UNIVERSIDADE FEDERAL DO PARANÁ

Department of Mathematics

1st List of Exercises - Functional Analysis

- 1. Consider $1 \le p < \infty$ and the function $\|\cdot\|_p : \mathcal{C}[0,1] \longrightarrow \mathbb{R}$ given by $\|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}}$, for all $f \in \mathcal{C}[0,1]$. Show that $||\cdot||_p$ is a norm in $\mathcal{C}[0,1]$.
- 2. Show that $(\mathcal{C}[0,1], \|\cdot\|_n)$ is not complete.
- 3. For $f \in \mathcal{C}(\mathbb{R})$, consider the set $A(f) = \{x \in \mathbb{R} | f(x) \neq 0\}$ and define the support of f (denoted by supp(f)) as $supp(f) = \overline{A(f)}$. Let $\mathcal{C}_c(\mathbb{R})$ be the space of all continuous real valued functions on \mathbb{R} whose support is a compact subset of \mathbb{R} . Show that is a normed linear space with the sup-norm and that it is not complete.
- 4. Let $\mathcal{C}_0(\mathbb{R})$ be the space of all continuous real valued functions on \mathbb{R} which vanish at infinity, i e if $f \in \mathcal{C}_0(\mathbb{R})$ then for all $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset \mathbb{R}$ such that $|f(x)| < \varepsilon$, for all $x \in K_{\varepsilon}^c$. Show that $\mathcal{C}_0(\mathbb{R})$ is a Banach space with the *sup-norm*. Also, show that $\mathcal{C}_c(\mathbb{R})$ is dense in $\mathcal{C}_0(\mathbb{R})$.
- 5. Let $C^1[0,1]$ be the space of all continuous real valued functions on [0,1] which are continuously differentiable on (0,1) and whose derivatives can be continuously extended to [0,1]. For $f \in C^1[0,1]$, define $||f||_* = \max_{x \in [0,1]} \{|f(x)|, |f'(x)|\}$. Show that $(C^1[0,1], ||\cdot||_*)$ is a Banach space. State and prove an analogous result for $C^k[0,1]$.

6. For
$$f \in \mathcal{C}^{1}[0,1]$$
, define $||f||_{1} = \left(\int_{0}^{1} (|f(x)|^{2} + |f'(x)|^{2}) dx\right)^{\frac{1}{2}}$. Show that $||\cdot||_{1}$ defines a norm on $\mathcal{C}^{1}[0,1]$.
The expression $|f|_{1} = \left(\int_{0}^{1} |f'(x)|^{2} dx\right)^{\frac{1}{2}}$ defines a norm on $\mathcal{C}^{1}[0,1]$?

- 7. Let $V = \{f \in C^1[0,1] | f(0) = 0\}$. Show that $|\cdot|_1$ defines a norm on V.
- 8. Let V be a Banach space with norm $\|\cdot\|_{V}$ and $X = \mathcal{C}([0,1];V)$ the space of all continuous functions from [0,1] into V. For $f \in X$, define $\|f\|_{X} = \max_{x \in [0,1]} \|f(x)\|_{V}$. Show that $\|\cdot\|_{X}$ is well defined and it is a norm on X. Also, show that $(X, \|\cdot\|_{X})$ is a Banach space.
- 9. Let $\mathcal{C}^1[0,1]$ be endowed with the norm $\|\cdot\|_*$ and $f \in \mathcal{C}[0,1]$ be endowed with the usual *sup-norm*. Show that $T: \mathcal{C}^1[0,1] \longrightarrow \mathcal{C}[0,1]$ given by T(f) = f', is a continuous linear transformation and $\|T\| = 1$.
- 10. Let $\mathcal{C}[0,1]$ be endowed with its usual norm. For $f \in \mathcal{C}[0,1]$, define $T(f(t)) = \int_0^t f(s) ds$, $t \in [0,1]$. For every $n \in \mathbb{N}$, evaluate $||T^n||$.

- 11. Let $T : \mathcal{C}_{c}(\mathbb{R}) \longrightarrow \mathbb{R}$ given by $T(f(t)) = \int_{-\infty}^{\infty} f(t) dt$. Show that T is well defined and that it is a linear functional on $\mathcal{C}_{c}(\mathbb{R})$. Is T continuous?
- 12. Let $\{t_i\}_{i=1}^n$ be given points in the closed interval [0,1] and let $\{\alpha_i\}_{i=1}^n$ be given real numbers. For $f \in \mathcal{C}[0,1]$ define $T(f) = \sum_{i=1}^n \alpha_i f(t_i)$. Show that T is a continuous linear functional on $\mathcal{C}[0,1]$ and evaluate ||T||.
- 13. Let $M_{n \times n}(\mathbb{C})$ be the linear space of the $n \times n$ complex matrices and let $\|\cdot\|_{p,n}$ denote the matrix norm induced by the vector norm $\|\cdot\|_p$ on \mathbb{C}^n , for $1 \le p \le \infty$. If $\mathbf{A} = (a_{ij}) \in M_{n \times n}(\mathbb{C})$ show that $\|\mathbf{A}\|_{1,n} = \max_{1 \le j \le n} \left\{ \sum_{i=1}^n |a_{ij}| \right\}$. State and prove an analogous result for $\|\mathbf{A}\|_{\infty,n}$.
- 14. Show that, for any matrix $\mathbf{A} \in M_{n \times n}(\mathbb{C})$, it holds $\|\mathbf{A}\|_{2,n} \le \|\mathbf{A}\|_{E} \le \sqrt{n} \|\mathbf{A}\|_{2,n}$, where $\|\mathbf{A}\|_{E} = \left\{\sum_{i,j=1}^{n} |a_{ij}|^{2}\right\}^{2}$.
- 15. Let $1 \le p < q \le \infty$. Show that $\ell^p \subset \ell^q$, and that, for all $x \in \ell^p$, $\|x\|_q \le \|x\|_p$.
- 16. Let V be a Banach space and let $\{T_n\}$ be a sequence of continuous linear operators on V. Define $S_n = \sum_{k=1}^n T_k$. If $\{S_n\}$ is a convergent sequence in $\mathcal{B}(V)$, we say that the series $\sum_{k=1}^{\infty} T_k$ is convergent and the limit of the sequence $\{S_n\}$ is called the sum of the series. If $\sum_{k=1}^{\infty} ||T_k|| < \infty$, we say that the series $\sum_{k=1}^{\infty} T_k$ is absolutely convergent. Show that any absolutely convergent series is convergent.
- 17. Let V be a Banach space. If $T \in \mathcal{B}(V)$ is such that ||T|| < 1, show that the series $I + \sum_{k=1}^{\infty} T^k$ is convergent and that its sum is $(I T)^{-1}$.
- 18. (a) Let V be a Banach space and let $T \in \mathcal{B}(V)$. Show that the series $I + \sum_{k=1}^{\infty} \frac{T^k}{k!}$ is convergent. The sum is denoted $\exp(T)$.
 - (b) If $T, S \in \mathcal{B}(V)$ are such that TS = ST, show that $\exp(T + S) = \exp(T) \exp(S)$.
 - (c) Deduce that $\exp(T)$ is invertible for any $T \in \mathcal{B}(V)$.
 - (d) Let $A = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$, where α and β are real numbers. Show that, for any $t \in \mathbb{R}$,

$$\exp(tA) = e^{\alpha t} \begin{bmatrix} \cos \beta t & -\sin \beta t \\ \sin \beta t & \cos \beta t \end{bmatrix}$$

19. Let V be a Banach space. Show that \mathcal{G} , the set of invertible linear operators in $\mathcal{B}(V)$ is an open subset of $\mathcal{B}(V)$ (endowed with its usual norm topology).

- 20. Define $T, S : \ell^2 \longrightarrow \ell^2$ by $T(x) = (0, x_1, x_2, \cdots)$ and $S(x) = (x_2, x_3, \cdots)$, for all $x = (x_1, x_2, \cdots) \in \ell^2$. Show that T and S define continuous linear operators on ℓ^2 and that ST = I while $TS \neq I$ (Thus, T and S, which are called the *right* and *left shift operators* respectively, are not invertible.)
- 21. Let \mathcal{P} be the space of all polynomials in one variable with real coefficients. For $p(x) = \sum_{i=1}^{n} a_i x \in \mathcal{P}$, define

 $\|p\|_{1} = \sum_{i=1}^{n} |a_{i}| \text{ and } \|p\|_{\infty} = \max_{1 \le i \le n} |a_{i}|. \text{ Show that } \|\cdot\|_{1} \text{ and } \|\cdot\|_{\infty} \text{ define norms on } \mathcal{P} \text{ and that they are not equivalent.}$

- 22. Let V be a normed linear space and let W be a finite dimensional subspace of V. Show that, for all $v \in V$, there exists $w \in W$ such that ||v + W|| = ||v + w||.
- 23. Let V and W be normed linear spaces and let $U \subset V$ be an open subset. Let $J : U \longrightarrow W$ be a mapping. We say that J is *(Fréchet) differentiable* at $u \in U$ if there exists $T \in \mathcal{B}(V, W)$ such that

$$\lim_{h \to 0} \frac{\|J(u+h) - J(u) - T(h)\|}{\|h\|} = 0$$

(Equivalently, $J(u+h) - J(u) - T(h) = \varepsilon(h)$, with $\lim_{h \to 0} \frac{\|\varepsilon(h)\|}{\|h\|} = 0$.)

(a) If such a T exists, show that it is unique. (We say that T is the *(Fréchet) derivative* of J at $u \in U$ and write T = J'(u).)

(b) If J is differentiable at $u \in U$, show that J is continuous at $u \in U$.

- 24. Let V and W be normed linear spaces and let $U \subset V$ be an open subset. Let $J: U \longrightarrow W$ be a mapping. We say that J is *Gâteau differentiable* at $u \in U$ along a vector $w \in V$ if $\lim_{t\to 0} \frac{J(u+tw) - J(u)}{t}$ exists. (We call the limit the *Gâteau derivative* of J at u along w.) Show that if J is Fréchet differentiable at $u \in U$ then J is Gâteau differentiable at u along any vector $w \in V$ and the corresponding Gâteau derivative is given by J'(u)w.
- 25. Let V and W be normed linear spaces and $T \in \mathcal{B}(V, W)$ and $w_0 \in W$ be given. Define $J: V \longrightarrow W$ by $J(u) = T(u) + w_0$. Show that J is differentiable at every $u \in V$ and J'(u) = T.
- 26. (a) Let V be a real normed linear space and let $J: V \longrightarrow \mathbb{R}$ be a given mapping. A subset $K \subset V$ is said to be *convex* ir, for every u and $v \in K$ and for all $t \in [0,1]$ we have that $tu + (1-t)v \in K$. Let $K \subset V$ be a closed convex set. Assume that J attains its minimum over K at $u \in K$. If J is differentiable at u, show that $J'(u)(v-u) \ge 0$, for all $v \in K$.

(b) Let
$$K = V$$
. If J attains its minimum at $u \in V$ and if J is differentiable at u, show that $J'(u) = 0$.

27. Let V be a real normed linear space. A mapping $J: V \longrightarrow \mathbb{R}$ is said to be *convex* if, for every $u, v \in V$ and for every $t \in [0, 1]$, we have $J(tu + (1 - t)v) \leq tJ(u) + (1 - t)J(v)$.

(a) If $J: V \longrightarrow \mathbb{R}$ is convex and differentiable at every point, show that $J(v) - J(u) \ge J'(u)(v-u)$, for every $u, v \in V$.

(b) Let $J: V \longrightarrow \mathbb{R}$ be convex and differentiable at every point of V. Let $K \subset V$ be a closed convex set. Let $u \in K$ be such that $J'(u)(v-u) \ge 0$, for every $v \in K$. Show that $J(u) = \min J(v)$.

(c) If $J: V \longrightarrow \mathbb{R}$ is convex and differentiable at every point of V and if $u \in V$ is such that $J'(u) = \mathbf{0}$, show that J attains its minimum (over all of V) at u.