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Abstract

In this article, a large time stepping viscosity-splitting scheme is considered
for the viscoelastic flows problem. The temporal term is decomposed into a
sequence of two steps (using decomposition of the viscosity). For the first
step, a linear elliptic problem is solved with explicit scheme for the convec-
tion term (a linear system with a constant coefficient matrix is obtained and
the computation becomes easy), At the second step, the problem has the
structure of the Stokes problem. Both two problems satisfy the homoge-
neous Derichlet boundary conditions for the velocities. The main novelties
of this work are the stability of numerical solutions under the condition
k1∆t ≤ 1 with a positive constant k1, and optimal error estimates for both
velocity in L∞(H1) and L2(H1) norms and pressure in L∞(L2) and L2(L2)
norms. In order to enlarge the time step, we introduce a diffusion term θ∆u
in all steps of the schemes. Finally, some numerical results are provided to
display the performance of our algorithm.
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1. Introduction

Let Ω be an open bounded domain in R2 with smooth boundary ∂Ω.
Consider the following viscoelastic flows problem

ut − ν∆u+∇p+ (u · ∇)u−
∫ t

0
ρe−δ(t−s)∆uds = f, x ∈ Ω, t > 0, ρ ≥ 0,(1.1)

with incompressible condition

div u(t, x) = 0 ∀ t ≥ 0 x ∈ Ω, (1.2)

and initial and boundary conditions

u(x, 0) = u0(x) x ∈ Ω; u|∂Ω = 0 for t ≥ 0, (1.3)

where 1/δ, u = (u1, u2)T , p, f , and u0(x) represent the relaxation time,
represents the velocity, the pressure, the prescribed external force, and the
initial velocity respectively.

Equations (1.1)-(1.3) are used as a model in viscoelastic flows problem
[24, 31] because equations (1.1)-(1.3) are the generalization of the initial
boundary value problem of the Navier-Stokes equations. For the incom-
pressible problem, the main difficulties are the coupling of the pressure
and the incompressible conditions, and the nonlinearity term. The frac-
tional step methods is one of the most widely used classical numerical time-
discretization schemes [1, 30]. The method reduces the problem into two
subproblems: one linear elliptic problem without incompressibility condi-
tion and one generalized Stokes problem.

The fractional step methods are different from the two-step projection
methods which based on the projection of an intermediate velocity field onto
the space of solehoidal vector fields, and originated by Chorin [3, 4] and
Temam [32, 33] along with other methods, such as the pressure correction
methods [14, 15], the matrix factorization methods [26, 27] et. al.. Gener-
ally speaking, the so-called Chorin-Temam projection scheme has time error
estimates of O(∆t

1
2 ) in L2(H1) ∩ L∞(L2) for the velocity and O(∆t

1
2 ) in

L2(L2) for the pressure. Later, with the help of a pressure correction term
is added to the projection step, Shen improved these estimates to O(∆t)
in L2(H1) ∩ L∞(L2) for the intermediate velocity and O(∆t) in L2(L2) for
the pressure in [28, 29] based on some regularity hypotheses of the exact
solution.

Another class of fractional step methods, called viscosity-splitting meth-
ods has also been researched. The convergence and stability of the fully
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discrete version of the so-called θ-method were given by Glowinski in [13]
and Fernandez-Cara and Marin Beltran in [9]. The fractional step meth-
ods and operator-splitting scheme for numerical solution of Navier-Stokes
problem were also considered by the well-known predictor-multicorrector
algorithm in [5, 6, 8]. In this scheme, the time advancement is decomposed
into a sequence of two steps: at the first step, a linear elliptic problem
to be solved, while at the second step a Stokes problem to be considered.
Two steps satisfy the full homogeneous Dirichlet boundary condition on the
velocity. Optimal error estimates of O(∆t) in L2(H1)∩L∞(L2) for the end-

of-step velocity un+1 and suboptimal bounds of O(∆t
1
2 ) in L2(L2) for the

pressure pn+1 have been presented in [6]. Besides, numerical results of the
viscosity-splitting scheme were performed in [2] for illustrating O(∆t) for
both velocity and pressure. As a consequence, there exists a gap between
the numerical analysis and numerical computations. In [16] the author has
obtained the error estimates of O(∆t) in L∞(H1) for the velocity and in
L2(L2) for the pressure, where a weight at the initial time steps must be
included to deduce the optimal error estimates for the pressure. To the best
of the author’s knowledge, this maybe the most perfect results related to the
viscosity-splitting scheme for Navier-Stokes problem in semi-discrete form.

In this paper, a large time stepping viscosity-splitting fractional-step
method is considered for the viscoelastic flows problem. We adopt the ex-
plicit/implicit formulation to handle the first step of splitting scheme, the
advantage of using an implicit scheme for the linear terms and an explicit
scheme for the nonlinear term is that a linear system with a constant coef-
ficient matrix can be obtained which can save computational cost. Without
introducing the weight for the initial steps, some new stabilities and optimal
error estimates for both velocity and pressure are established by using Tay-
lor expansion and other skills under some restriction about the time step,
which improves the results of [2, 5, 6, 9, 8, 16]. Furthermore, we introduce
a diffusion term θ∆u in all steps of our scheme. The purposes of the term
θ∆u are to enlarge the time stepping and enhance numerical stability by
choosing suitable parameter θ. The effectiveness of θ is analyzed in Section
6 and verified by numerous numerical experiments.

The rest of this paper is organized as follows. In Section 2, the notations
and some basic results for equations (1.1)-(1.3) are recalled. In Section 3, the
fractional-step schemes for the viscoelastic flows problem are established. In
Section 4, the stability of numerical solutions are given. In Section 5, some
error estimates for the intermediate velocity, the end-of-step velocity and the
pressure are presented. In Section 6, many numerical results are provided to
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confirm the established theoretical findings. Finally, conclusions are made
in the last section.

2. Preliminaries

In this section, we aim to describe some notations and results which
will be frequently used in this paper. For the mathematical setting of the
viscoelastic flows problem (1.1)-(1.3), we introduce the following Hilbert
spaces:

X = H1
0 (Ω)2, Y = L2(Ω)2, D(A) = H2(Ω)2 ∩X,

M = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0}.

The spaces L2(Ω)m (m = 1, 2) are endowed with the standard L2-scalar
product (·, ·) and L2-norm ‖ · ‖0,Ω. The spaces H1

0 (Ω) and X are equipped
with the scalar product (∇u,∇v) and norm ‖∇u‖20, for ∀ u, v ∈ H1

0 (Ω) orX,
respectively.

Next, set the closed subset V of X is given by

V = {v ∈ X; ∇ · v = 0}

and denote the H be the closed subset of Y , i.e.,

H = {v ∈ Y ; ∇ · v = 0, v · n|∂Ω = 0}.

We denote Au = −∆u a positive self-adjoint operator from D(A) onto

Y . Note that Aα(α ∈ R) is well defined. In particular, there hold D(A
1
2 ) =

X, D(A0) = Y and

(A1/2u,A1/2v) = (∇u,∇v), ∀ u, v,∈ X

It is well-known that there hold the following Gagliardo-Nirenberg in-
equalities

‖u‖L4 ≤ c0‖u‖1/20 ‖A
1/2u‖1/20 , ‖u‖0 ≤ c0‖A1/2u‖0, ∀ u ∈ X, (2.1)

‖u‖L∞ ≤ c0‖u‖
1
2
0 ‖Au‖

1
2
0 , ‖∇v|L4 ≤ c0‖A

1
2u‖

1
2
0 ‖Av‖

1
2
0 , ∀ u ∈ D(A), (2.2)

where and in the following, c0 and ci, (i = 1, . . .) are positive constants
only depending on Ω. We also use the letter c to denote a general positive
constant which may stand for different values at its different occurrences.
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We usually make the following assumption about the prescribed data
(u0, f) for problem (1.1)-(1.3) (see [19, 23]).
(A1). Assume that the initial velocity u0 ∈ D(A) with divu0 = 0 and the
forcing functions f, ft ∈ L∞(0, T ;Y ) satisfy

‖u0‖2 + sup
t∈[0,T ]

{‖f‖0 + ‖ft‖0} ≤ c.

Next, we make a regularity assumption on the Stokes problem [1, 2, 8,
16].
(A2) Assume that Ω is smooth such that there exists a unique solution
(v, q) ∈ X ×M of the following Stokes problem

−∆v +∇q = u, ∇ · v = 0, in Ω, v|∂Ω = 0 (2.3)

for any prescribed u ∈ H. Furthermore, the solution v = A−1u satisfies

‖v‖s = ‖A−1u‖s ≤ c‖u‖s−2, s = 1, 2.

Form (2.3), it follows that (A−1u, u) = ‖∇A−1u‖0 and

‖v‖2V ′ = (A−1v, v), ∀ v ∈ H,

where V ′ is the dual space of V .
As for viscoelastic flows problem (1.1)-(1.3), we define the continuous

bilinear forms a(·, ·) and d(·, ·) on X ×X and X ×M , respectively, by

a(u, v) = ν(∇u,∇v), d(v, q) = (q,divv), ∀ u, v ∈ X, q ∈M.

We also introduce the continuous trilinear form on X ×X ×X

b(u, v, w) = ((u · ∇)v, w), ∀ u, v, w ∈ X.

It is easy to verify that b(·, ·, ·) satisfies the following important properties
(see [12, 18, 19, 23]):

b(u, v, w) = −b(u,w, v) ∀ u, v, w ∈ X, (2.4)

|b(u, v, w)| ≤ c1‖Au‖0‖A1/2v‖0‖w‖0 ∀ u ∈ D(A), v ∈ X,w ∈ Y. (2.5)

With above notations, the variational formulation of problem (1.1)-(1.3)
can be formulated as follows: Find (u, p) ∈ L∞(0, T ;Y ) ∩ L2(0, T ;X) ×
L2(0, T ;M) such that for all t > 0

(ut, v) +B((u, p), (v, q)) + b(u, u, v) + J(t, u, v) = (f, v), (2.6)
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with the initial condition u(0) = u0 and

B((u, p), (v, q)) = a(u, v)− d(p, v) + d(q, u),

J(t, u, v) = ρe−δt
∫ t

0
eδs(Au(s), v)ds = ρe−δt

∫ t

0
eδs(∇u(s),∇v)ds.

Assume that f ∈ L2(0, T ;X ′) and u0 ∈ H. Problem (1.1)-(1.3) has at least
one solution (u, p) satisfying u ∈ L∞(0, T ; Ω)∩L2(0, T ;V ). Uniqueness and
regularity of the solution can also be proved by strengthening the assump-
tions on the data. In particular, we assume that u and p satisfy

(A3) u ∈ L∞(0, T ;H2(Ω)2), ∇p ∈ L∞(0, T ;Y ),
(A4) ut ∈ L2(0, T ;X),
(A5)

√
tutt ∈ L2(0, T ;Y ),

(A6) utt ∈ L2(0, T ;V ′).
(A7) uttt ∈ L2(0, T ;V ′).

Note that all such assumptions are feasible. For example, (A3) and (A4)
can be proved with assumptions u0 ∈ H2(Ω)2 ∩ V, f ∈ L∞(0, T ;H) and
ft ∈ L1(0, T ;H). When Ω is of class of C2 or is a convex polygon, (A5)
holds by [19] and [23]. Furthermore, (A6) holds by Shen in [28, 29] when
they add some nonlocal compatibility conditions. A review of regularity
results for Navier-Stokes equations and applications to error estimates for
Euler-type scheme can be found in [18], where proof of (A7) was given.

We will frequently use the following discrete Gronwall lemmas [18, 19,
28].

Lemma 2.1. Let C0 and ak, bk, ck, dk, for integers k ≥ 0, be non-
negative numbers such that

an +4t
n∑
k=0

bk ≤ ∆t
n−1∑
k=0

dkak + ∆t
n−1∑
k=0

ck + C0, ∀ n ≥ 1.

Then,

an +4t
n∑
k=0

bk ≤ (∆t

n−1∑
k=0

ck + C0) exp(∆t

n−1∑
k=0

dk) ∀ n ≥ 1.

Finally, for error bounds of the numerical solutions, we recall the follow-
ing regularity of solutions of problem (2.6).
Theorem 2.2. ([21, 25]) Assume that conditions of (A1)-(A2), and the
uniqueness condition

ν−2N‖f∞‖−1 ≤ 1, where N = sup
u,v,w∈H1

0 (Ω)2

b(u, v, w)

‖∇u‖0‖∇v‖0‖∇w‖0
(2.7)
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hold. Then, for all s ≥ 0, the solution (u, p) of problem (2.6) satisfies

‖u(t)‖20 + ‖∇u‖20 + ‖Au‖20 + ‖ut‖20 + ‖p‖21 ≤ ĉ.

3. Viscosity splitting fractional-step method

One way of discretizing equations (1.1)-(1.3) in time is by viscosity split-
ting fractional-step method. In this scheme, the time advancement is gen-
erally decomposed into a sequence of two steps. For the time discretization
of the integral term, we make analysis as in [25] and apply right rectangle
rule to the integral term:

Mn(φ) = ∆tρ

n∑
i=1

e−δ(tn−ti)φ(ti) ≈ ρ

∫ tn

0
e−δ(tn−t)φ(t)dt, (3.1)

where ∆t is the time stepsize. Due to Theorem 2.2, using the fact that
1 + δ4t ≤ eδ4t ≤ c and e−δtn ≤ 1, we have

4te−δtn
n∑
i=1

eδti ≤ 4te−δtn · (eδt1 + eδt2 + . . .+ eδtn)

= 4t · (1 + e−δt1 + e−δt2 + . . .+ e−δtn−1) ≤ C(1/δ), (3.2)

|Mn(∇u)| ≤ ρ4te−δtn
n∑
i=1

eδti‖∇u(ti)‖0 ≤ c(ρ)4te−δtn
n∑
i=1

eδti ≤ c̃. (3.3)

Next, we consider the following kind of two-step scheme for viscoelastic flows
problem (1.1)-(1.3).

3.1. First Step

The first step of this scheme including viscous, convective effect and
integral term, consists of finding an intermediate velocity un+ 1

2 such that
un+1

2−un
∆t − (θ + ν)∆un+ 1

2 + θ∆un + (un · ∇)un

−∆tρ
∑n

i=1 e
−δ(tn−ti)∆u(ti) = f(tn+1),

un+ 1
2 |∂Ω = 0,

(3.4)

with 0 ≤ n ≤ N and θ > 0 is a bounded parameter. The superscript n
denotes the time level tn = n∆t. For the nonlinear term, we only con-
sider the explicit scheme. Of course, other approximation forms can also be
taken such as the semi-implicit scheme (un · ∇)un+ 1

2 or the implicit scheme
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(un+ 1
2 ·∇)un+ 1

2 . The advantage of using an explicit scheme for the nonlinear
term is a linear system with a constant coefficient matrix which can save
computational cost. As for the approximation of the body force term, the
time average of f in [tn, tn+1] can also be used.

The first step of this method can be considered as a linearized elliptic
problem. The weak form of (3.4) can be written as

aθ(u
n+ 1

2 , v) =< l1, v > ∀ v ∈ X,

where aθ(u, v) = (u, v) + (θ+ν)∆t(∇u,∇v) is a bilinear continuous form on

X×X, and l1 = un+∆t
(
f(tn+1)−θ∆un−(un·∇)un−∆tρ

∑n
i=1 e

−δ(tn−ti)∆u(ti)
)

is a known map. The trilinear form b(u, v, w) is skew-symmetric in v and
w if u ∈ V . The coerciveness of aθ results from the skew-symmetric char-
acter of the approximation of the convective term and the presence of the
Laplacian term, namely,

aθ(u, u) = (u, u) + (θ + ν)∆t(∇u,∇u) = ‖u‖20 + (θ + ν)∆t‖∇u‖20 ≥ c‖∇u‖20.

The existence and uniqueness of un+ 1
2 is established by the Lax-Milgram

theorem. Compared with the bilinear form in semi-implicit a(u, v) = (u, v)+
(θ+ ν)∆t(∇u,∇v) + ∆tb(un, u, v) or implicit scheme a(u, v) = (u, v) + (θ+
ν)∆t(∇u,∇v) + ∆tb(u, u, v), the bilinear term aθ(u, v) has better coercivity
and stability. Furthermore, the stiffness matrix of system (3.4) does not
change in every iteration. When ν is small, we can choose a bigger value
of θ such that the time step can be enlarged in implementation. The same
technique has been adopted to consider the Cahn-Hilliard equations in [22].

3.2. Second Step

Given un+ 1
2 from (3.4), the second step of the method consists of finding

un+1 and pn+1 such that
un+1−un+1

2

∆t − (θ + ν)(∆un+1 −∆un+ 1
2 ) +∇pn+1 = 0,

divun+1 = 0,

un+1|∂Ω = 0.

(3.5)

The second step of this method can be considered as a mixed problem or the
generalized Stokes problem with f = 0. Note that we can solve the system
without imposing the boundary condition for the pressure. The weak form
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of problem (3.5) consists of finding un+1 ∈ X and pn+1 ∈ M such that for
all (v, q) ∈ X ×M{

aθ(u
n+1, v) + ∆td(v, pn+1) =< l2, v >,

d(un+1, q) = 0,

where l2 = un+ 1
2 − ∆t(θ + ν)∆un+ 1

2 ∈ H−1(Ω)2 is a known map. If d(·, ·)
satisfies the so-called inf-sup condition:

β‖q‖0 ≤ inf
06=q∈M

sup
v∈X

d(v, q)

‖∇v‖0
(β > 0 is a constant),

the existence and uniqueness of un+1 and pn+1 are guaranteed [12, 32].
By adding (3.4) and (3.5), we obtain that

un+1 − un

∆t
− ν∆un+1 − θ(∆un+1 −∆un) + (un · ∇)un +∇pn+1

−∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti) = f(tn+1). (3.6)

From (3.6), note that the implicit treatment of the viscous term in un+1 and

un, and the intermediate velocity un+ 1
2 disappears. The term θ(∆un+1 −

∆un) is introduced as a stabilized term. It allows us to compute by the
large time step and improve the numerical stability. Moreover, it is clear
from (3.6) that at least for the linear problem, pn+1 keeps its meaning as
an end-of-step pressure. One advantage of using the split scheme like (3.4)
and (3.5) rather than a coupled (u, p) method, is that the decoupling of the
convective effects from incompressibility, which allows the use of suitable
approximations for each term.
Remark 3.1. Denote dtu

n = un−un−1

∆t and dtu
0 is defined to satisfy

dtu
0 − (ν + θ)∆u0 +∇p0 = f(t0), div u0 = 0,

it is easy to verify that

‖u0‖20 + 2∆t(ν + θ)‖∇u0‖20 ≤ ‖f(t0)‖20∆t2, (3.7)

‖dtu0‖20 ≤ (ν + θ)‖Au0‖0 + ‖f(t0)‖0. (3.8)

4. Convergence of the viscosity splitting fractional-step scheme

In order to obtain the error estimates for the numerical solutions, in this
section, we firstly present some stability results of approximate solutions

9



{un}N+1
n=1 , {un+ 1

2 }Nn=1 and {pn}N+1
n=1 for schemes (3.4)-(3.5).

Lemma 4.1 The solutions un and un+ 1
2 are bounded in the sense that

for ∀ 0 ≤ n ≤ N, N = −1, 0, 1, . . . , [ T∆t ]− 1:

‖uN+1‖20 + ∆tθ‖∇uN+1‖20 + ∆tν
N∑
n=0

(1

4
‖∇un+ 1

2 ‖20 + ‖∇un+1‖20
)
≤ γ2

0 , (4.1)

∆t
N∑
n=0

( 1

2ν
‖dtun+1‖20 + ν‖Aun+1‖20

)
+ 2‖∇uN+1‖20 + 2θ∆t‖AuN+1‖20 ≤ k01, (4.2)

‖dtuN+1‖20 + ‖Aun+1‖20 + ν∆t

N∑
n=0

‖∇dtun+1‖20 + θ∆t‖∇dtuN+1‖20 ≤ k02, (4.3)

where

γ2
0 = ‖u0‖20 + ∆tθ‖∇u0‖20 + 4ν−1T (f2

∞ + c̃),

k01 = exp
(
ν−1

(8

ν

)3
c4

0γ
4
0

)(
2‖A1/2u0‖20 +

ν

4
‖Au0‖20∆t

+
10

ν
T (f2

∞ + ĉ2) + 2θ∆t‖Au0‖20
)
,

k02 = (1 + 12(θ + ν)−2) exp
(

8ν−1c2
1k01

){
‖dtu0‖20 + θ∆t‖∇dtu0‖20

+4ν−1c2
0T sup

0≤t≤T
‖ft‖20dt+ 4ν−1(c2

0 + 1)T ĉ2
}

+48(θ + ν)−4c4
0c

2
1k

2
01γ

2
0 + (θ + ν)−2

(
12f2
∞ + θ2 + C(1/δ)ĉ2

)
,

k1 = 8ν−1c2
1k02, f∞ = sup

1≤t≤T
‖f(t)‖0.

Proof. We prove this lemma by using the induction. From (3.7)-(3.8),
we know that (4.1)-(4.3) hold for N = −1. Assume that (4.1) holds for
N = 0, 1, . . . , J with 1 ≤ J ≤ [ T∆t ]−2. We need to prove (4.1) for N = J+1.

Taking inner product of (3.4) with 2∆tun+ 1
2 , we obtain that

(un+ 1
2 − un, 2un+ 1

2 ) + 2∆tν‖∇un+ 1
2 ‖20 + 2∆t2ρ

n∑
i=1

e−δ(tn−ti)(∇u(ti),∇un+ 1
2 )

+∆tθ(∇(un+ 1
2 − un), 2∇un+ 1

2 ) + 2∆tb(un, un, un+ 1
2 ) = 2∆t(f(tn+1), un+ 1

2 ). (4.4)

By use of the identities

(a− b, 2a) = |a|2 − |b|2 + |a− b|2 and 2(a, b) = |a|2 + |b|2 − |a− b|2,(4.5)
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equation (4.4) can be transformed into

‖un+ 1
2 ‖20 − ‖un‖20 + ‖un+ 1

2 − un‖20 + 2∆tν‖∇un+ 1
2 ‖20

+∆tθ
(
‖∇un+ 1

2 ‖20 − ‖∇un‖20 + ‖∇(un+ 1
2 − un)‖20

)
+ 2∆tb(un, un, un+ 1

2 )

+2∆t2ρ
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇un+ 1
2 ) = 2∆t(f(tn+1), un+ 1

2 ). (4.6)

Multiplying (3.5) with 2∆tun+1, noting the fact that ∇·un+1 = 0 and using
(4.5) we have

‖un+1‖20 − ‖un+ 1
2 ‖20 + ‖un+1 − un+ 1

2 ‖20
+∆t(θ + ν)

(
‖∇un+1‖20 − ‖∇un+ 1

2 ‖20 + ‖∇(un+1 − un+ 1
2 )‖20

)
= 0. (4.7)

It follows from (4.6) with (4.7) that

‖un+1‖20 − ‖un‖20 + ‖un+1 − un+ 1
2 ‖20 + ‖un+ 1

2 − un‖20 + ∆tν‖∇un+ 1
2 ‖20

+∆tθ
(
‖∇un+1‖20 − ‖∇un‖20 + ‖∇(un+1 − un+ 1

2 )‖20 + ‖∇(un+ 1
2 − un)‖20

)
+∆tν

(
‖∇un+1‖20 + ‖∇(un+1 − un+ 1

2 )‖20
)

+ 2∆tb(un, un, un+ 1
2 )

+2∆t2ρ
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇un+ 1
2 ) = 2∆t(f(tn+1), un+ 1

2 ) (4.8)

Using (2.5) and (3.3) we deduce that

2|b(un, un+ 1
2 , un+ 1

2 − un)| ≤ 2c1‖Aun‖0‖∇un+ 1
2 ‖0‖un+ 1

2 − un‖0
≤ ν

4
‖∇un+ 1

2 ‖20 + 4ν−1c2
1‖Aun‖20‖un+ 1

2 − un‖20,

2|∆tρ
n∑
i=1

eδ(tn−ti)(∇u(ti),∇un+ 1
2 )| ≤ 2∆tρ

n∑
i=1

eδ(tn−ti)‖∇u(ti)‖0‖∇un+ 1
2 ‖0

≤ ν

4
‖∇un+ 1

2 ‖20 + 4ν−1
(

∆tρ

n∑
i=1

eδ(tn−ti)‖∇u(ti)‖0
)2
,

2|(f(tn+1), un+ 1
2 )|∆t ≤ 2‖f(tn+1)‖0‖un+ 1

2 ‖0∆t

≤ ν

4
‖∇un+ 1

2 ‖20 + 4ν−1‖f(tn+1)‖20∆t.
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Combining above estimates with (4.8) yields

‖un+1‖20 − ‖un‖20 + ‖un+1 − un+ 1
2 ‖20 +

∆tν

4
‖∇un+ 1

2 ‖20 + ∆tν‖∇un+1‖20

+∆tθ
(
‖∇un+1‖20 − ‖∇un‖20 + ‖∇(un+ 1

2 − un)‖20
)

+ ∆t(θ + ν)‖∇(un+1 − un+ 1
2 )‖20

≤
(

4ν−1c2
1‖Aun‖20∆t− 1

2

)
‖un+ 1

2 − un‖20 + 4ν−1‖f(tn+1)‖20∆t2

+4ν−1∆t
(

∆tρ

n∑
i=1

eδ(tn−ti)‖∇u(ti)‖0
)2
, (4.9)

Due to the stability condition k1∆t ≤ 1 and the induction assumption on
N = −1, 0, 1, . . . , [T/∆t]− 2, we have

4ν−1c2
1‖Aun‖20∆t− 1

2
≤ 4ν−1c2

1k02∆t− 1

2
≤ 1

2
∆tk1 −

1

2
≤ 0, ∀ 0 ≤ n ≤ N. (4.10)

Summing (4.9) for n from n = 0 to N , using (3.3) and (4.10) we obtain that

‖uN+1‖20 + ∆tθ‖∇uN+1‖20 +
N∑
n=0

‖un+1 − un+ 1
2 ‖20

+∆tν
N∑
n=0

(1

4
‖∇un+ 1

2 ‖20 + ‖∇un+1‖20 + ‖∇(un+1 − un+ 1
2 )‖20

)
+∆tθ

N∑
n=0

(
‖∇(un+ 1

2 − un)‖20 + ‖∇(un+1 − un+ 1
2 )‖20

)
≤ ‖u0‖20 + ∆tθ‖∇u0‖20 + 4ν−1

N∑
n=0

‖f(tn+1)‖20∆t

+4ν−1
N∑
n=0

∆t
(

∆tρ
n∑
i=1

eδ(tn−ti)‖∇u(ti)‖0
)2

≤ ‖u0‖20 + ∆tθ‖∇u0‖20 + 4ν−1T (f2
∞ + c̃). (4.11)

Thanks to the induction assumption on n = 0, 1, . . . , N , we finish the rest
proof of the (4.1).

Next, for all v ∈ V with 0 ≤ n ≤ N , (3.6) can be rewritten as

(dtu
n+1, v)− ν(∆un+1, v)− θ

(
(∆un+1 −∆un), v

)
+ b(un, un, v)

−∆tρ
n∑
i=1

e−δ(tn−ti)(∆u(ti), v) = (f(tn+1), v). (4.12)
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Take v = (ν−1dtu
n+1 +Aun+1)∆t in (4.12) to get

ν−1∆t‖dtun+1‖20 + ‖∇un+1‖20 − ‖∇un‖20 + ‖∇(un+1 − un)‖20 + ν∆t‖Aun+1‖20

+θν−1‖∇(un+1 − un)‖20 +
θ∆t

2

(
‖Aun+1‖20 − ‖Aun‖20 + ‖A(un+1 − un)‖20

)
+b(un, un, ν−1dtu

n+1 +Aun+1)∆t = (f(tn+1), ν−1dtu
n+1 +Aun+1)∆t

+∆t2ρ
n∑
i=1

e−δ(tn−ti)(∆u(ti), ν
−1dtu

n+1 +Aun+1). (4.13)

By using (2.1)-(2.4) and (3.3) we obtain

|b(un, un, ν−1dtu
n+1 +Aun+1)|

≤ 2c0‖A1/2un‖0‖un‖1/20 ‖Au
n‖1/20 (ν−1‖dtun+1‖0 + ‖Aun+1‖0)

≤ 1

4ν
‖dtun+1‖20 +

ν

4
‖Aun+1‖20 +

8

ν
c2

0‖A1/2un‖20‖un‖0‖Aun‖0

≤ 1

4ν
‖dtun+1‖20 +

ν

4
‖Aun+1‖20 +

ν

8
‖Aun‖20 +

1

2

(8

ν

)3
c4

0‖A1/2un‖40‖un‖20,∣∣∣∆tρ n∑
i=1

e−δ(tn−ti)
(
Au(ti), ν

−1dtu
n+1 +Aun+1

)∣∣∣
≤ ∆tρ

n∑
i=1

e−δ(tn−ti)‖Au(ti)‖0
(
ν−1‖dtun+1‖0 + ‖Aun+1‖0

)
≤ 1

4ν
‖dtun+1‖20 +

ν

16
‖Aun+1‖20 +

5

ν

(
∆tρ

n∑
i=1

e−δ(tn−ti)‖Au(ti)‖0
)2
,

|(f(tn+1), ν−1dtu
n+1 +Aun+1)|

≤ 1

4ν
‖dtun+1‖20 +

ν

16
‖Aun+1‖20 +

5

ν
‖f(tn+1)‖20.

Combining these estimates with (4.13) yields

(2ν)−1∆t‖dtun+1‖20 + 2‖∇un+1‖20 − 2‖∇un‖20 + 2‖∇(un+1 − un)‖20
+ν∆t

(5

4
‖Aun+1‖20 −

1

4
‖Aun‖20

)
+ 2θν−1‖∇(un+1 − un)‖20

+θ∆t
(
‖Aun+1‖20 − ‖Aun‖20 + ‖A(un+1 − un)‖20

)
≤

(8

ν

)3
c4

0‖∇un‖20‖un‖20‖∇un‖20∆t+
10

ν
‖f(tn+1)‖20∆t

+
10

ν

(
∆tρ

n∑
i=1

e−δ(tn−ti)‖Au(ti)‖0
)2

∆t. (4.14)
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Summing these above inequality for n from 0 to N , using the discrete Gron-
wall Lemma, Theorem 2.2 and (3.2), we arrive at

∆t
N∑
n=0

(
(2ν)−1‖dtun+1‖20 + ν‖Aun+1‖20

)
+ 2‖∇uN+1‖20 + θ∆t‖AuN+1‖20

+2
N∑
n=0

(
‖∇(un+1 − un)‖20 + θν−1‖∇(un+1 − un)‖20 +

θ∆t

2
‖A(un+1 − un)‖20

)
≤ exp

(
ν−1

(8

ν

)3
c4

0γ
4
0

)(
2‖∇u0‖20 +

ν

4
‖Au0‖20∆t+

10

ν
Tf2
∞

+
10

ν
T
(

∆tρ
n∑
i=1

e−δ(tn−ti)‖Au(ti)‖0
)2

+ θ∆t‖Au0‖20
)
. (4.15)

Moreover, we deduce from (4.12) that

(dttu
n+1, v)− ν(Adtu

n+1, v)− θ
(
A(dtu

n+1 − dtun), v
)

+ b(dtu
n, un, v)

−∆tρ

n∑
i=1

e−δ(tn−ti)(Au(ti), v) + ∆tρ

n−1∑
i=1

e−δ(tn−1−ti)(Au(ti), v)

+b(un−1, dtu
n, v) =

1

∆t

∫ tn+1

tn

(ft, v)dt, 1 ≤ n ≤ N − 1, (4.16)

(dttu
1, v)− (ν + θ)(Adtu

1, v) = 0, (4.17)

for all v ∈ V . From (4.17), it follows that

‖dtu1‖20 + ‖dttu1‖20∆t2 + (ν + θ)‖∇dtu1‖20 = ‖dtu0‖20. (4.18)

Taking v = 2dtu
n+1∆t in (4.16) with 0 ≤ n ≤ N , we get

‖dtun+1‖20 − ‖dtun‖20 + ‖dtun+1 − dtun‖20 + 2ν∆t‖∇dtun+1‖20
+θ∆t

(
‖∇dtun+1‖20 − ‖∇dtun‖20 + ‖∇(dtu

n+1 − dtun)‖20
)

+2∆t(1− e−δ∆t)∆tρ
n−1∑
i=1

e−δ(tn−1−ti)(Au(ti), dtu
n+1)

+2b(dtu
n, un, dtu

n+1)∆t+ 2b(un−1, dtu
n, dtu

n+1)∆t

−2∆t2ρ(Au(tn), dtu
n+1) = 2

∫ tn+1

tn

(ft, dtu
n+1)dt. (4.19)
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Using (2.4)-(2.5), we have

2|b(dtun, un, dtun+1)|+ |2b(un−1, dtu
n, dtu

n+1)|

≤ 2c1

(
‖Aun‖0 + ‖Aun−1‖0

)
‖∇dtun+1‖0‖dtun‖0

≤ ν

4
‖∇dtun+1‖20 + 8ν−1c2

1

(
‖Aun‖20 + ‖Aun−1‖20

)
‖dtun‖20,

2|
∫ tn+1

tn

(ft, dtu
n+1)dt| ≤ ν∆t

4
‖∇dtun+1‖20 + 4ν−1c2

0

∫ tn+1

tn

‖ft‖20dt

2|∆tρ
n−1∑
i=1

e−δ(tn−1−ti)(Au(ti), dtu
n+1)|

≤ ν

4
‖∇dtun+1‖20 + 4ν−1

(
∆tρ

n−1∑
i=1

e−δ(tn−1−ti)‖Au(ti)‖0
)2
,

2|(Au(tn), dtu
n+1)| ≤ ν

4
‖∇dtun+1‖20 + 4ν−1c2

0‖Au(tn)‖20.

It follows from these estimates, (4.19), and (4.18) that

‖dtun+1‖20 − ‖dtun‖20 + ‖dtun+1 − dtun‖20 + ν∆t‖∇dtun+1‖20
+θ∆t

(
‖∇dtun+1‖20 − ‖∇dtun‖20 + ‖∇(dtu

n+1 − dtun)‖20
)

≤ 8ν−1c2
1

(
‖Aun‖20 + ‖Aun−1‖20

)
‖dtun‖20∆t+ 4ν−1c2

0

∫ tn+1

tn

‖ft‖20dt

+4ν−1∆t
(

∆tρ
n−1∑
i=1

e−δ(tn−1−ti)‖Au(ti)‖0
)2

+ 4ν−1c2
0∆t‖Au(ti)‖20.(4.20)

Summing (4.20) from n = 0 to N and applying the discrete Gronwall lemma
yield that

‖dtuN+1‖20 +

N∑
n=0

‖dtun+1 − dtun‖20 + ν∆t
N∑
n=0

‖∇dtun+1‖20

+θ∆t
(
‖∇dtuN+1‖20 +

N∑
n=0

‖∇(dtu
n+1 − dtun)‖20

)
(4.21)

≤ exp
(

8ν−1c2
1(‖Aun‖20 + ‖Aun−1‖20)

)(
‖dtu0‖20 + 4ν−1c2

0T sup
0≤t≤T

‖ft‖20dt

+4ν−1T
(

∆tρ
n−1∑
i=1

e−δ(tn−ti)‖Au(ti)‖0
)2

+ θ∆t‖∇dtu0‖20 + 4ν−1c2
0T‖Au(ti)‖20

)
.
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Using again (2.1)-(2.5) and (4.12), we deduce that

(ν + θ)‖Aun+1‖0 ≤ ‖dtun+1‖0 + ‖f(tn+1)‖0 + 2c0c
1/2
1 ‖∇u

n‖0‖un‖1/20 ‖Au
n‖1/20

+θ‖Aun‖0 + ∆tρ
n∑
i=1

e−δ(tn−ti)‖Au(ti)‖0

If ‖Aun+1‖0 ≤ ‖Aun‖0, thanks to Remark 3.1, we know that (4.3) holds.
Otherwise, setting k∗ = sup0≤n≤N+1 ‖Aun‖0 and using (4.1)-(4.2), then the
above inequality gives

‖Aun+1‖20 ≤ k2
∗ ≤ 12(θ + ν)−2( sup

0≤n≤N
‖dtun+1‖20 + f2

∞)

+48(θ + ν)−4c4
0c

2
1 sup

0≤n≤N
‖∇un‖40‖un‖20

+(θ + ν)−2
(
θ2 + (∆tρ

n−1∑
i=1

e−δ(tn−ti)‖Au(ti)‖0)2
)

≤ (θ + ν)−2
(

12f2
∞ + θ2 + (∆tρ

n−1∑
i=1

e−δ(tn−ti)‖Au(ti)‖0)2
)

+12(θ + ν)−2 sup
0≤n≤N

‖dtun+1‖20 + 48(θ + ν)−4c4
0c

2
1k

2
01γ

2
0 . (4.22)

Combining (4.21) with (4.22) and using (4.2) yield (4.3) for N + 1.

Lemma 4.2. In terms of estimates (4.11), (4.15) and (4.21) in Lemma
4.1, for every 0 ≤ n ≤ N, N = −1, 0, 1, . . . , [ T∆t ]− 1, there exist

N∑
n=0

‖un+1 − un+ 1
2 ‖20 + ∆tν

N∑
n=0

‖∇(un+1 − un+ 1
2 )‖20

+∆tθ

N∑
n=0

(
‖∇(un+ 1

2 − un)‖20 + ‖∇(un+1 − un+ 1
2 )‖20

)
≤ γ2

0 ,

N∑
n=0

(
‖∇(un+1 − un)‖20 + θν−1‖∇(un+1 − un)‖20 + θ∆t‖A(un+1 − un)‖20

)
≤ k01,

and
N∑
n=0

‖dtun+1 − dtun‖20 + θ∆t
N∑
n=0

‖∇(dtu
n+1 − dtun)‖20 ≤ k02.
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5. Error estimates

This section is devoted to present optimal error estimates for the velocity
and pressure in the viscosity splitting fractional-step scheme introduced in
Section 3. Here we only present the analysis of the explicit form for con-
vection term. Of course, the similar error estimations can be obtained for
other approximations.

5.1. Error estimates for the velocity

Let us define the semi-discrete velocity errors by

en+1 = u(tn+1)− un+1, en+ 1
2 = u(tn+1)− un+ 1

2

and the truncation error Rn by:

u(tn+1)− u(tn)

∆t
− ν∆u(tn+1) + (u(tn+1) · ∇)u(tn+1) +∇p(tn+1)

−
∫ tn+1

0
ρe−δ(tn+1−s)∆uds = f(tn+1) +Rn (5.1)

respectively where

Rn = − 1

∆t

∫ tn+1

tn

(t− tn)utt(t)dt.

Firstly, we give the estimates of en+1 and en+ 1
2 which show that both un+1

and un+ 1
2 are order 1

2 approximations to u in L∞(Y ) and in L2(X) respec-
tively.

Lemma 5.1. Assume that conditions (A3)-(A6) hold. Then,

‖eN+1‖20 + ‖eN+ 1
2 ‖20 +

N∑
n=0

(
‖en+1 − en+ 1

2 ‖20 + ‖en+ 1
2 − en‖20

)
+∆t(θ + ν)

N∑
n=0

{
‖∇en+1‖20 + ‖∇en+ 1

2 ‖20 + ‖∇(en+1 − en+ 1
2 )‖20

}
≤ C∆t

for all N = 0, 1, . . . , [ T∆t ]− 1.
Proof. By subtracting (3.4) from (5.1), we have

en+ 1
2 − en

∆t
− (θ + ν)∆en+ 1

2 + θ(∆u(tn+1)−∆un)

= (un · ∇)un − (u(tn+1) · ∇)u(tn+1)−∇p(tn+1) +Rn

+∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti)−
∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds. (5.2)
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For the sake of simplicity, we denote

zn = u(tn+1)− u(tn) =

∫ tn+1

tn

utdt.

Then, u(tn+1)− un can be rewritten as

u(tn+1)− un = u(tn+1)− u(tn) + u(tn)− un = zn + en.

Splitting the nonlinear terms on the right side of (5.2) as follows

(un · ∇)un − (u(tn+1) · ∇)u(tn+1)

= −(en · ∇)un − (zn · ∇)u(tn)− (u(tn) · ∇)en − (u(tn+1) · ∇)zn, (5.3)

and the integral term can be transformed into

∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti)−
∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds

= ∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti)− (

∫ tn

0
+

∫ tn+1

tn

)ρe−δ(tn+1−s)∆u(s)ds

= ∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti)−
∫ tn

0
ρe−δ(tn+1−s)∆u(s)ds

+

∫ tn

0
ρe−δ(tn+1−s)∆u(s)ds−

∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds.

Taking the inner product of (5.2) with 2∆ten+ 1
2 , using (4.5), thanks to the

above identities, we can change equation (5.2) to

‖en+ 1
2 ‖20 − ‖en‖20 + ‖en+ 1

2 − en‖20 + 2∆tν‖∇en+ 1
2 ‖20 (5.4)

+θ∆t(‖∇en+ 1
2 ‖20 − ‖∇en‖20 + ‖∇(en+ 1

2 − en)‖20)

+2∆t
(∫ tn+1

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds−
∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds
)

= 2∆t(Rn, en+ 1
2 )− 2θ∆t(∆zn, en+ 1

2 )− 2∆t(∇p(tn+1), en+ 1
2 )− 2∆tb(en, un, en+ 1

2 )

−2∆tb(zn, u(tn), en+ 1
2 )− 2∆tb(u(tn), en, en+ 1

2 )− 2∆tb(u(tn+1), zn, en+ 1
2 )

−2∆t
(

∆tρ
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 ) +

∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds
)
.

It follows from (3.5) that

en+1 − en+ 1
2

∆t
− (θ + ν)(∆en+1 −∆en+ 1

2 )−∇pn+1 = 0. (5.5)
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Taking the inner product of (5.5) with 2∆ten+1, and noticing the fact that
∇ · en+1 = 0, we have

‖en+1‖20 − ‖en+ 1
2 ‖20 + ‖en+1 − en+ 1

2 ‖20
+(θ + ν)∆t

(
‖∇en+1‖20 − ‖∇en+ 1

2 ‖20 + ‖∇(en+1 − en+ 1
2 )‖20

)
= 0. (5.6)

Combining (5.4) with (5.6), one finds that

‖en+1‖20 − ‖en‖20 + ‖en+1 − en+ 1
2 ‖20 + ‖en+ 1

2 − en‖20 + ∆tν
(
‖∇en+ 1

2 ‖20 + ‖∇en+1‖20
)

+θ∆t
(
‖∇en+1‖20 − ‖∇en‖20 + ‖∇(en+ 1

2 − en)‖20
)

+ (θ + ν)∆t‖∇(en+1 − en+ 1
2 )‖20

+2∆t
(∫ tn+1

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds−
∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds
)

= 2∆t(Rn, en+ 1
2 )− 2θ∆t(∆zn, en+ 1

2 )− 2∆t(∇p(tn+1), en+ 1
2 )− 2∆tb(en, un, en+ 1

2 )

−2∆t
(

∆tρ

n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 )ds+

∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds
)

−2∆tb(zn, u(tn), en+ 1
2 )− 2∆tb(u(tn), en, en+ 1

2 )− 2∆tb(u(tn+1), zn, en+ 1
2 ). (5.7)

For the terms
∫ tn+1

0 ρe−δ(tn+1−s)(∇u(s),∇en+ 1
2 )ds−

∫ tn
0 ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds
in left hand side of (5.7), according to the fact that tn+1 = tn + ∆t, we have
e−δtn+1 = e−δ(tn+∆t) = e−δtne−δ∆t ≤ e−δtn . Using (3.1) yields∫ tn+1

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds−
∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds

≥
∫ tn+1

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds−
∫ tn

0
ρe−δ(tn−s)(∇u(s),∇en+ 1

2 )ds

≈ ∆tρ

n+1∑
i=1

e−δ(tn+1−ti)(∇u(ti),∇en+ 1
2 )−∆tρ

n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 )

= ∆tρ
{

(e−δ∆t − 1)

n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 ) + (∇u(tn+1),∇en+ 1

2 )
}
. (5.8)
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In the same way, we have∫ tn

0
ρe−δ(tn+1−s)(∇u(s),∇en+ 1

2 )ds−∆tρ
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 )ds

≤
∫ tn

0
ρe−δ(tn−s)(∇u(s),∇en+ 1

2 )ds−∆tρ

n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 )ds

≤ ρ

n∑
i=1

∫ ti

ti−1

e−δtn(t− ti−1)
∂

∂t
(eδt∇u,∇en+ 1

2 )dt

≤ c‖
n∑
i=1

∫ ti

ti−1

eδ(t−tn)(t− ti−1)(δ∇u+∇ut)dt‖0‖∇en+ 1
2 ‖0

≤ c
( n∑
i=1

∫ ti

ti−1

e2α0(t−tn)|t− ti−1|2dt
) 1

2

×
(
e−2δ0tn

n∑
i=1

∫ ti

ti−1

e2δ0t(‖∇u‖20 + ‖∇ut‖20)dt
) 1

2 ‖∇en+ 1
2 ‖0

≤ c4t
(∫ tn

0
e2α0(t−tn)dt

) 1
2 ·
(
e−2δ0tn

∫ tn

0
e2δ0t(‖∇u‖20 + ‖∇ut‖20)dt

) 1
2 ‖∇en+ 1

2 ‖0

≤ c∆t‖∇en+ 1
2 ‖0.

(
where α0 = δ − δ0, 1 < δ0 <

1

2
min{δ, ν/c0}

)
. (5.9)

Thanks to (5.8) and (5.9), (5.7) can be transformed into

‖en+1‖20 − ‖en‖20 + ‖en+1 − en+ 1
2 ‖20 + ‖en+ 1

2 − en‖20
+∆tν

(
‖∇en+ 1

2 ‖20 + ‖∇en+1‖20
)

+ (θ + ν)∆t‖∇(en+1 − en+ 1
2 )‖20

+θ∆t
(
‖∇en+1‖20 − ‖∇en‖20 + ‖∇(en+ 1

2 − en)‖20
)

≤ 2∆t(Rn, en+ 1
2 )− 2θ∆t(∆zn, en+ 1

2 )− 2∆t(∇p(tn+1), en+ 1
2 )

+2∆t2ρ
{

(1− e−δ∆t)
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 ) + (∇u(tn+1),∇en+ 1

2 )
}

−2∆tb(en, un, en+ 1
2 )− 2∆tb(zn, u(tn), en+ 1

2 )− 2∆tb(u(tn), en, en+ 1
2 )

−2∆tb(u(tn+1), zn, en+ 1
2 )− 2c∆t2‖∇en+ 1

2 ‖0. (5.10)
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Now, we estimate the terms in the right hand side of (5.10) separately.

|2∆t(Rn, en+ 1
2 )| ≤ c

∆t
‖
∫ tn+1

tn

(t− tn)uttdt‖20 +
ν∆t

18
‖∇en+ 1

2 ‖20

≤ c∆t

∫ tn+1

tn

t‖utt‖20dt+
ν∆t

18
‖∇en+ 1

2 ‖20,

Using the fact that ∇ · en = 0, we get

|2∆t(∇p(tn+1), en+ 1
2 )| = 2∆t|(∇p(tn+1), en+ 1

2 − en)|

≤ 1

2
‖en+ 1

2 − en‖20 + 2∆t2‖∇p(tn+1)‖20

With the help of (3.3), one finds∣∣∣2∆t(1− e−δ∆t)∆tρ
n∑
i=1

e−δ(tn−ti)(∇u(ti),∇en+ 1
2 )
∣∣∣

≤ 2c̃∆t(1− e−δ∆t)‖∇en+ 1
2 ‖0 ≤ c∆t3 +

ν∆t

18
‖∇en+ 1

2 ‖20

∣∣∣2∆t2ρ(∇u(tn+1),∇en+ 1
2 )
∣∣∣ ≤ 2∆t2ρ‖∇u(tn+1)‖0‖∇en+ 1

2 ‖0

≤ c∆t3 +
ν∆t

18
‖∇en+ 1

2 ‖20,

|2θ∆t(∆zn, en+ 1
2 )| ≤ 2θ∆t‖∇zn‖0‖∇en+ 1

2 ‖0

≤ c∆t2
∫ tn+1

tn

‖∇ut‖20dt+
ν∆t

18
‖∇en+ 1

2 ‖20

2c∆t2‖∇en+ 1
2 ‖0 ≤ c∆t3 +

ν∆t

18
‖∇en+ 1

2 ‖20

For the nonlinear term, with the help of Lemma 4.1, we have

|2∆tb(en, un, en+ 1
2 )| ≤ c∆t‖en‖0‖Aun‖0‖∇en+ 1

2 ‖0

≤ c∆t‖en‖20 +
ν∆t

18
‖∇en+ 1

2 ‖20,

|2∆tb(zn, u(tn), en+ 1
2 )| ≤ c∆t‖zn‖0‖Au(tn)‖0‖∇en+ 1

2 ‖0

≤ c∆t2
∫ tn+1

tn

‖ut‖20dt+
ν∆t

18
‖∇en+ 1

2 ‖20,

|2∆tb(u(tn), en, en+ 1
2 )| ≤ c∆t‖en‖0‖Au(tn)‖0‖∇en+ 1

2 ‖0

≤ c∆t‖en‖20 +
ν∆t

18
‖∇en+ 1

2 ‖20,

21



|2∆tb(u(tn+1), zn, en+ 1
2 )| ≤ c∆t‖zn‖0‖Au(tn+1)‖0‖∇en+ 1

2 ‖0

≤ c∆t2
∫ tn+1

tn

‖ut‖20dt+
ν∆t

18
‖∇en+ 1

2 ‖20.

From all these above inequalities we derive that

‖en+1‖20 − ‖en‖20 + ‖en+1 − en+ 1
2 ‖20 +

1

2
‖en+ 1

2 − en‖20

+θ∆t
(
‖∇en+1‖20 + ‖∇(en+ 1

2 − en)‖20 − ‖∇en‖20
)

+
∆tν

2
‖∇en+ 1

2 ‖20 + ∆tν‖∇en+1‖20 + (θ + ν)∆t‖∇(en+1 − en+ 1
2 )‖20

≤ c∆t

∫ tn+1

tn

t‖utt‖20dt+ 2∆t2‖∇p(tn+1)‖20 + c∆t‖en‖20 + c∆t3

+c∆t2
∫ tn+1

tn

(‖ut‖20 + ‖∇ut‖20)dt.

Adding up the above inequality from n = 0 to N , we have

‖eN+1‖20 +
N∑
n=0

(
‖en+1 − en+ 1

2 ‖20 +
1

2
‖en+ 1

2 − en‖20
)

+∆t
N∑
n=0

(ν
2
‖∇en+ 1

2 ‖20 + ν‖∇en+1‖20 + (θ + ν)‖∇(en+1 − en+ 1
2 )‖20

)
+θ∆t‖∇eN+1‖20 + θ∆t

N∑
n=0

‖∇(en+ 1
2 − en)‖20

≤ c∆t

∫ T

0
t‖utt‖20dt+ 2∆tT sup

t∈[0,T ]
‖∇p(t)‖20 + c∆t

N∑
n=0

‖en‖20

+c∆t2
(∫ T

0
(‖ut‖20 + ‖∇ut‖20)dt+ T

)
, (where e0 = 0). (5.11)

Applying the discrete Gronwall lemma (Lemma 2.1) to (5.11) and using the
regularity properties of the continuous solution, we obtain the desired result.

Remark 5.1. In particular, Lemma 5.1 shows that the method pro-
vides uniformly stable velocity in X. Using the fact that ‖∇en+ 1

2 ‖0 ≤
c, ‖∇en+1‖0 ≤ c and u ∈ L∞(0, T ;X), we know that there exists a positive
constant c independent of the time step ∆t such that for all 0 ≤ n ≤ N

‖∇un+1‖0 ≤ c, ‖∇un+ 1
2 ‖0 ≤ c.
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Lemma 5.2. For all N = 0, 1, . . . , [ T∆t ] − 1 and ∆t > 0, under assump-
tions (A3)-(A6), we have

‖eN+1‖2V ′ + θ∆t‖eN+1‖20 + ν∆t
N∑
n=0

(
‖en+1‖20 + ‖en+ 1

2 ‖20
)
≤ C∆t2.

Proof. Setting the pressure error rn+1 = p(tn+1)−pn+1 and subtracting
(3.6) from (5.1), we have

en+1 − en

∆t
− (θ + ν)∆en+1 + θ(∆zn + ∆en) +∇rn+1

= (un · ∇)un − (u(tn+1) · ∇)u(tn+1) +Rn

+∆tρ
n∑
i=1

e−δ(tn−ti)∆u(ti)−
∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds. (5.12)

Taking the inner product of above equation with 2∆tA−1en+1, using the
fact that ∇ · en+1 = 0 and the self-adjointness of A−1 we get

(en+1, A−1en+1)− (en, A−1en) + (en+1 − en, A−1(en+1 − en))

−2(θ + ν)∆t(∆en+1, A−1en+1) + 2θ∆t(∆zn + ∆en, A−1en+1)

= 2∆tb(un, un, A−1en+1)− 2∆tb(u(tn+1), u(tn+1), A−1en+1)

+2∆t(Rn, A−1en+1) + 2∆t
(

∆tρ
n∑
i=1

e−δ(tn−ti)(∆u(ti), A
−1en+1)

−
∫ tn+1

0
ρe−δ(tn+1−s)(∆u(s), A−1en+1)ds

)
. (5.13)

Taking u = en+1 in (2.3), for the term −2(θ + ν)∆t(Aen+1, A−1en+1) +
2θ∆t(∆en, A−1en+1), we can deal with them as follows

−2(θ + ν)∆t(∆en+1, A−1en+1) + 2θ∆t(∆en, A−1en+1)

= 2ν∆t(en+1,−∆A−1en+1) + 2θ∆t
(
en+1 − en,−∆A−1en+1

)
= 2ν∆t(en+1, en+1 −∇q) + 2θ∆t

(
en+1 − en, en+1 −∇q

)
= 2ν∆t‖en+1‖20 + 2θ∆t(en+1 − en, en+1)

= 2ν∆t‖en+1‖20 + θ∆t
(
‖en+1‖20 − ‖en‖20 + ‖en+1 − en‖20

)
.
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For the right hand side terms of equation (5.13), we can estimates them as
follows

|2∆t(Rn, A−1en+1)| ≤ 2∆t‖Rn‖V ′‖A−1en+1‖V = 2∆t‖Rn‖V ′‖en+1‖V ′

≤ ∆t‖en+1‖2V ′ + ∆t‖Rn‖2V ′ ≤ ∆t‖en+1‖2V ′ + ∆t2
∫ tn+1

tn

‖utt‖2V ′dt.

For the nonlinear term, we can treat them as we have done in Lemma 5.1.
Using splitting (5.3) we have

|2∆tb(zn, u(tn), A−1en+1)|

≤ c∆t‖zn‖0‖∇u(tn)‖0‖A−1en+ 1
2 ‖2 ≤ c∆t2

∫ tn+1

tn

‖ut‖20dt+
ν∆t

12
‖en+1‖20,

|2∆tb(u(tn), en, A−1en+1)|

≤ c∆t‖en‖0‖∇u(tn)‖0‖A−1en+1‖2 ≤ c∆t‖en‖20 +
ν∆t

12
‖en+1‖20,

|2∆tb(u(tn+1), zn, A−1en+1)|

≤ c∆t‖zn‖0‖∇u(tn+1)‖0‖A−1en+1‖2 ≤ c∆t2
∫ tn+1

tn

‖ut‖20dt+
ν∆t

12
‖en+1‖20,

|2∆tb(en, un, A−1en+1)| = |2∆tb(en, u(tn), A−1en+1)|+ |2∆tb(en, en, A−1en+1)|
|2∆tb(en, u(tn), A−1en+1)| ≤ c∆t‖en‖0‖Au(tn)‖0‖A−1en+1‖1

≤ c∆t(‖en+1 − en+ 1
2 ‖0 + ‖en+ 1

2 − en‖0 + ‖en+1‖0)‖en+1‖V ′

≤ ν∆t

12
‖en+1‖20 + c∆t

(
‖en+1 − en+ 1

2 ‖20 + ‖en+ 1
2 − en‖20 + ‖en+1‖2V ′

)
|2∆tb(en, en, A−1en+1)| ≤ c∆t‖en‖0‖∇en‖0‖A−1en+1‖2

≤ c∆t3/2‖∇en‖0‖en+1‖0 ≤ c∆t2‖∇en‖20 +
ν∆t

12
‖en+1‖20.

For the term 2θ∆t(∆zn, A−1en+1), we have

|2θ∆t(∆zn, A−1en+1)| = 2θ∆t|(zn, en+1)| ≤ ν∆t

12
‖en+1‖20 + c∆t2

∫ tn+1

tn

‖ut‖20dt.

For the last two terms in equation (5.13), we can treat them as we have
done in Lemma 5.1. Finally, by using the above results, and adding (5.13)
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from n = 0 to N , one finds

(eN+1, A−1eN+1) +
N∑
n=0

(en+1 − en, A−1(en+1 − en))

+
ν∆t

2

N∑
n=0

‖en+1‖20 + θ∆t
N∑
n=0

‖en+1 − en‖20 + θ∆t‖eN+1‖20

≤ c∆t
N∑
n=0

‖en+1‖2V ′ + c∆t2
∫ T

0
‖utt‖2V ′dt+ c∆t2

∫ T

0
‖ut‖20dt

+2c∆t2 + c∆t

N∑
n=0

(
‖en+1 − en+ 1

2 ‖20 + ‖en+ 1
2 − en+1‖20

)
.

Using the regularity properties of the continuous solution and Lemma 5.1,
we obtain that

‖eN+1‖2V ′ +
N∑
n=0

‖en+1 − en‖2V ′ +
ν∆t

2

N∑
n=0

‖en+1‖20 + θ∆t‖eN+1‖20

+θ∆t

N∑
n=0

‖en+1 − en‖20 ≤ c∆t
N∑
n=0

‖en+1‖2V ′ + c∆t2.

Applying the discrete Gronwall lemma (Lemma 2.1) to the above inequality
yields

‖eN+1‖2V ′ +
N∑
n=0

‖en+1 − en‖2V ′ +
ν∆t

2

N∑
n=0

‖en+1‖20

+θ∆t
N∑
n=0

‖en+1 − en‖20 + θ∆t‖eN+1‖20 ≤ c∆t2. (5.14)

For the intermediate velocity un+ 1
2 , according to Lemma 5.1 and triangle

inequality, we have

∆tν

N∑
n=0

‖en+ 1
2 ‖20 ≤ ∆tν

N∑
n=0

(
‖en+1‖20 + ‖en+1 − en+ 1

2 ‖20
)
≤ c∆t2 (5.15)

Combining (5.14) and (5.15) we complete the proof of Lemma 5.2.
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Theorem 5.3. Assume that conditions (A3)-(A6) are valid. Then, for
all N = 0, 1, . . . , [ T∆t ]− 1, there is

‖eN+1‖20 + θ∆t‖∇eN+1‖20 + ∆tν
N∑
n=0

‖∇en+1‖20 ≤ c∆t2.

Proof. Taking the inner product of (5.12) with 2∆ten+1 and using the
fact that ∇ · en+1 = 0, we have

‖en+1‖20 − ‖en‖20 + ‖en+1 − en‖20 + 2∆tν‖∇en+1‖20
+θ∆t

(
‖∇en+1‖20 − ‖∇en‖20 + ‖∇(en+1 − en)‖20

)
= 2∆tb(un, un, en+1)− 2∆tb(u(tn+1), u(tn+1), en+1)− 2θ∆t(∇zn,∇en+1)

+2∆t(Rn, en+1) + 2∆t
(

∆tρ
n∑
i=1

e−δ(tn−ti)(∆u(ti), e
n+1)

−
∫ tn+1

0
ρe−δ(tn+1−s)(∆u(s), en+1)ds

)
. (5.16)

Now, we estimate the terms in the right hand side of (5.16) separately.

|2∆t(Rn, en+1)| ≤ 2∆t‖Rn‖V ′‖∇en+1‖0 ≤
∆tν

12
‖∇en+1‖20 + c∆t2

∫ tn+1

tn

‖utt‖2V ′dt.

For the nonlinear terms, using splitting (5.3) yields

|2∆tb(zn, u(tn), en+1)|

≤ c∆t‖zn‖0‖Au(tn)‖0‖∇en+1‖0 ≤ c∆t2
∫ tn+1

tn

‖ut‖20dt+
ν∆t

12
‖∇en+1‖20,

|2∆tb(u(tn), en, en+1)|

≤ c∆t‖en‖0‖Au(tn)‖0‖∇en+1‖0 ≤ c∆t‖en‖20 +
ν∆t

12
‖∇en+1‖20,

|2∆tb(u(tn+1), zn, en+1)|

≤ c∆t‖zn‖0‖Au(tn+1)‖0‖∇en+1‖0 ≤ c∆t2
∫ tn+1

tn

‖ut‖20dt+
ν∆t

12
‖∇en+1‖20,

|2∆tb(en, un, en+1)|

≤ c∆t‖en‖0‖Aun‖0‖∇en+1‖0 ≤ c∆t‖en‖20 +
ν∆t

12
‖∇en+1‖20.

For the last term

|2θ∆t(∇zn,∇en+1)| ≤ 2θ∆t‖∇zn‖0‖∇en+1‖0

≤ c∆t2
∫ tn+1

tn

‖∇ut‖20dt+
ν∆t

12
‖∇en+1‖20.
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Thanks to the above inequalities, taking into account (5.8) and (5.9) and
summing up (5.16) from n = 0 to N , we obtain

‖eN+1‖20 +
N∑
n=0

‖en+1 − en‖20 + ∆tν
N∑
n=0

‖∇en+1‖20

+θ∆t
(
‖∇eN+1‖20 +

N∑
n=0

‖∇(en+1 − en)‖20
)

≤ c∆t2
(∫ T

0
(‖utt‖2V ′ + ‖∇ut‖20 + ‖ut‖20)dt+ 1

)
+ c∆t

N∑
n=0

‖en‖20. (5.17)

Finally, we obtain the desired results with application of Lemma 2.1 at
(5.17).

5.2. Error estimates for the semidiscrete pressure

Now, we give the estimates for rn+1 which shows that pn+1 is order 1
approximations to p in L∞(L2) and L2(L2) norms. In order to achieve this

aim, we firstly provide some estimates about dte
n+1 = en+1−en

∆t .

Lemma 5.4. Assume that conditions (A3)-(A7) are valid. Then, for all
N = 0, 1, . . . , [ T∆t ]− 1, we have

‖dteN+1‖20 +
1

2

N∑
n=0

‖dten+1 − dten‖20 + ν∆t

N∑
n=0

‖∇dten+1‖20

+θ∆t
(
‖∇dteN+1‖20 +

N∑
n=0

‖∇(dte
n+1 − dten)‖20

)
≤ C∆t2.

Proof. From equation (5.12) we can obtain that for ∀ v ∈ V

(dtte
n+1, v)− (θ + ν)(∆dte

n+1, v) + θ(∆dtz
n + ∆dte

n, v)

= −b(dtzn, u(tn), v)− b(zn−1, dtu(tn), v)− b(dten, un−1, v)− b(en, dtun, v)

−b(dtun, en, v)− b(u(tn−1), dte
n, v)− b(dtu(tn+1), zn, v)− b(u(tn), dtz

n, v)

+(dtR
n, v) +

[(
∆tρ

n∑
i=1

e−δ(tn−ti)∆u(ti), v
)
−
(

∆tρ
n−1∑
i=1

e−δ(tn−1−ti)∆u(ti), v
)

+
(∫ tn

0
ρe−δ(tn−s)∆u(s)ds, v

)
−
(∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds, v

)]/
∆t.(5.18)
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Choosing v = 2∆tdte
n+1 in (5.18) and using (3.1) and (4.5) we obtain

‖dten+1‖20 − ‖dten‖20 + ‖dten+1 − dten‖20 + ν∆t‖∇dten+1‖20
+θ∆t

(
‖∇dten+1‖20 − ‖∇dten‖20 + ‖∇(dte

n+1 − dten)‖20
)

≈ −2∆t
{
θ(∇dtzn,∇dten+1)− b(dtzn, u(tn), dte

n+1)− b(zn−1, dtu(tn), dte
n+1)

−b(dten, un−1, dte
n+1)− b(en, dtun, dten+1)− b(dtun, en, dten+1) + (dtR

n, dte
n+1)

−b(u(tn−1), dte
n, dte

n+1)− b(dtu(tn+1), zn, dte
n+1)− b(u(tn), dtz

n, dte
n+1)

}
+2
[(

∆tρ(e−δ∆t − 1)

n−1∑
i=1

e−δ(tn−1−ti)∆u(ti) + ∆tρ∆u(tn), dte
n+1
)

−
(

∆tρ(e−δ∆t − 1)

n∑
i=1

e−δ(tn−ti)∆u(ti) + ∆tρ∆u(tn+1), dte
n+1
)]
. (5.19)

Now, we estimate the right-hand side terms separately. According to the
definition of zn, by using Taylor expansion we have

dtz
n =

zn − zn−1

∆t
=

u(tn+1)− u(tn) + u(tn−1)− u(tn)

∆t

=
(
utt(tn) +O(∆t2)

)
∆t. (5.20)

As a consequence, one finds that

2∆tθ|(∇dtzn,∇dten+1)| ≤ 2∆t2θ‖∇utt(tn) +O(∆t2)‖0‖∇dten+1‖0

≤ 20

ν
∆t3θ2‖∇utt(tn) +O(∆t2)‖20 +

ν

20
∆t‖∇dten+1‖0.

For (dtR
n, dte

n+1), using the techniques that adopted by He in [18], we have

(dtR
n, dte

n+1) = − 1

∆t2

∫ tn+1

tn

(t− tn)

∫ t

t−∆t
(uttt(s), dte

n+1)dsdt

for all 2 ≤ n ≤ N . We deduce from above inequality that

|2∆t(dtR
n, dte

n+1)| ≤ 2∆t‖dtRn‖0‖dten+1‖0 ≤ c(ν)∆t‖dtRn‖20 +
ν

20
∆t‖∇dten+1‖20

≤ c(ν)∆t
[
∆t−3/2

(∫ tn+1

tn

(t− tn)2‖
∫ t

t−∆t
uttt(s)ds‖20dt

)1/2]2
+

ν

20
∆t‖∇dten+1‖20

≤ c∆t2
∫ tn+1

tn−1

‖uttt‖20dt+
ν

20
∆t‖∇dten+1‖20.
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For the nonlinear terms, with the help of (5.20) and the results of Theorem
5.3, we can estimate them as follows

2∆t|b(dtzn, u(tn), dte
n+1)| ≤ 2∆t‖dtzn‖0‖Au(tn)‖0‖∇dten+1‖0

≤ 2∆t2‖utt(tn) +O(∆t2)‖0‖Au(tn)‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t3‖utt(tn) +O(∆t2)‖20‖Au(tn)‖20

2∆t|b(zn−1, dtu(tn), dte
n+1)| ≤ 2∆t‖zn−1‖0‖Adtu(tn)‖0‖∇dten+1‖0

≤ 2∆t‖zn−1‖0‖Aut(tn) +O(∆t)‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t2

∫ tn

tn−1

‖ut‖20dt‖Aut(tn) +O(∆t)‖20

2∆t|b(dten, un−1, dte
n+1)| ≤ 2∆t‖dten‖0‖Aun−1‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t‖dten‖20‖Aun−1‖20

2∆t|b(en, dtun, dten+1)| ≤ 2∆t‖en‖0‖Adtun‖0‖∇dten+1‖0
≤ 2∆t‖en‖0‖Aunt +O(∆t)‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t‖en‖20‖Aunt +O(∆t)‖20,

2∆t|b(dtun, en, dten+1)| ≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t‖en‖20‖Aunt +O(∆t)‖20,

2∆t|b(u(tn−1), dte
n, dte

n+1)| ≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t‖dten‖20‖Au(tn−1)‖20

2∆t|b(dtu(tn+1), zn, dte
n+1)| ≤ 2∆t‖Adtu(tn+1)‖0‖zn‖0‖∇dten+1‖0

≤ 2∆t‖Aut(tn) +O(∆t)‖0‖zn‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t2

∫ tn

tn−1

‖ut‖20dt‖Aut(tn) +O(∆t)‖20

2∆t|b(u(tn), dtz
n, dte

n+1)|

≤ ν

20
∆t‖∇dten+1‖20 +

20

ν
∆t3‖utt(tn) +O(∆t2)‖20‖Au(tn)‖20.

Remark 5.1. In the estimation of fourth trilinear term, we have used the
boundedness of ‖Aunt ‖0 which can be proved by differentiating (1.1)-(1.2)
with respect to time, with the split schemes (3.4)-(3.5) and the proof of
Lemma 4.1. The bounded of ‖Aunt ‖0 is similar to the results of (4.3). Here,
we omit the proof.
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For the last two terms in (5.19), we have

2
[(

∆tρ(e−δ∆t − 1)
n−1∑
i=1

e−δ(tn−1−ti)∆u(ti) + ∆tρ∆u(tn), dte
n+1
)

−
(

∆tρ(e−δ∆t − 1)
n∑
i=1

e−δ(tn−ti)∆u(ti) + ∆tρ∆u(tn+1), dte
n+1
)]

= 2∆tρ(e−δ∆t − 1)
(

(1− e−δ∆t)
n−1∑
i=1

e−δ(tn−1−ti)∆u(ti)−∆u(tn), dte
n+1
)

+∆tρ
(∫ tn+1

tn

∆utdt, dte
n+1
)

≤ C(ρ)∆t2‖∇ut‖0‖∇dten+1‖0 + C(ρ)∆t(e−δ∆t − 1)‖∇u(tn)‖0‖∇dten+1‖0

+(e−δ∆t − 1)(1− e−δ∆t)‖∆tρ
n−1∑
i=1

e−δ(tn−1−ti)∇u(ti)‖0‖∇dten+1‖0

≤ ν

20
∆t‖∇dten+1‖20 + C∆t3

(
‖∇ut‖20 + ‖∇u(tn)‖20 + ‖∆tρ

n−1∑
i=1

e−δ(tn−1−ti)∇u(ti)‖20
)
.

Combining above inequalities with (5.19) and summing from n = 0 to N ,
we arrive at

‖dteN+1‖20 +
1

2

N∑
n=0

‖dten+1 − dten‖20 + ν∆t

N∑
n=0

‖∇dten+1‖20

+θ∆t
(
‖∇dteN+1‖20 +

N∑
n=0

‖∇(dte
n+1 − dten)‖20

) (
Here e0 = u(t0)− u0 = 0

)
≤ 20T

ν
∆t2

(
θ2‖utt‖21 + ‖utt‖20 + ‖Aunt ‖20

)
+

20

ν
∆t2‖Aut‖20

∫ T

0
‖ut‖20dt

+c∆t2
∫ T

0
‖uttt‖20dt+ ∆t

N∑
n=0

(
1 +

40

ν
‖Au(tn−1)‖20

)
‖dten‖20.

Thanks to Lemma 2.1, we obtain the desired results.
In Theorem 5.3, we have obtained the optimal error estimate for velocity

in L2(H1) norm. Next, thanks to the help of Theorem 5.3, we provide the
optimal error estimate about velocity in L∞(H1) norm.

Lemma 5.5. Assume that conditions (A3)-(A7) are valid. Then, for all
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N = 0, 1, . . . , [ T∆t ]− 1,

‖∇eN+1‖20 + θ∆t‖Aen+1‖20 +
N∑
n=0

(
‖∇(en+1 − en)‖20 + ν∆t‖Aen+1‖20

)
≤ c∆t2.

Proof. Taking the inner product of (5.12) with −2∆tAen+1 ∈ V , we
have

‖∇en+1‖20 − ‖∇en‖20 + ‖∇(en+1 − en)‖20 + 2∆tν‖Aen+1‖20
+θ∆t

(
‖Aen+1‖20 − ‖Aen‖20 + ‖A(en+1 − en)‖20

)
= 2∆tb(un, un, Aen+1)− 2∆tb(u(tn+1), u(tn+1), Aen+1)− 2θ∆t(Azn, Aen+1)

+2∆t(Rn, Aen+1) + 2∆t
[
∆tρ

n∑
i=1

e−δ(tn−ti)(∆u(ti), Ae
n+1)

−
∫ tn+1

0
ρe−δ(tn+1−s)(∆u(s), Aen+1)ds

]
. (5.21)

Now, we estimate the terms in the right hand side of (5.21) separately.

|2∆t(Rn, Aen+1)| ≤ 2∆t‖Rn‖0‖Aen+1‖0 ≤
∆tν

12
‖Aen+1‖20 + c∆t2

∫ tn+1

tn

‖utt‖20dt.

For the nonlinear terms, using splitting (5.3) yields

|2∆tb(zn, u(tn), en+1)|

≤ c∆t‖∇zn‖0‖Au(tn)‖0‖Aen+1‖0 ≤ c∆t2
∫ tn+1

tn

‖∇ut‖20dt+
ν∆t

12
‖Aen+1‖20,

|2∆tb(u(tn), en, en+1)|

≤ c∆t‖∇en‖0‖Au(tn)‖0‖Aen+1‖0 ≤ c∆t‖∇en‖20 +
ν∆t

12
‖Aen+1‖20,

|2∆tb(u(tn+1), zn, en+1)|

≤ c∆t‖∇zn‖0‖Au(tn+1)‖0‖Aen+1‖0 ≤ c∆t2
∫ tn+1

tn

‖∇ut‖20dt+
ν∆t

12
‖Aen+1‖20,

|2∆tb(en, un, en+1)|

≤ c∆t‖∇en‖0‖Aun‖0‖Aen+1‖0 ≤ c∆t‖∇en‖20 +
ν∆t

12
‖Aen+1‖20

For the last term

|2θ∆t(Azn, Aen+1)| ≤ 2θ∆t‖Azn‖0‖Aen+1‖0

≤ c∆t2
∫ tn+1

tn

‖Aut‖20dt+
ν∆t

12
‖Aen+1‖20,
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Thanks to the above inequalities, taking into account (5.8) and (5.9) and
summing up (5.16) from n = 0 to N , we obtain

‖∇eN+1‖20 +
N∑
n=0

‖∇(en+1 − en)‖20 + ∆tν
N∑
n=0

‖Aen+1‖20

+θ∆t
(
‖AeN+1‖20 +

N∑
n=0

‖A(en+1 − en)‖20
)

≤ c∆t2
(∫ T

0
(‖utt‖20 + ‖Aut‖20)dt+ 1

)
+ c∆t

N∑
n=0

‖∇en‖20.

Finally, we complete the proof by using the results of Theorem 5.3.
Now, we in the position of establishing the optimal error estimate for

pressure in L∞(L2) and L2(L2) norms based on the results presented in
Lemmas 5.4 and 5.5.

Theorem 5.6. Assume that conditions (A3)-(A7) are valid. Then, for
all N = 0, 1, . . . , [ T∆t ]− 1,

∆t
N∑
n=0

‖p(tn+1)− pn+1‖20 ≤ c∆t2.

Furthermore, if ut ∈ L∞(0, T ;X), then

‖p(tn+1)− pn+1‖0 ≤ c∆t.

Proof. We rewrite (5.12) as

−∇rn+1 = dte
n+1 − (θ + ν)∆en+1 + θ(∆zn + ∆en)−Rn

+

∫ tn+1

0
ρe−δ(tn+1−s)∆u(s)ds−∆tρ

n∑
i=1

e−δ(tn−ti)∆u(ti)

−(un · ∇)un + (u(tn+1) · ∇)u(tn+1). (5.22)

Taking the inner product of (5.22) with an arbitrary v ∈ X and using
Poincare inequality, we have

|
(
dte

n+1, v
)
| ≤ ‖dten+1‖0‖v‖0 ≤ c0‖dten+1‖0‖∇v‖0,

|ν(∆en+1, v)| ≤ ν‖∇en+1‖0‖∇v‖0,
|θ(∆(en+1 − en), v)| ≤ θ‖∇(en+1 − en)‖0‖∇v‖0,

|(Rn, v)| ≤ ‖Rn‖0‖v‖0 ≤ c∆t(
∫ tn+1

tn

t‖utt‖20)1/2‖∇v‖0,
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|θ(∆zn, v)| ≤ c
(

∆t

∫ tn+1

tn

‖∇ut‖20
)1/2
‖∇v‖0.

For the nonlinear terms, we take the product with an arbitrary v ∈ X and
use the results provided in Lemma 4.1 to arrive at

|b(zn, u(tn), v)| ≤ c‖zn‖0‖u(tn)‖2‖∇v‖0 ≤ c
(

∆t

∫ tn+1

tn

‖ut‖20dt
)1/2
‖∇v‖0

|b(u(tn), en, v)| ≤ c‖en‖0‖Au(tn)‖0‖∇v‖0 ≤ c‖en‖0‖∇v‖0,

|b(u(tn+1), zn, v)| ≤ c‖zn‖0‖Au(tn+1)‖0‖∇v‖0 ≤ c
(

∆t

∫ tn+1

tn

‖ut‖20dt
)1/2
‖∇v‖0,

|b(en, un, v)| ≤ c‖en‖0‖Aun‖0‖∇v‖0 ≤ c‖en‖0‖∇v‖0.

Thus, thanks to (5.8) and (5.9), we obtain

‖rn+1‖0 ≤ ‖dten+1‖0 + c
{
‖∇en+1‖0 + ‖∇en‖0 + ‖en‖0

+
(

∆t

∫ tn+1

tn

‖ut‖20dt
)1/2

+ ∆t
(∫ tn+1

tn

t‖utt‖20dt
)1/2}

. (5.23)

Squaring (5.23) and summing it from n = 0 to N , with the results obtained
in Lemmas 5.4 and 5.5, we obtain the desired result.

Furthermore, under the assumption of ut ∈ L∞(0, T ;X) we know that

|θ(∆zn, v)| ≤ c‖∇ut‖0‖∇v‖0∆t,

|b(zn, u(tn), v)| ≤ c‖zn‖0‖u(tn)‖2‖∇v‖0 ≤ c‖ut‖0‖∇v‖0∆t,

|b(u(tn+1), zn, v)| ≤ c‖zn‖0‖Au(tn+1)‖0‖∇v‖0 ≤ c‖ut‖0‖∇v‖0∆t.

Thus, (5.23) can be changed into

‖rn+1‖0 ≤ ‖dten+1‖0 + c
{
‖∇en+1‖0 + ‖∇en‖0 + ‖en‖0

+∆t(‖ut‖0 + ‖∇ut‖0) + ∆t
(∫ tn+1

tn

t‖utt‖20dt
)1/2}

.

Combining Lemmas 5.4 and 5.5, we obtain the optimal error estimate for
pressure in L∞(L2) norm.

6. Numerical examples

In this section, we present some numerical results to show the effec-
tiveness of fractional-step finite element method for the viscoelastic flows
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problem. We consider problem (1.1)-(1.3) on the unit square Ω = [0, 1]2 in
all experiments.

We set ν = 0.002, ρ = ν, 1/δ = 100∆t. The exact solution for the
velocity and pressure are

u1 = 10x2(x− 1)2y(y − 1)(2y − 1)e−2νπ2t,

u2 = −10x(x− 1)(2x− 1)y2(y − 1)2e−2νπ2t,

p = 20(2x− 1)(2y − 1)e−4νπ2t.

6.1. An analytical solution: Convergence validation

Firstly, we compare the numerical solution at T = 0.01 by using fractional-
step method with different parameters θ and the standard Galerkin finite
element method with Taylor-Hood element (P2-P1 element). From Tables
1 and 3, we know that, as time step ∆t = 0.0001, the errors of velocity of
fractional-step method and standard Galerkin method are almost the same,
while the errors of pressure obtained by fractional-step method better than
Galerkin method. Next, we set the time step ∆t = 0.001, from Tables 2
and 3, we can see that the errors of both velocity and pressure obtained
by two methods have the same accuracy. On the other hand, comparing
Tables 1-3, the standard Galerkin method spends the least CPU-times than
fractional-step scheme with different parameters in different time steps.

Secondly, we present the numerical results at T = 0.1 obtained by
fractional-step method with parameters θ = 0, 5, 10, 100 and standard Galerkin
method at different time steps in Tables 4-7. From Tables 4-6, we can see
that the more precise results of velocity can be obtained as the parameter
θ increases, especially for the large time step, see Table 6 for details. Com-
pared with Table 7, we know that the standard Galerkin method spends
the least CPU-times. By choosing suitable parameter θ, we can obtain the
good numerical results of velocity. On the other hand, the errors of pressure
obtained by standard Galerkin method are undesired. From this view of
point, the desired numerical results of both velocity and pressure can be got
by fractional-step with suitable parameter θ in the large time steps.

6.2. The affection of parameter θ

In this subsection, we consider the affection of parameter θ for the time
steps and stability to discrete system (3.6). Generally, the following linear
algebra equations can be obtained from the discrete system of (3.6)(

A −D
DT 0

)(
U
P

)
=

(
F
0

)
, (6.1)
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where the matrices A,D and G are deduced in the usual manner from the
bilinear forms a(·, ·) and d(·, ·), F is the variation of the source term, trilinear
and integrate terms. Here the matrix A can be split into two parts, namely

A =


1− ν∆t a12 . . . a1n

a21 1− ν∆t . . . a2n

. . .
an1 an2 . . . 1− ν∆t

−


θ∆t 0 . . . 0
0 θ∆t . . . 0
. . .
0 0 . . . θ∆t


, A−B.

Then, system (6.1) can be rewritten as(
A −D
DT 0

)(
U
P

)
−
(
B 0
0 0

)(
U
P

)
=

(
F
0

)
. (6.2)

From (6.2), we obtain that AU −DP − θ∆tU = F. In order to get the
optimal choice of θ, we denote

R = F −AU +DP + θ∆tU.

Taking g = 1
2R

TR, the best choice of θ should satisfy dg
dθ = 0, i.e.,

1

2
∆tUT (F −AU +DP + θ∆tU) = 0. (6.3)

Solving equation (6.3), we obtain that

θ =
UTAU − UTDP − UTF

∆tUTU
(6.4)

From the expression of (6.4), we know that the best θ not only depends
on the exact solution u, p and ν (ν = 1

Re , Re the Reynolds number) but
also on the relationship with time steps ∆t. Figures 1-2 show the affection
of different θ to the accuracy of velocity in H1-norm with different time
steps. From these Figures, we can see that the optimal θ is obtained from
the view of numerical with fixed parameters ρ, δ and ν. Furthermore, From
(6.4), when we fixed the exact solution and the corresponding parameters,
the larger of ∆t, the smaller of θ. Figures 1(b)-2(b) verify this fact that
θ ≈ 22 when ∆t = 0.001 while θ ≈ 5 when ∆t = 0.01.

Next, we fix the time steps and the value of θ to consider the variation
of the accuracy of velocity in H1-norm with different Reynolds number.
From Figures 3-4, we can see that the errors becomes smaller and smaller
as the Reynolds numbers increase with different time steps. These Figures
confirmed our theoretical findings and illustrated that suitable choices of θ
can enhance the stability of the numerical scheme.
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7. Conclusion

In this paper, we considered a fractional-step finite element method for
the viscoelastic flows problem. Stability and convergence of the velocity and
pressure are established under the stability condition about time step ∆t. In
order to enlarge the time step, we introduce a diffusion term θ∆u in all steps
of the fractional-step schemes. Finally, some numerical results are provided
to verify the efficiency of our algorithm.
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