UNIVERSIDADE FEDERAL DO PARANÁ

Department of Mathematics

1st List of Exercises - Functional Analysis

1. Consider $1 \leq p<\infty$ and the function $\|\cdot\|_{p}: \mathcal{C}[0,1] \longrightarrow \mathbb{R}$ given by $\|f\|_{p}=\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{\frac{1}{p}}$, for all $f \in \mathcal{C}[0,1]$. Show that $\|\cdot\|_{p}$ is a norm in $\mathcal{C}[0,1]$.
2. Show that $\left(\mathcal{C}[0,1],\|\cdot\|_{p}\right)$ is not complete.
3. For $f \in \mathcal{C}(\mathbb{R})$, consider the set $A(f)=\{x \in \mathbb{R} \mid f(x) \neq 0\}$ and define the support of f (denoted by $\operatorname{supp}(f))$ as $\operatorname{supp}(f)=\overline{A(f)}$. Let $\mathcal{C}_{c}(\mathbb{R})$ be the space of all continuous real valued functions on \mathbb{R} whose support is a compact subset of \mathbb{R}. Show that is a normed linear space with the sup-norm and that it is not complete.
4. Let $\mathcal{C}_{0}(\mathbb{R})$ be the space of all continuous real valued functions on \mathbb{R} which vanish at infinity, ie if $f \in \mathcal{C}_{0}(\mathbb{R})$ then for all $\varepsilon>0$ there exists a compact set $K_{\varepsilon} \subset \mathbb{R}$ such that $|f(x)|<\varepsilon$, for all $x \in K_{\varepsilon}^{c}$. Show that $\mathcal{C}_{0}(\mathbb{R})$ is a Banach space with the sup-norm. Also, show that $\mathcal{C}_{c}(\mathbb{R})$ is dense in $\mathcal{C}_{0}(\mathbb{R})$.
5. Let $\mathcal{C}^{1}[0,1]$ be the space of all continuous real valued functions on $[0,1]$ which are continuously differentiable on $(0,1)$ and whose derivatives can be continuously extended to $[0,1]$. For $f \in \mathcal{C}^{1}[0,1]$, define $\|f\|_{*}=$ $\max \left\{|f(x)|,\left|f^{\prime}(x)\right|\right\}$. Show that $\left(\mathcal{C}^{1}[0,1],\|\cdot\|_{*}\right)$ is a Banach space. State and prove an analogous result $x \in[0,1]$ for $\mathcal{C}^{k}[0,1]$.
6. For $f \in \mathcal{C}^{1}[0,1]$, define $\|f\|_{1}=\left(\int_{0}^{1}\left(|f(x)|^{2}+\left|f^{\prime}(x)\right|^{2}\right) d x\right)^{\frac{1}{2}}$. Show that $\|\cdot\|_{1}$ defines a norm on $\mathcal{C}^{1}[0,1]$. The expression $|f|_{1}=\left(\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}$ defines a norm on $\mathcal{C}^{1}[0,1]$?
7. Let $V=\left\{f \in \mathcal{C}^{1}[0,1] \mid f(0)=0\right\}$. Show that $|\cdot|_{1}$ defines a norm on V.
8. Let V be a Banach space with norm $\|\cdot\|_{V}$ and $X=\mathcal{C}([0,1] ; V)$ the space of all continuous functions from $[0,1]$ into V. For $f \in X$, define $\|f\|_{X}=\max _{x \in[0,1]}\|f(x)\|_{V}$. Show that $\|\cdot\|_{X}$ is well defined and it is a norm on X. Also, show that $\left(X,\|\cdot\|_{X}\right)$ is a Banach space.
9. Let $\mathcal{C}^{1}[0,1]$ be endowed with the norm $\|\cdot\|_{*}$ and $f \in \mathcal{C}[0,1]$ be endowed with the usual sup-norm. Show that $T: \mathcal{C}^{1}[0,1] \longrightarrow \mathcal{C}[0,1]$ given by $T(f)=f^{\prime}$, is a continuous linear transformation and $\|T\|=1$.
10. Let $\mathcal{C}[0,1]$ be endowed with its usual norm. For $f \in \mathcal{C}[0,1]$, define $T(f(t))=\int_{0}^{t} f(s) d s, \quad t \in[0,1]$. For every $n \in \mathbb{N}$, evaluate $\left\|T^{n}\right\|$.
11. Let $T: \mathcal{C}_{c}(\mathbb{R}) \longrightarrow \mathbb{R}$ given by $T(f(t))=\int_{-\infty}^{\infty} f(t) d t$. Show that T is well defined and that it is a linear functional on $\mathcal{C}_{c}(\mathbb{R})$. Is T continuous?
12. Let $\left\{t_{i}\right\}_{i=1}^{n}$ be given points in the closed interval $[0,1]$ and let $\left\{\alpha_{i}\right\}_{i=1}^{n}$ be given real numbers. For $f \in \mathcal{C}[0,1]$ define $T(f)=\sum_{i=1}^{n} \alpha_{i} f\left(t_{i}\right)$. Show that T is a continuous linear functional on $\mathcal{C}[0,1]$ and evaluate $\|T\|$.
13. Let $M_{n \times n}(\mathbb{C})$ be the linear space of the $n \times n$ complex matrices and let $\|\cdot\|_{p, n}$ denote the matrix norm induced by the vector norm $\|\cdot\|_{p}$ on \mathbb{C}^{n}, for $1 \leq p \leq \infty$. If $\mathbf{A}=\left(a_{i j}\right) \in M_{n \times n}(\mathbb{C})$ show that $\|\mathbf{A}\|_{1, n}=$ $\max _{1 \leq j \leq n}\left\{\sum_{i=1}^{n}\left|a_{i j}\right|\right\}$. State and prove an analogous result for $\|\mathbf{A}\|_{\infty, n}$.
14. Show that, for any matrix $\mathbf{A} \in M_{n \times n}(\mathbb{C})$, it holds $\|\mathbf{A}\|_{2, n} \leq\|\mathbf{A}\|_{E} \leq \sqrt{n}\|\mathbf{A}\|_{2, n}$, where $\|\mathbf{A}\|_{E}=\left\{\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right\}^{\frac{1}{2}}$.
15. Let $1 \leq p<q \leq \infty$. Show that $\ell^{p} \subset \ell^{q}$, and that, for all $x \in \ell^{p},\|x\|_{q} \leq\|x\|_{p}$.
16. Let V be a Banach space and let $\left\{T_{n}\right\}$ be a sequence of continuous linear operators on V. Define $S_{n}=\sum_{k=1}^{n} T_{k}$. If $\left\{S_{n}\right\}$ is a convergent sequence in $\mathcal{B}(V)$, we say that the series $\sum_{k=1}^{\infty} T_{k}$ is convergent and the limit of the sequence $\left\{S_{n}\right\}$ is called the sum of the series. If $\sum_{k=1}^{\infty}\left\|T_{k}\right\|<\infty$, we say that the series $\sum_{k=1}^{\infty} T_{k}$ is absolutely convergent. Show that any absolutely convergent series is convergent.
17. Let V be a Banach space. If $T \in \mathcal{B}(V)$ is such that $\|T\|<1$, show that the series $I+\sum_{k=1}^{\infty} T^{k}$ is convergent and that its sum is $(I-T)^{-1}$.
18. (a) Let V be a Banach space and let $T \in \mathcal{B}(V)$. Show that the series $I+\sum_{k=1}^{\infty} \frac{T^{k}}{k!}$ is convergent. The sum is denoted $\exp (T)$.
(b) If $T, S \in \mathcal{B}(V)$ are such that $T S=S T$, show that $\exp (T+S)=\exp (T) \exp (S)$.
(c) Deduce that $\exp (T)$ is invertible for any $T \in \mathcal{B}(V)$.
(d) Let $A=\left[\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]$, where α and β are real numbers. Show that, for any $t \in \mathbb{R}$,

$$
\exp (t A)=e^{\alpha t}\left[\begin{array}{cc}
\cos \beta t & -\sin \beta t \\
\sin \beta t & \cos \beta t
\end{array}\right]
$$

19. Let V be a Banach space. Show that \mathcal{G}, the set of invertible linear operators in $\mathcal{B}(V)$ is an open subset of $\mathcal{B}(V)$ (endowed with its usual norm topology).
20. Define $T, S: \ell^{2} \longrightarrow \ell^{2}$ by $T(x)=\left(0, x_{1}, x_{2}, \cdots\right)$ and $S(x)=\left(x_{2}, x_{3}, \cdots\right)$, for all $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}$. Show that T and S define continuous linear operators on ℓ^{2} and that $S T=I$ while $T S \neq I$ (Thus, T and S, which are called the right and left shift operators respectively, are not invertible.)
21. Let \mathcal{P} be the space of all polynomials in one variable with real coefficients. For $p(x)=\sum_{i=1}^{n} a_{i} x \in \mathcal{P}$, define $\|p\|_{1}=\sum_{i=1}^{n}\left|a_{i}\right|$ and $\|p\|_{\infty}=\max _{1 \leq i \leq n}\left|a_{i}\right|$. Show that $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ define norms on \mathcal{P} and that they are not equivalent.
22. Let V be a normed linear space and let W be a finite dimensional subspace of V. Show that, for all $v \in V$, there exists $w \in W$ such that $\|v+W\|=\|v+w\|$.
23. Let V and W be normed linear spaces and let $U \subset V$ be an open subset. Let $J: U \longrightarrow W$ be a mapping. We say that J is (Fréchet) differentiable at $u \in U$ if there exists $T \in \mathcal{B}(V, W)$ such that

$$
\lim _{h \rightarrow 0} \frac{\|J(u+h)-J(u)-T(h)\|}{\|h\|}=0
$$

(Equivalently, $J(u+h)-J(u)-T(h)=\varepsilon(h)$, with $\lim _{h \rightarrow 0} \frac{\|\varepsilon(h)\|}{\|h\|}=0$.)
(a) If such a T exists, show that it is unique. (We say that T is the (Fréchet) derivative of J at $u \in U$ and write $T=J^{\prime}(u)$.)
(b) If J is differentiable at $u \in U$, show that J is continuous at $u \in U$.
24. Let V and W be normed linear spaces and let $U \subset V$ be an open subset. Let $J: U \longrightarrow W$ be a mapping. We say that J is Gâteau differentiable at $u \in U$ along a vector $w \in V$ if $\lim _{t \rightarrow 0} \frac{J(u+t w)-J(u)}{t}$ exists. (We call the limit the Gâteau derivative of J at u along w.) Show that if J is Fréchet differentiable at $u \in U$ then J is Gâteau differentiable at u along any vector $w \in V$ and the corresponding Gâteau derivative is given by $J^{\prime}(u) w$.
25. Let V and W be normed linear spaces and $T \in \mathcal{B}(V, W)$ and $w_{0} \in W$ be given. Define $J: V \longrightarrow W$ by $J(u)=T(u)+w_{0}$. Show that J is differentiable at every $u \in V$ and $J^{\prime}(u)=T$.
26. (a) Let V be a real normed linear space and let $J: V \longrightarrow \mathbb{R}$ be a given mapping. A subset $K \subset V$ is said to be convex ir, for every u and $v \in K$ and for all $t \in[0,1]$ we have that $t u+(1-t) v \in K$. Let $K \subset V$ be a closed convex set. Assume that J attains its minimum over K at $u \in K$. If J is differentiable at u, show that $J^{\prime}(u)(v-u) \geq 0$, for all $v \in K$.
(b) Let $K=V$. If J attains its minimum at $u \in V$ and if J is differentiable at u, show that $J^{\prime}(u)=0$.
27. Let V be a real normed linear space. A mapping $J: V \longrightarrow \mathbb{R}$ is said to be convex if, for every $u, v \in V$ and for every $t \in[0,1]$, we have $J(t u+(1-t) v) \leq t J(u)+(1-t) J(v)$.
(a) If $J: V \longrightarrow \mathbb{R}$ is convex and differentiable at every point, show that $J(v)-J(u) \geq J^{\prime}(u)(v-u)$, for every $u, v \in V$.
(b) Let $J: V \longrightarrow \mathbb{R}$ be convex and differentiable at every point of V. Let $K \subset V$ be a closed convex set. Let $u \in K$ be such that $J^{\prime}(u)(v-u) \geq 0$, for every $v \in K$. Show that $J(u)=\min _{v \in K} J(v)$.
(c) If $J: V \longrightarrow \mathbb{R}$ is convex and differentiable at every point of V and if $u \in V$ is such that $J^{\prime}(u)=\mathbf{0}$, show that J attains its minimum (over all of V) at u.

