for some $\ell>1$, so that the entries of A^{ℓ} are as claimed. Consider any path of lenght $\ell+1$ from v_{j} to v_{i}. Hence there is an adjacent vertex, v_{k}, to v_{i} on this path. Delete v_{i}. So the remaining path is a path of lenght ℓ from v_{k} to v_{j}. By induction, the number of such paths is given by $\left(A^{\ell}\right)_{k j}$. On the other hand, each such v_{k} corresponds to a 1 for $A_{i k}$. Now consider

$$
\begin{aligned}
\left(A^{\ell+1}\right)_{i j} & =\left(A A^{\ell}\right)_{i j} \\
& =\sum_{k=1}^{n} A_{i k}\left(A^{\ell}\right)_{k j}
\end{aligned}
$$

with A of order n.
-9.2.2, 1. 6
'postive' should be 'positive'.
Comments/Erratum, p. 183

- 2nd paragraph, 1st sentence, "The paths ... have total lengths at most $3(n-1) . "$

In fact, $V=\left\{v_{1}, \ldots, v_{n}\right\}$.

- Proof of the lemma.

- Concerning the equivalence ' \Longleftrightarrow ', it may seem that the ' \Longrightarrow ' part does not hold for $i \geq b$. However, since j is an arbitrary non-negative integer, we may consider $j=\alpha a+\beta$ with α and β non-negative integers. Therefore, for $i=r$ with $0 \leq r<b$,

$$
\begin{aligned}
n & =r a+(\alpha a+\beta) b \\
& =(\alpha b+r) a+\beta b .
\end{aligned}
$$

- Before the last sentence, in "... mod b, So ..." , the comma should be a period.
- The Frobenius form of an irreducible non-primitive matrix.
- $C_{i} \neq \varnothing \forall i$.

In fact, consider $u_{0}=v$. Since irreducibility is equivalent to strong connectedness, there is a path joining u_{0} to u_{0}. Call it u_{0}-cycle. By the definition of p, the length of u_{0}-cycle is an integer multiple of p. Then $u_{0} \in C_{0}$. Now consider $u_{1} \neq u_{0}$ on u_{0}-cycle such that u_{1} is adjacent to u_{0}. Specifically, suppose that u_{1} goes to u_{0}. Clearly $u_{1} \in C_{1}$. Next consider $u_{2} \notin\left\{u_{0}, u_{1}\right\}$ on u_{0}-cycle such that u_{2} is adjacent to u_{1}. (Notice that u_{2} goes to u_{1}.) Clearly $u_{2} \in C_{2}$. Similar reasoning shows that $u_{3} \in C_{3}, \ldots, u_{p-1} \in C_{p-1}$.

[^9]- Concerning the first sentence after the definition of C_{i}, suppose there is a vertex $u \in C_{i_{1}} \cap C_{i_{2}}$ with $i_{1} \neq i_{2}$. Hence there are two paths from u to v of lengths n_{1} and n_{2} with

$$
\begin{equation*}
n_{j} \equiv i_{j} \quad \bmod p, \quad j=1,2 \tag{*}
\end{equation*}
$$

On the other hand, since A is irreducible, there is a path of length n joining v to u. Now, if we combine each one of the paths joining u to v with the path joining v to u, by the definition of p, we get two cycles of lengths

$$
n_{j}+n \equiv 0 \quad \bmod p, \quad j=1,2
$$

Therefore

$$
n_{1} \equiv n_{2} \quad \bmod p
$$

which is a contradiction since the remainders on dividing n_{1} and n_{2} by p are i_{1} and i_{2}, respectively, by (${ }^{*}$).

- If $u \in C_{0}$, there is no path of length 0 from u to v. In fact, there is no cycle of length 0 by the definition of p !

Comment, pp. 183-4, The Frobenius form of an irreducible non-primitive matrix., from "This means ..." on Let (u, w) be the first edge in a path from u to v. By the convention for edges, p. 181, the edge goes from $u=v_{j}$ to $w=v_{i}$ with $A_{i j} \neq 0$. Then u is related to the j-th column of A, whereas w is related to the i-th row of A. Therefore, after relabeling the vertices as required on $p .183$, the vertices in C_{k} are related to consecutive columns of $P A P^{-1}, k=0, \ldots, p-1$. So let us analyze the $p=4$ example (since it explains the general case) where C_{k} is related to $A_{k}, k=1,2,3$, and

$$
C_{0}=\left\{v_{1}, \ldots, v_{\#\left(C_{0}\right)}\right\}
$$

is related to A_{4}.

- First, $\left(P A P^{-1}\right)_{1 j}=0, j=1, \ldots, \#\left(C_{0}\right)$. In fact, suppose otherwise. Hence there exists such an index j for which $\left(v_{j}, v_{1}\right)$ is an edge. However, since $v_{1} \in C_{0}$, there is a path of length

$$
n \equiv 0 \quad \bmod p
$$

from v_{1} to v. So there is a path of length

$$
n+1 \equiv 1 \quad \bmod p
$$

from v_{j} to v. Then $v_{j} \in C_{0} \cap C_{1}$, which is a contradiction since $C_{0} \cap C_{1}=\varnothing$.

- Second, as in the previous case, if $i \in\left\{2, \ldots, \#\left(C_{0}\right)\right\}$, then $\left(P A P^{-1}\right)_{i j}=0, j=1,2, \ldots, \#\left(C_{0}\right)$.

So the first $\#\left(C_{0}\right)$ rows of $P A P^{-1}$ rule out the elements of C_{0} as ending vertices of edges whose starting vertices are such elements. Therefore A_{4} is the bottom left block of $P A P^{-1}$.

- Finally, similar arguments show that A_{k} is where it should be, $k=1,2,3$, once that the $\left[n-\left(\#\left(C_{0}\right)\right)\right] \times$ [$\left.n-\left(\#\left(C_{0}\right)\right)\right]$ bottom right block of $P A P^{-1}$ is null. In fact, suppose otherwise. Therefore we get to $C_{k} \cap C_{\ell} \neq \varnothing$ for some $\ell \neq k!$

Right from the beginning of the previous analysis, the use of $P A P^{-1}$ is an abuse of notation since the block decomposition, which can be written as $P A P^{-1}$, is obtained as the conclusion of the preceding arguments.

Now let s be the size of a matrix A. If \wp is a permutation of $S=\{1, \ldots, s\}$, there is a permutation matrix P associated to \wp. In fact,

$$
P=\sum_{i=1}^{s} e_{\wp(i) i}
$$

where the i-th term of the sum is the unit matrix which has a 1 in the $\wp(i), i$ position as its only nonzero entry, $i=1, \ldots, s$. Left multiplication by P permutes the entries of a column vector X using \wp. For example, if $s=3$,

i	1	2	3
$\wp(i)$	2	3	1

and

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],
$$

then

$$
\begin{aligned}
P & =e_{\wp(1) 1}+e_{\wp(2) 2}+e_{\wp(3) 3} \\
& =e_{21}+e_{32}+e_{13} \\
& =\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
P X & =\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right] \\
& =x_{3} e_{1}+x_{1} e_{2}+x_{2} e_{3} \\
& =x_{3} e_{\wp(3)}+x_{1} e_{\wp(1)}+x_{2} e_{\wp(2)} .
\end{aligned}
$$

As a matter of fact, whatever s and \wp we consider,

$$
\begin{aligned}
P X & =\left(\sum_{i=1}^{s} e_{\wp(i) i}\right)\left(\sum_{j=1}^{s} x_{j} e_{j}\right) \\
& =\sum_{i, j=1}^{s} x_{j} e_{\wp(i) i} e_{j} \\
& =\sum_{i=1}^{s} x_{i} e_{\wp(i) i} e_{i} \\
& =\sum_{i=1}^{s} x_{i} e_{\wp(i)}
\end{aligned}
$$

since, whenever possible,

$$
e_{i j} e_{k}=\left\{\begin{array}{cc}
e_{i} & \text { if } j=k ; \\
0 & \text { if } j \neq k .
\end{array}\right.
$$

On the other hand, it is a well-known fact that $P^{-1}=P^{t}$. Hence, concerning $P A P^{-1}$, not only P acts on each column of A in the same way as \wp acts on S, but also P^{t} acts on each row of $P A$ as if it were a permutation of indices. In fact, right multiplication by P^{t} permutes the entries of an arbitrary $1 \times s$ row vector Y since

$$
\begin{aligned}
Y P^{t} & =X^{t} P^{t} \\
& =(P X)^{t}
\end{aligned}
$$

if $X=Y^{t}$. The relabeling related to

$$
\bigcup_{k=0}^{p-1} C_{k}
$$

turns out to be a permutation \wp with associated permutation matrix P such that, by construction, $P A P^{-1}$ is in the block form as previously described.

Comment, p. 184, last paragraph before Proposition 9.2.1, 1 st sentence
Consider $D=D(i)^{k}, E=D(i+1)^{k}$ and $T=(R S)^{k-1} R$. Hence

$$
D=S T \text { and } E=T S .
$$

Furthermore, $d_{i j}=\sum_{k} s_{i k} t_{k j}$ is the (i, j)-entry of D, where $s_{i k}$ and $t_{k j}$ are entries of S and T, respectively, and a similar representation holds for an arbitrary entry of E. Therefore,

$$
\begin{aligned}
\operatorname{trace}(D) & =\sum_{i} d_{i i} \\
& =\sum_{i} \sum_{k} s_{i k} t_{k i} \\
& =\sum_{i} \sum_{k} t_{k i} s_{i k} \\
& =\sum_{k} \sum_{i} t_{k i} s_{i k} \\
& =\sum_{k} e_{k k} \\
& =\operatorname{trace}(E) .
\end{aligned}
$$

Comments/Errata, pp. 185-6, 9.3

- 1st paragraph
- For the existence of y, see Showing that $\lambda_{\max }\left(T^{\dagger}\right)=\lambda_{\max }(T) .$, p. 178. Hence, if $A=T$, then $r=\eta$. Now consider $y=w^{\dagger}$.
- A ' $)^{\prime}$ is missing right after the word 'number'.
$-y \cdot x=\alpha>0$. If $\alpha \neq 1$, then $\left(\alpha^{-1} y\right) \cdot x=1$.
- 2nd paragraph
- 1st sentence
* For $A n \times n, R$ is the column space of

$$
\begin{aligned}
x \otimes y^{+} & :=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{n} \\
\vdots & \cdots & \vdots \\
x_{n} y_{1} & \cdots & x_{n} y_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
y_{1} x & \cdots & y_{n} x
\end{array}\right]
\end{aligned}
$$

* $H^{2}=H$ follows immediately from the definition of outer product, along with the assumption that $y \cdot x=1 .{ }^{18}$
- 2nd sentence

In fact, $H(I-H)=0$.

- 3rd sentence

Change y to y^{\dagger}.

- 4th and 5th sentences
* They are, in fact, the same sentence. Delete one of them!

[^10]* R and N are invariant under A. In fact, on the one hand, let $u \in R$. Hence $u=s x$ where s is a scalar. Then

$$
\begin{aligned}
A u & =s A x \\
& =(s r) x \in R .
\end{aligned}
$$

On the other hand, let $v \in N$. Thus $H v=0$. So

$$
\begin{aligned}
H A v & =A H v \\
& =0 .
\end{aligned}
$$

Therefore $A v \in N$.

- 3rd paragraph, 1st sentence, 1st clause

In fact, consider the Perron-Frobenius theorem. ${ }^{19}$

- Theorem 9.3.1.

It means that, eventually, the k-iterate of a typical starting vector concerning the iteration matrix P, say $P^{k} v_{0}$ for k large enough, will lie in the direction of the positive eigenvector x associated with $\lambda_{\max }=r$.

Comment, p. 188, An imprimitive Leslie matrix

L is not primitive since its natural powers have one of the following forms:

$$
\left(\begin{array}{lll}
0 & 0 & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right),\left(\begin{array}{lll}
0 & * & 0 \\
0 & 0 & * \\
* & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) .
$$

Comment, p. 189, 9.5

- 1st paragraph

Let $T, \lambda_{\max }$ and x be as in Theorem 9.1.1. Therefore, if $M=T$, since $\mathbf{1}$ is a multiple of $x,{ }^{20}$ it follows that

$$
\begin{aligned}
M x=\lambda_{\max } x & \Longrightarrow M(\alpha \mathbf{1})=\lambda_{\max }(\alpha \mathbf{1}) \\
& \Longrightarrow M \mathbf{1}=\lambda_{\max } \mathbf{1} \\
& \Longrightarrow \lambda_{\max }=1 .
\end{aligned}
$$

- 2nd paragraph

Consider

$$
\mathbf{p}^{+}=\left[\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{n}
\end{array}\right]
$$

such that

$$
\mathbf{p} M=\mathbf{p}
$$

Without loss of generality, suppose

$$
\sum_{i=1}^{n} \pi_{i}=1
$$

(If $\sum_{1}^{n} \pi_{i}=\pi$, replace \mathbf{p} by $\mathbf{q}=\frac{1}{\pi} \mathbf{p}$.) Therefore, by Theorem 9.3.1,

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(\frac{1}{1} M^{k}\right) & =\mathbf{1} \otimes \mathbf{p} \\
& =\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{lll}
\pi_{1} & \cdots & \pi_{n}
\end{array}\right] .
\end{aligned}
$$

[^11]
Errata, p. 190, 9.6.2

- 2nd paragraph, 2nd sentence
"... is dangling row ..." should be "... is a dangling row ...";
- Last sentence "... dangling mode ..." should be "... dangling node ...".

10

Erratum, p. 200, Non-real eigenvalues
Concerning the diagonal of $A, 0$ should be a.

Comment, p. 202, variation of constants formula

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-t H} x(t)\right) & =-H e^{-t H} x(t)+e^{-t H} \frac{d}{d t} x(t) \\
& =-H e^{-t H} x(t)+e^{-t H}(H x(t)+f(t)) \\
& =e^{-t H} f(t)
\end{aligned}
$$

since $H e^{-t H}=e^{-t H} H$. Therefore

$$
e^{-t H} x(t)-x_{0}=\int_{0}^{t} e^{-s H} f(s) d s
$$

Now multiply both sides of this equation by $e^{t H}$.

Comment, p. 211, (10.6)

$$
\begin{aligned}
\dot{y} & =\ddot{x}+\frac{d}{d t} F(x) \\
& =-f(x) \dot{x}-x+\dot{x} \frac{d}{d x} F(x) \\
& =-x
\end{aligned}
$$

since $\frac{d}{d x} F(x)=f(x)$ by property a. of f.

[^0]: ${ }^{1}$ Also, see $\phi^{\prime}(x)$, Step VI.

[^1]: ${ }^{2}$ See p. 26, 1.4.6.
 ${ }^{3}$ See the discussion around (2.10), p. 57.

[^2]: ${ }^{4}$ Draw a graph illustrating the situation!
 ${ }^{5}$ Note that $I_{0} \cup I_{1}=[a, c]$.
 ${ }^{6}$ See p. 64, 1. -10.

[^3]: ${ }^{7}$ Notice that, if that inclusion holds, then the last line of the p. 69 means that $g(L)=g(R)$ equals either L or R - one point is fixed and the other is eventually fixed!
 ${ }^{8}$ As a matter of fact, almost all the terms $g\left(L_{n}\right)$ are not in (L, R).

[^4]: ${ }^{10}$ For a probability space, $\mu(X)=1$.

[^5]: ${ }^{11}$ In fact, since $d(\overline{\{x\}}, \overline{\{y\}})=d(x, y), d(\overline{\{x\}}, \overline{\{y\}})<r$ whenever $d(x, y)<r$.
 ${ }^{12}$ The basic idea to prove that the sequence is Cauchy is based on

 $$
 \begin{aligned}
 \left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| & =\left|d\left(x_{n}, y_{n}\right)-d\left(y_{n}, x_{m}\right)+d\left(y_{n}, x_{m}\right)-d\left(x_{m}, y_{m}\right)\right| \\
 & \leq\left|d\left(x_{n}, y_{n}\right)-d\left(y_{n}, x_{m}\right)\right|+\left|d\left(y_{n}, x_{m}\right)-d\left(x_{m}, y_{m}\right)\right| \\
 & \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right),
 \end{aligned}
 $$

 which follows from

 $$
 |d(x, z)-d(z, y)| \leq d(x, y) \Longleftrightarrow d(x, z)-d(y, z) \leq d(x, y), d(y, z)-d(x, z) \leq d(y, x) .
 $$

[^6]: ${ }^{13}$ See ADVANCED CALCULUS (revised edition) by Lynn H. Loomis and Shlomo Sternberg, Theo. 7.4, p. 149.
 ${ }^{14}$ For later use in Chapter 8, call it MVT.

[^7]: ${ }^{15}$ See the Proof of Theorem 6.3.1, p. 135.

[^8]: ${ }^{16}$ Consider $r^{\prime}<r, V^{\prime}:=h\left(\overline{B_{r^{\prime}}}\right)$ and the appropriate restriction of h

[^9]: ${ }^{17}$ See Theorem 9.1.1.2.

[^10]: ${ }^{18}$ In fact,

 $$
 \begin{aligned}
 \left(x \otimes y^{\dagger}\right)\left(x \otimes y^{\dagger}\right) & =x y x y \\
 & =x y \\
 & =x \otimes y^{\dagger} .
 \end{aligned}
 $$

[^11]: ${ }^{19}$ Specifically, Theorem 9.1.1.7.
 ${ }^{20}$ See Theorem 9.1.1.3.

