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GLOBAL ATTRACTORS AND DETERMINING MODES FOR THE

3D NAVIER-STOKES-VOIGHT EQUATIONS

VARGA K. KALANTAROV AND EDRISS S. TITI

Abstract. We investigate the long-term dynamics of the three-dimensional Navier-
Stokes-Voight model of viscoelastic incompressible fluid. Specifically, we derive upper
bounds for the number of determining modes for the 3D Navier-Stokes-Voight equations
and for the dimension of a global attractor of a semigroup generated by these equations.
Viewed from the numerical analysis point of view we consider the Navier-Stokes-Voight
model as a non-viscous (inviscid) regularization of the three-dimensional Navier-Stokes
equations. Furthermore, we also show that the weak solutions of the Navier- Stokes-
Voight equations converge, in the appropriate norm, to the weak solutions of the inviscid
simplified Bardina model, as the viscosity coefficient ν → 0.
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1. Introduction

We consider the three-dimensional Navier-Stokes-Voight (NSV) system of equations

vt − ν∆v − α2∆vt + (v · ∇)v + ∇p = f(x), x ∈ Ω, t ∈ R
+, (1.1)

div v = 0, x ∈ Ω, t ∈ R
+; v(x, t) = 0, x ∈ ∂Ω, t ∈ R

+, (1.2)

v(x, 0) = v0(x), x ∈ Ω, (1.3)

where Ω ⊂ R
3 is a bounded domain with sufficiently smooth boundary ∂Ω, v = v(x, t) is

the velocity vector field, p is the pressure, ν > 0 is the kinematic viscosity, α is a length
scale parameter characterizing the elasticity of the fluid, and f is a given force field.

The system (1.1)-(1.2) models the dynamics of a Kelvin-Voight viscoelastic incompress-
ible fluid and was introduced by A.P. Oskolkov in [38] as a model of motion of linear,
viscoelastic fluids.

The viscous simplified Bardina model was introduced and studied in [34] (see also [4])
as a simplified version of the Bardina sub-grid scale model of turbulence [3]. In [5] the
viscous and inviscid simplified Bardina model were shown to be globally well-posed. It is
interesting to observe that the inviscid simplified Bardina model coincides with the invis-
cid version of the NSV equations (1.1)-(1.3). Viewed from the numerical analysis point
of view the authors of [5] proposed the inviscid simplified Bardina model (or equivalently
the inviscid NSV equations) as a non-viscous (inviscid) regularization of the 3D Euler
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equations, subject to periodic boundary conditions. Motivated by this observation the
system (1.1)-(1.3) was also proposed in [5] as a regularization, for small values of α, of
the 3D Navier-Stokes (NS) equations for the purpose of direct numerical simulations for
both the periodic and the no-slip Dirichlet boundary conditions.

In [38] it is shown that the initial boundary value problem (1.1)-(1.3) has a unique
weak solution. In [25] and [26] it is shown that the semigroup generated by the problem
(1.1)-(1.3) has a finite dimensional global attractor.

In this paper we give an estimate of the fractal and Hausdorff dimensions of the global
attractor of a dynamical system generated by the problem (1.1)-(1.3), which is an im-
provement of the estimates done in [26]. Moreover, we derive estimates for the number of
asymptotic determining modes of the solutions of the problem (1.1)-(1.3). We also show
that there exists a number m such that each trajectory v(t) on the global attractor of
the dynamical system generated by this problem is uniquely determined by its projection
Pmv(t) onto the span{w1, ..., wm} of the first m eigenfunctions of the Stokes operator.
This observation is related to the notion of continuous data assimilations as it has been
presented in [29],[36] and [37].

It is worth stressing that by adding the regularizing term (−α∆vt) to the NS equations
the system (1.1)-(1.3) changes its parabolic character. In particular, the 3D system (1.1)-
(1.3) is globally well-posed forward and backwards in time. The semigroup generated
by the problem (1.1)-(1.3) is only asymptotically compact. In this sense the system is
similar to damped hyperbolic systems. We also remark that this type of inviscid regu-
larization has been recently used for the two-dimensional surface quasi-geostropic model
[28]. In particular, necessary and sufficient conditions for the formation of singularity
were presented in terms of regularizing parameter.

2. Preliminary

In this paper we will be using the following standard notations in the mathematical theory
of NS equations:

• Lp(Ω), 1 ≤ p ≤ ∞, and Hs(Ω) are the usual Lebesgue and Sobolev spaces, respec-
tively.

• For v = (v1, v2, v3), and u = (u1, u2, u3) we denote by

(u, v) =
3
∑

j=1

(vj , uj)L2(Ω), ‖v‖2 =
3
∑

j=1

‖vi‖2
L2(Ω), ‖∇v‖2 :=

3
∑

j,i=1

‖∂ivj‖2
L2(Ω).

• We set

V :=
{

v ∈ (C∞
0 (Ω))3 : ∇ · v = 0

}

.

• H is the closure of the set V in (L2(Ω))3 topology.
• P is the Helmholz-Leray orthogonal projection in (L2(Ω))3 onto the space H , and

h := Pf.
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• A := −P∆ is the Stokes operator subject to the no-slip homogeneous Dirichlet
boundary condition with the domain (H2(Ω))3 ∩ V . The operator A is a self-
adjoint positively definite operator in H , whose inverse A−1 is a compact operator
from H into H . Thus it has an orthonormal system of eigenfunctions {wj}∞j=1 of
A.

• We denote by {λj}∞j=1, 0 < λ1 ≤ λ2 ≤ · · · , the eigenvalues of the Stokes operator A
corresponding to eigenfunctions {wj}∞j=1, repeated according to their multiplicities.

• Vs := D(As/2), ‖v‖s := ‖As/2v‖, s ∈ R. V := V1 = (H1
0(Ω))3 ∩ H is the Hilbert

space with the norm ‖v‖1 = ‖u‖V = ‖∇u‖, thanks to the Poincaré inequality
(2.3). Clearly V0 = H .

• For u, v, w ∈ V we define the following bilinear form

B(u, v) := P ((u · ∇)v) and the trilinear form b(u, v, w) = (B(u, v), w).

The bilinear form B(·, ·) can be extended as a continuous operator B : V ×V → V ′,
where V ′ is the dual of V (see, e.g., [11]).

• For each u, v, w ∈ V

b(u, v, v) = 0, and b(u, v, w) = −b(u, w, v). (2.1)

Next we formulate some well known inequalities and a Gronwall type lemma that we
will be using in what follows.

Young’s inequality

ab ≤ ε

p
ap +

1

qε1/(p−1)
bq, for all a, b, ε > 0, with q = p/(p − 1), 1 < p < ∞. (2.2)

Poincaré inequality

‖u‖ ≤ λ
−1/2
1 ‖u‖1, ∀u ∈ V, (2.3)

where λ1 is the first eigenvalue of the Stokes operator under the homogeneous Dirichlet
boundary condition.
Hereafter, C will denote a dimensionless scale invariant constant which might depend on
the shape of the domain Ω.

Ladyzhenskaya inequalities ([11],[31],[33])

‖u‖L3 ≤ C‖u‖1/2‖∇u‖1/2, ∀u ∈ V, (2.4)

‖u‖L4 ≤ C‖u‖1/4‖u‖3/4
1 , ∀u ∈ V. (2.5)

Sobolev inequality (see, e.g., [1])

‖u‖L6 ≤ C‖u‖1, ∀u ∈ V. (2.6)

Gagliardo - Nirenberg inequalities (see, e.g., [2],[11],[33])

‖u‖L6/(3−2ε) ≤ C‖u‖1−ε‖u‖ε
1, 0 ≤ ε ≤ 1, ∀u ∈ V. (2.7)
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‖u‖Lp ≤ C‖u‖2/p‖u‖1−2/p
3/2 , p ∈ [2,∞), ∀u ∈ V3/2. (2.8)

Agmon inequality (see, e.g., [11])

‖u‖L∞(Ω) ≤ C‖u‖1/2
1 ‖Au‖1/2, ∀u ∈ V2. (2.9)

We will use also the following estimates of the trilinear form b(u, v, w) which follow from
(2.4) - (2.9) (see, e.g., [11]).

|b(u, v, w)| ≤ C‖u‖1/2‖u‖1/2
1 ‖v‖1‖w‖1, ∀u, v, w ∈ V, (2.10)

|b(u, v, u)| ≤ C‖u‖1/2‖u‖3/2
1 ‖v‖1, ∀u, v ∈ V, (2.11)

|b(u, v, w)| ≤ C‖u‖1‖v‖1‖w‖1/2‖w‖1/2
1 , ∀u, v, w ∈ V, (2.12)

|b(u, v, w)| ≤ Cλ
1/4
1 ‖u‖1‖v‖1‖w‖1, ∀u, v, w ∈ V. (2.13)

Lemma 2.1. ([23], see also [15]) Let a(t) and b(t) be locally integrable functions on (0,∞)
which satisfy for some T > 0 the conditions

lim inf
t→∞

1

T

∫ t+T

t

a(τ)dτ = γ, lim sup
t→∞

1

T

∫ t+T

t

a−(τ)dτ = Γ, lim inf
t→∞

1

T

∫ t+T

t

b+(τ)dτ = 0,

where γ > 0, Γ < ∞, a− = max{−a, 0} and b+ = max{b, 0}. If a non-negative, absolutely
continuous function φ(t), satisfies

φ′(t) + a(t)φ(t) ≤ b(t), t ∈ (0,∞),

then φ(t) → 0 as t → ∞.

Definition 2.2. (see, e.g., [15], [19],[32]) A semigroup S(t) : V → V, t ≥ 0 is called
asymptotically compact, if for any sequence of positive numbers tn → ∞ and any bounded
sequence {vn} ⊂ V the sequence {S(tn)vn} is precompact in V .

Theorem 2.3. (see, e.g., [19],[32],[43]) Assume that a semigroup S(t) : V → V, for
t ≥ t0 > 0 can be decomposed into the form

S(t) = Y (t) + Z(t),

where Z(t) is a compact operator in V for each t ≥ t0 > 0. Assume also that there is
a continuous function k : [t0,∞) × R

+ → R
+ such that for every R > 0 k(t, R) → 0 as

t → ∞ and

‖Y (t)v‖V ≤ k(t, R), for all t ≥ t0 > 0, and all ‖v‖V ≤ R.

Then S(t) : V → V, t ≥ 0 is asymptotically compact.

Next we state a result from [32] which will enable us to estimate the dimension of the
global attractor for the system (1.1)-(1.3). This result is typically useful in the context of
nonlinear damped hyperbolic systems, when the damping term is not strong enough to
control the instabilities rising from the perturbed nonlinearity.
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Theorem 2.4. (see [13], [32]) Let S(t), t ∈ R
+, be a semigroup generated by the problem

vt(t) = Φ(v(t)), v
∣

∣

t=0
= v0,

in the phase space H and let M ⊂ H is a compact invariant subset with respect to S(t).
Let S(t) and Φ(·) be uniformly differentiable on M and let L(t, v0) be a differential of Φ
at the point S(t)v0, v0 ∈ M. Suppose that Lc(t, v0) := L(t, v0)+L∗(t, v0), v0 ∈ M satisfies
the inequality

(Lc(t)u, u) ≤ −h0(t)‖u‖2 +

m
∑

k=1

hsk
(t)‖u‖2

sk
, (2.14)

for some numbers sk < 0, (k = 1, ..., m) and some functions h0, hsk
∈ L1,loc(R), hsk

(t) ≥
0, h0(t) ≥ 0 for all t ∈ R

+.
Then

dimH(M) ≤ dimf(M) ≤ N,

where N is such that

−h̄0(T ) +
m
∑

k=0

h̄sk
(T )N sk < 0,

for some T > 0. Here h̄i(T ) := 1
T

∫ T

0
hi(τ)dτ.

3. Existence of Global Attractors

Applying the Helmholtz - Leray projector P to the system (1.1)-(1.2), we obtain the
following equivalent functional differential equation

vt + νAv + α2Avt + B(v, v) = h, h = Pf, (3.1)

v(0) = v0. (3.2)

The question of global existence and uniqueness of (3.1)-(3.2) first was studied in [38],
where actually it was established that the problem (1.1)-(1.3) generates a continuous
semigroup S(t) : V → V, t ∈ R

+. In [5] the authors proved also the global regularity for
inviscid model of (3.1), i.e. when ν = 0.

In this section we show that the semigroup S(t) generated by the problem (1.1)-(1.3)
has an absorbing ball in V and an absorbing ball in V2. Then we show that S(t) : V → V,
for t ∈ R

+ is an asymptotically compact semigroup, and deduce the existence of a global
attractor in V .

Let us note that the formal estimates we provide below can be justified rigorously by
using a Galerkin approximation procedure and passing to the limit, by using the relevant
Aubin’s compactness theorem as for the NS equations ( see, for example, [11],[15], [41] or
[43]).

Absorbing ball in V . Taking the inner product of (3.1) with v, and noting that due to
(2.1) (B(v, v), v) = 0, we get

d

dt

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

+ 2ν‖v(t)‖2
1 ≤ 2‖h‖−1‖v(t)‖1. (3.3)
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It is easy to see by Poincaré inequality (2.3) that

ν‖v(t)‖2
1 ≥

ν

2

[

λ1‖v‖2 + ‖v(t)‖2
1

]

≥ d0

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

,

where d0 := ν
2
min{ 1

α2 , λ1} = νd1. Hence (3.3) implies

d

dt

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

+ d0

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

≤ 1

ν
‖h‖2

−1.

By Gronwall’s inequality we have

‖v(t)‖2 + α2‖v(t)‖2
1 ≤

e−d0(t−s)

[

‖v(s)‖2 + α2‖v(s)‖2
1 −

‖h‖2
−1

νd0

]

+
1

νd0
‖h‖2

−1. (E2)

Therefore,

lim sup
t→∞

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

≤ ‖h‖2
−1

νd0

. (E1)

The last inequality implies that the semigroup S(t) : V → V, t ∈ R
+ generated by the

problem (1.1)-(1.3) (or equivalently (3.1)-(3.2)) has an absorbing ball

B1 :=

{

v ∈ V : ‖v‖1 ≤
2√

να2d0

‖h‖−1

}

. (3.4)

Hence, the following uniform estimate is valid

‖v(t)‖1 ≤ M1, (3.5)

where M1 = 2
να

√
d1
‖h‖−1, for t large enough ( t ≫ 1) depending on the initial data.

Asymptotic compactness. By using the Galerkin procedure it is not difficult to prove
the following

Proposition 3.1. Let s ∈ R. If w0 ∈ Vs, g ∈ L2([0, T ); Vs−2) then the linear problem

zt + α2Azt + νAz = g(t), z(0) = 0 (3.6)

has a unique weak solution which belongs to C([0, T ); Vs) and the following inequality holds

sup
t∈[0,T )

‖z(t)‖s ≤ C‖g‖L2(0,T ;Vs−2), s ∈ R.

Proposition 3.2. Let h ∈ H, be time independent, then the semigroup S(t), t ≥ 0 is
asymptotically compact semigroup in V .

Proof. Let v0 ∈ V . First we observe that S(t) has the representation

S(t)v0 = Y (t)v0 + Z(t)v0, (3.7)

where Y (t) is the semigroup, generated by the linear problem

yt + νAy + α2Ayt = 0, y(0) = v0, (3.8)

and z(t) = Z(t)(v0) is the solution of the problem

zt + νAz + α2Azt = h − B(v(t), v(t)), z(0) = 0, (3.9)
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where v is the solution of (1.1)-(1.3) (or equivalently (3.1)-(3.2)) with the initial data v0.
Taking the H inner product of (3.8) with y we obtain

d

dt

[

‖y(t)‖2 + α2‖y(t)‖2
1

]

+ d0

[

‖y(t)‖2 + α2‖y(t)‖2
1

]

≤ 0,

where we recall that d0 = νd1 = ν 1
2
min{ 1

α2 , λ1}.
This inequality implies that

‖y(t)‖2 + α2‖y(t)‖2
1 ≤ e−d0t

[

‖v0‖2 + α2‖v0‖2
1

]

, for all t > 0. (3.10)

So the semigroup Y (t) : V → V is exponentially contractive.

Due to Hölder’s inequality and the Sobolev inequality (2.6) we have

‖B(v, v)‖−1/2 = sup
φ∈V,‖A1/4φ‖=1

b(v, v, φ) =

sup
φ∈V,‖A1/4φ‖=1

∫

Ω

P ((v · ∇)v) · φdx = sup
φ∈V,‖A1/4φ‖=1

∫

Ω

(v · ∇)v · Pφdx =

sup
φ∈V,‖A1/4φ‖=1

∫

Ω

(v · ∇)v · φdx ≤ C sup
φ∈V,‖A1/4φ‖=1

‖v‖L6‖v‖1‖φ‖L3.

Hence due to the Sobolev inequality ‖φ‖L3 ≤ C‖A1/4φ‖ and (2.6) we have

‖B(v, v)‖−1/2 ≤ C sup
φ∈V,‖A1/4φ‖=1

‖v‖2
1‖A1/4φ‖ ≤ C‖v‖2

1, (3.11)

and
B(v, v) ∈ L∞(R+; V−1/2).

The function v(t) as a solution of the problem (3.1)-(3.2) with v0 ∈ V belongs to
L∞(R+; V ). Thus due to the inequality (3.11) and the Proposition 3.1, the solution
of the problem (3.9) belongs to C(R+; V3/2), that is the operator Z(t) maps V into V3/2.
Since the embedding V3/2 ⊂ V is a compact embedding, the operator Z(t) is a compact
operator for each t > 0. Hence, the semigroup S(t) satisfies the conditions of the Theorem
2.3, and is an asymptotically compact semigroup. �

Since each bounded dissipative and asymptotically compact semigroup possesses a com-
pact global attractor (see, e.g., [2], [19], [31], [43]) we have:

Theorem 3.3. If h ∈ H then the semigroup S(t) : V → V has an absorbing ball B1 =
{v ∈ V : ‖v‖1 ≤ M1} and a global attractor A1 ⊂ V . The attractor A1 is compact,
connected and invariant.

Next we show that the global attractor A1 is a bounded subset of V2.

Taking the inner product in V1/2 of the equation (3.9) with z, and remembering that
v(t) = y(t) + z(t) ∈ A1, we get

d

dt

[

‖z(t)‖2
1/2 + α2‖z(t)‖2

3/2

]

+ 2ν‖z(t)‖2
3/2 =

2(h, z(t))1/2 − 2(B(v(t), v(t)), z(t))1/2. (3.12)
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The first term on the right-hand side has the estimate

|2(h, z(t))1/2| ≤ 2‖h‖−1/2‖z(t)‖3/2 ≤
ν

2
‖z(t)‖2

3/2 +
2

ν
‖h‖2

−1/2.

The second term, due to (3.11), has the following estimate

|2(B(v(t), v(t)), z(t))1/2| ≤ C‖(B(v(t), v(t))‖−1/2‖z(t)‖3/2 ≤
ν

2
‖z(t)‖2

3/2 +
C

ν
‖B(v(t), v(t))‖2

−1/2 ≤
ν

2
‖z(t)‖2

3/2 +
C

ν
‖v‖4

1.

Taking into account the last two inequalities in (3.12) we obtain

d

dt

[

‖z(t)‖2
1/2 + α2‖z(t)‖2

3/2

]

+ 2d0

[

‖z(t)‖2
1/2 + α2‖z(t)‖2

3/2

]

≤
C

ν

(

‖v(t)‖4
1 + ‖h‖2

−1/2

)

.

Integrating the last inequality we obtain the estimate

‖z(t)‖2
3/2 ≤

C

d0α2ν

(

M4
1 + ‖h‖2

−1/2

)

= L0. (3.13)

Since the attractor A1 is invariant, S(t)A1 = A1, and due to (3.10) the inequality

‖v(t) − z(t)‖1 = ‖y(t)‖1 ≤ C(‖y(0)‖1)e
−d0t

holds, we deduce that for each u ∈ A1 there exists a sequence {z(tk)}, tk → ∞, corre-
sponding to vk(0) ∈ A1, such that

u = lim
k→∞

z(tk), vk(0) ∈ A1. (3.14)

Thanks to (3.13) the sequence {z(tk)} is belonging to a ball in V3/2, whose radius L0

depends only on M1 and ‖h‖. Hence, the sequence {z(tk)} is weakly compact in V3/2.
Thus, by using (3.14) and the inequality ‖u‖3/2 ≤ lim inftk→∞ ‖z(tk)‖3/2, we see that A1

is bounded in V3/2.
Knowing that A1 is bounded in V3/2 we can use similar arguments to show that A1 is also
bounded in V5/3 and in V2.

V2 absorbing ball. To show that the semigroup S(t) : V2 → V2 has an absorbing ball in
the phase space V2 = D(A) we take H inner product of (3.1) with Av(t):

d

dt

[

‖v(t)‖2
1 + α2‖Av(t)‖2

]

+ 2ν‖Av(t)‖2 + 2(B(v(t), v(t)), Av(t)) = 2(h, Av(t)). (3.15)

For the first term in the right hand side of (3.15) we have

|2(h, Av(t))| ≤ 1

ν
‖h‖2 + ν‖Av(t)‖2. (3.16)
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By using the Agmon’s inequality (2.9) and Young’s inequality (2.2) with p = 4/3 we can
estimate the last term in the left-hand side of (3.15) as follows

2|(B(v, v), Av)| ≤ C‖v‖L∞(Ω)‖‖v‖1‖‖Av‖ ≤ C‖v‖3/2
1 ‖‖Av‖3/2 ≤

3

4
ǫ‖Av‖2 +

C

ǫ3
‖v‖6

1.

Employing (3.16) and the last inequality, with ǫ = 2ν/3, we obtain from (3.15)

d

dt

[

‖v(t)‖2
1 + α2‖Av(t)‖2

]

+ ν‖Av(t)‖2 ≤ 1

ν
‖h‖2 +

C

ν3
‖v(t)‖6

1. (3.17)

It follows from (3.17) that

d

dt

[

‖v(t)‖2
1 + α2‖Av(t)‖2

]

+ d0

[

‖v(t)‖2
1 + α2‖Av(t)‖2

]

≤ 1

ν
‖h‖2 +

C

ν3
‖v(t)‖6

1.

Let t0 be so that (3.5) holds for all t ≥ t0. Then integrating the last inequality over the
interval (t0, t) we get

‖v(t)‖2
1 + α2‖Av(t)‖2 ≤

[

‖v(t0)‖2
1 + α2‖Av(t0)‖2

]

e−d0(t−t0) +
R2

d0

(

1 − e−d0(t−t0)
)

, (3.18)

where R2 := 1
ν
‖h‖2 + C

ν3 M
6
1 .

The last inequality implies existence of an absorbing ball

B2 := {v ∈ V2 : ‖Av‖ ≤ M2}, (3.19)

where M2
2 = 2R2

(α2+λ−1
1 )d0

. That is, for all t >> 1, we have ‖Av(t)‖ ≤ M2.

Similarly, we can prove the following theorem

Theorem 3.4. If h ∈ V1, then the semigroup S(t) : V2 → V2 has a global attractor
A2 ⊂ V2. The attractor A2 is compact, connected and invariant. Moreover, A2 is a
bounded set in V3.

Remark 3.5. Let us note that in case we assume in Theorem 3.3 that h ∈ V1, instead of
h ∈ H , then the attractors A1 and A2 coincide.

4. Estimates for the Number of Determining Modes

It is asserted, based on physical heuristic arguments, that the long-time behavior of tur-
bulent flows is determined by a finite number degrees of freedom. This concept was
formulated more rigorously for 2D NS equations by introducing the notion of determining
modes in [17]. In [17] it was shown that there exists a number m such that if the first m
Fourier modes of two different solutions of the NS equations have the same asymptotic
behavior, as t → ∞, then the remaining infinitely many number of modes have the same
asymptotic behavior.
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In [31] it was shown that the semigroup generated by the initial boundary value problem
for the 2D NS equations with Dirichlet boundary condition has a global attractor which
is compact, invariant and connected . It was also established in [31] that there exists a
number m such that if projections of two different trajectories on the attractor on the m
dimensional subspace of H , spanned on the first m eigenfunctions of the Stokes operator,
coincide for each t ∈ R, then these trajectories completely coincide for each t ∈ R.

The results obtained in [17] and [31] were developed, generalized, and applied to var-
ious infinite dimensional dissipative problems (see, e.g., [7],[8],[9],[15],[16],[18],[20],[22],
[23], [24],[32],[36],[37] and references therein).

In this section we are going to give estimates for the number of determining modes
(both asymptotic and for trajectories on the attractor) for 3D NSV equations.

Asymptotic determining modes. Let us denote by Pm the L2 -orthogonal projection
from H onto the m- dimensional subspace Hm = span {w1, w2, ..., wm}. We set Qm =
I − Pm.
Let v and u be two solutions of NSV equations

vt + νAv + α2Avt + B(v, v) = h(t), v(0) = v0, (4.1)

ut + νAv + α2Aut + B(u, u) = g(t), v(0) = v0. (4.2)

Definition 4.1. A set of modes {w1, · · · , wm} is called asymptotically determining (see
[15],[17]) if

lim
t→∞

‖v(t) − u(t)‖1 = 0

whenever

lim
t→∞

‖h(t) − g(t)‖−1 = 0 and lim
t→∞

‖Pm(v(t) − u(t))‖1 = 0.

Theorem 4.2. Assume that the following conditions are satisfied

‖h(t)‖−1 ≤ h < ∞, ∀t ∈ R. (4.3)

lim
t→∞

‖h(t) − g(t)‖−1 = 0 and lim
t→∞

‖Pm(v(t) − u(t))‖ = 0. (4.4)

Then the first m eigenfunctions of the Stokes operator are asymptotically determining for
the NSV equations with homogeneous Dirichlet boundary conditions, provided m is large
enough such that

λm+1 > C
h4

α4ν8d2
1

. (4.5)

Proof. It is clear that the function w = v − u satisfies

wt + νAw + α2Awt + B(v, w) + B(w, v) − B(w, w) = θ(t), v(0) = v0, (4.6)

where θ(t) = h(t) − g(t).
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It is clear from the proof of (E1) that

lim sup
t→∞

‖v(t)‖1 ≤
h

αν
√

d1

. (4.7)

Multiplying (4.6) by q(t) = Qmw(t) in H we obtain

d

dt

[

‖q‖2 + α2‖q‖2
1

]

+ 2ν‖q‖2
1 + 2b(q, v, q) =

2(θ, q) − 2b(v, p, q) − 2b(p, p, q) + 2b(q, p, q), (4.8)

where p = Pmw.
Before estimating the terms of (4.8) we observe that for each φ ∈ V we have

‖Qmφ‖1 ≥ λm+1‖Qmφ‖ and ‖Pmφ‖1 ≤ λm‖Pmφ‖. (4.9)

Due to the inequality (2.11) the term b(q, v, q) has the following estimate:

2|b(q, v, q)| ≤ C‖q‖1/2‖‖q‖3/2
1 ‖v‖1 ≤

C

λ
1/4
m+1

‖q‖2
1‖v‖1. (4.10)

The first term in the right-hand side of (4.8) has the estimate

2|(θ, q)| ≤ 2

ν
‖θ‖2

−1 +
ν

2
‖q‖2

1. (4.11)

Employing the inequalities (2.12) and (4.9) we estimate the second term in the right-
hand side of (4.8) as follows

2|b(v, p, q)| ≤ ‖v‖1‖p‖1‖q‖1/2‖q‖1/2
1 ≤ Cλmλ

−1/4
m+1‖p‖1

(

‖q‖2
1 + ‖v‖2

1

)

. (4.12)

Other terms in the right-hand side of (4.8) can be estimated in a similar way to (4.12).
Using estimates (4.10)-(4.12) and the estimates of other terms in the right-hand side of
(4.8) we obtain

d

dt

[

‖q‖2 + α2‖q‖2
1

]

+
ν

2
‖q‖2

1 + ‖q‖2
1

(

ν − C

λ
1/4
m+1

‖v‖1

)

≤ b(t), (4.13)

where b(t) is satisfying the corresponding condition of Lemma 1.

Let us choose t1 > 0 so large that ‖v(t)‖1 ≤ M1, for all t ≥ t1 and m so that µ(m) :=
λm+1 − (CM1

ν
)4 > 0. Then it follows from the last inequality the following relation

d

dt

[

‖q‖2 + α2‖q‖2
1

]

+
ν

2
‖q‖2

1 ≤ b(t), for all t ≥ t1,

or
d

dt

[

‖q‖2 + α2‖q‖2
1

]

+ dm

[

‖q‖2 + α2‖q‖2
1

]

≤ b(t), for all t ≥ t1, (4.14)

where dm = ν
4
min{ 1

α2 , λm+1}.

Thus, due to Lemma 1 the statement of the theorem follows. �
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Remark 4.3. Let us observe that the number m, for which λm+1 > Ch4

ν8λ2
1

holds, is an

upper bound for the minimal number of asymptotically determining modes for weak
solutions (i.e., solutions belonging to L∞(R+; H) ∩ Lloc(R

+; V )) of the initial boundary
value problem for the 3D Navier Stokes equations.
In fact, for weak solutions of NS equations instead of (4.13) we have

d

dt
‖q‖2 + λ

3/4
m+1

(

νλ
1/4
m+1 − C‖v‖1

)

‖q‖2 ≤ b(t),

and instead of (4.7) we have for weak solutions of NS equations (see, e.g., [11], [10], [20]
and [43])

lim sup
t→∞

1

T

∫ t+T

t

‖v(τ)‖2
1dτ ≤ h2

Tν3λ2
1

+
h2

ν2λ1

.

Hence

lim sup
t→∞

1

T

∫ t+T

t

‖v(τ)‖1dτ ≤ h√
Tν3/2λ1

+
h

ν
√

λ1

.

Thus, the function a(t) := λ
3/4
m+1

(

νλ
1/4
m+1 − C‖v‖1

)

satisfies conditions of Lemma 2.1

provided T is large enough and

λm+1 > C
h4

ν8λ2
1

.

Different estimates of asymptotic determining modes for weak solutions of 3D NS equa-
tions are obtained in [12] (see also [14], [15] and references therein). The estimate obtained
in [12] involves generalization of the so called mean rate dissipation of energy, per mass
and time, i.e. it involves

ε = ν lim sup
t→∞

1

t

∫ t

0

sup
x∈Ω

‖∇v(x, τ)‖2dτ.

For other related results concerning estimates of the number of asymptotic determining
degrees of freedom for weak solutions of the 3D NS equations see, e.g., [10], [20] and
references therein.

Determining modes on the attractor. Next we give an estimate of determining modes
for trajectories on the attractor.

Definition 4.4. A set of modes {w1, · · · , wm} is called determining on the attractor (in
the sense of [31]) if for each two trajectories v(t) and u(t) on the attractor A1 the equality

‖Pm(v(t) − u(t))‖1 = 0, for all t ∈ R

implies
v(t) = u(t), ∀t ∈ R.

Let v and u be arbitrary two trajectories in the attractor A1 of (3.1). Then w = v − u
satisfies

wt + α2Awt + νAw + B(w, v) + B(u, w) = 0. (4.15)

Taking the inner product of (4.15) with q = Qmw we get

d

dt

[

‖q‖2 + ‖q‖2
1

]

+ 2ν‖q‖2
1 = −2b(w, v, q) − 2b(u, w, q). (4.16)
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Assume that Pmw(t) = 0, for all t ∈ R, then Qmw = q satisfies

d

dt

[

‖q‖2 + ‖q‖2
1

]

+ 2ν‖q‖2
1 = 2b(q, v, q). (4.17)

Due to (2.11) we have

|2b(q, v, q)| ≤ C‖q‖1/2
1 ‖q‖3/2

1 ‖v‖1

Noting that on the attractor A1 we have ‖v‖1 ≤ M1, we employ the last inequality, and
inequality (4.9) to obtain from (4.16)

d

dt

[

‖q‖2 + α2‖q‖2
1

]

+ ν‖q‖2
1 + ‖q‖1/2‖q‖3/2

1

(

νλ
1/4
m+1 − CM1

)

≤ 0. (4.18)

Let us choose m, large enough, so that λm+1 ≥ (M1C
ν

)4. Then (4.18) implies

d

dt

[

‖q‖2 + α2‖q‖2
1

]

+ lm
[

‖q‖2 + α2‖q‖2
1

]

≤ 0,

where lm = ν
2
min{λm+1,

1
α2}.

Finally, we integrate the last inequality and get

‖q(t)‖2 + α2‖q(t)‖2
1 ≤ exp[−lm(t − s)]

[

‖q(s)‖2 + α2‖q(s)‖2
1

]

. (4.19)

Passing to the limit as s → −∞ we obtain

‖q(t)‖2 + α2‖q(t)‖2
1 = 0, for all t ∈ R.

Thus, the following theorem is true.

Theorem 4.5. Let v and u be two solutions of the problem (1.1)-(1.3) from the attractor
A1. Assume that Pm(u(t)) = Pm(v(t)), ∀t ∈ R, where m is so that

λm+1 ≥ C
‖h‖4

−1

α4ν8d2
1

. (4.20)

Then v(t) = u(t), for allt ∈ R.

5. Estimates of Dimensions of the Global Attractor

In this section we show the differentiability of the semigroup with respect to the initial
data. This is to prepare for implementing Theorem 2.4 in order to estimate the dimension
of the global attractor.

Theorem 5.1. Let u0 and v0 be two elements of V . Then there is a constant K =
K(‖u0‖1, ‖v0‖1) such that

‖S(t)v0 − S(t)u0 − Λ(t)(v0 − u0)‖1 ≤ K‖v0 − u0‖2
1, (5.1)

where the linear operator Λ(t) : V → V, for t > 0 is the solution operator of the problem

ξt + α2Aξt + Aξ + B(ξ, v) + B(v, ξ) − B(ξ, ξ) = 0, ξ(0) = v0 − u0, (5.2)

and v(t) = S(t)v0. That is, for every t > 0, the map S(t)v0, as a map S(t) : V →
V is Fréchet differentiable with respect to the initial data, and its Fréchet derivative
Dv0(S(t)v0)w0 = Λ(t)w0.
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Proof. It is easy to see that the function η(t) := v(t) − u(t) − ξ(t) = S(t)(v0 − u0) − ξ(t)
satisfies

ηt + α2Aηt + νAη + B(η, v) + B(v, η) − B(w, w) = 0,

where w = v − u. Taking the inner product of the last equation with η we obtain

d

dt

[

‖η‖2 + α2‖η‖2
1

]

+ 2ν‖η‖2
1 = −2b(η, v, η) − 2b(w, w, η). (5.3)

By using inequalities (3.5) and (2.5) and Young’s inequality we can estimate the terms in
the right-hand side of (5.3) as follows.
By (2.11) we have

|2b(η, v, η)| ≤ C‖v‖1‖η‖1/2‖η‖3/2
1 ≤ CM1‖‖η‖1/2‖η‖3/2

1 ≤ CM1

4
(‖η‖2 + 3‖η‖2

1).

By (2.10)

|2b(w, w, η)| = |2b(w, η, w)| ≤ Cλ
− 1

2
1 ‖η‖1‖w‖2

1 ≤ ν‖η‖2
1 +

C

4νλ1

‖w‖4
1.

Hence, we obtain from (5.3)

d

dt

[

‖η‖2 + α2‖η‖2
1

]

≤ CM1

4
(‖η‖2 + 3‖η‖2

1) +
C

4νλ1

‖w‖4
1. (5.4)

The function w(t) = v(t) − u(t) = S(t)v0 − S(t)u0 satisfies

wt + α2Awt + νAw + B(w, v) + B(v, w) − B(w, w) = 0, w(0) = v0 − u0 := w0.

Taking the inner product of the last equation with w, and using (2.13) and (E2) we obtain

d

dt

[

‖w‖2 + α2‖w‖2
1

]

+ 2ν‖w‖2
1 = 2b(w, v, w) ≤ 2Cλ

1/4
1 ‖v‖1‖w‖2

1 ≤

κ1‖v‖1

[

‖w‖2 + α2‖w‖2
1

]

,

where k1 = 2Cλ
1/4
1 α−4

[

‖v(0)‖2 + α2‖v(0)‖2
1 + (1/νd0)‖h‖2

−1

]1/2
. Integrating last inequal-

ity we get

‖w(t)‖2
1 ≤ (1 +

1

λ1α2
)‖w(0)‖2

1 exp(κ1t). (5.5)

It follows from (5.4) and (5.5) that

d

dt

[

‖η‖2 + α2‖η‖2
1

]

≤ A1

[

‖η‖2 + α2‖η‖2
1

]

+ A2‖w(0)‖4
1 exp(2κ1t).

Integrating and using Gronwall’s inequality :

‖η(t)‖2
1 ≤ A(t)‖w(0)‖4

1,

where A(t) := A2

2κ1α2 exp(2κ1 + A1)t. So we have

‖v(t) − u(t) − ξ(t)‖1

‖v0 − u0‖1

≤
√

A(t)‖v0 − u0‖1.
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Thus the differentiability of S(t) with respect to the initial data follows.
We rewrite (3.1) in the following form

v̂t = − ν

α2
v̂ +

ν

α2
G−2v̂ − G−1B(G−1v̂, G−1v̂) + G−1h, (5.6)

where G2 = I + α2A, and v̂ = Gv.
The equation of linear variations corresponding to (5.6) has the form

wt = L(t)w, (5.7)

where

L(t)w := − ν

α2
w +

ν

α2
G−2w − G−1B(G−1w, G−1v̂) − G−1B(G−1v̂, G−1w).

Now we consider the quadratic form

(L(t)w, w) = − ν

α2
‖w‖2 +

ν

α2
‖G−1w‖2 − b(G−1w, G−1v̂, G−1w).

By using inequality (2.11) and the inequality ‖G−1u‖1 ≤ 1
α
‖u‖ we get

|b(G−1w, G−1v̂, G−1w)| ≤ 1

α5/2
‖G−1w‖1/2‖w‖3/2‖v̂‖.

Employing Young’s inequality with p = 4/3, ǫ = 2ν/(3α2), and the fact that on the global
attractor A1 the estimate ‖v̂‖ ≤ (λ1 + α2)1/2M1 holds, we obtain

|b(G−1w, G−1v̂, G−1w)| ≤ ν

2α2
‖w‖2 +

C(λ1 + α2)2M4
1

ν3α4
‖G−1w‖2.

Due to the last inequality the quadratic form (L(t)w, w) has the following estimate

(L(t)w, w) ≤ − ν

2α2
‖w‖2 +

(

ν

α2
+

C(λ1 + α2)2M4
1

ν3α4

)

‖G−1w‖2 (5.8)

Thus, we can use Theorem 2.4 to get the desired estimate for the fractal dimension of the
attractor A1

df(A1) ≤ C
(λ1 + α2)2M4

1

ν4α2
+ 2 ≤ C

(λ1 + α2)2‖h‖4
−1

ν8α6d2
1

+ 2. (5.9)

We recall that M1 = 2
να

√
d1
‖h‖−1, d1 = 1

2
min{α−2, λ1}. Let us note that in our situation

h̄0(t) =
ν

2α2
, s0 = 0, s1 = −1, h̄s1(t) =

ν

α2
+

C(λ1 + α2)2M4
1

ν3α4

and h̄sk
(t) = 0, k ≥ 2.

�
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6. The Inviscid Limit

Here we show that when ν → 0 the weak solution of the initial boundary value problem
for the NSV system, i.e. of the problem (1.1)-(1.3), is tending to the weak solution of the
initial boundary value problem for the inviscid simplified Bardina model

ut − α2∆ut + (u · ∇)u + ∇p = f, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(6.1)

u(x, 0) = v0(x), x ∈ Ω; u(x, t) = 0, x ∈ ∂Ω, t > 0. (6.2)

The problem of existence and uniqueness of solutions of the initial boundary value
problem, with periodic boundary conditions, for the 3D viscous and inviscid simplified
Bardina models is studied in [5]. In particular, it is shown in [5] that the problem (6.1)-
(6.2) has a unique solution u ∈ C1(R; V ), for initial value u0 ∈ V .
Applying to (6.1) the Helmholtz-Leray operator P we obtain the equivalent functional
differential equation

ut + α2Aut + B(u, u) = h, (6.3)

u(0) = v0. (6.4)

Let v(t) be the solution of (6.1) with initial v(0) = v0 ∈ V . Denote by w = v − u. Then
w satisfies the relation

wt + α2Awt + B(w, v) + B(u, w) = −νAv, (6.5)

w(0) = 0, (6.6)

which holds in the space V ′. Taking the action of (6.5) on w, which belongs to V , and
using a Lemma of Lions-Magenes concerning the derivative of functions with values in
Banach space (cf. Lemma 1.2 Chap. III-p.169-[44]), we obtain

d

dt

[

‖w‖2 + α2‖w‖2
1

]

= −2ν(∇v,∇w) − 2b(w, v, w). (6.7)

For the first term in the right-hand side we have

|2ν(∇v,∇w)| ≤ ν2‖v‖2
1 + ‖w‖2

1.

The second term we estimate by using the inequality (2.13)

|2b(w, v, w)| ≤ Cλ
1/4
1 ‖v‖1‖w‖2

1.

Utilizing last two inequalities in (6.7) we get

d

dt

[

‖w‖2 + α2‖w‖2
1

]

≤ ν2‖v‖2
1 +

(

1 + Cλ
1/4
1 ‖v‖1

)

‖w‖2
1 ≤

ν2‖v‖2
1 + α−2

(

1 + 2Cλ
1/4
1 ‖v‖1

)

[

‖w‖2 + α2‖w‖2
1

]

.

Integrating the last inequality and using the standard Gronwall’s lemma we get the esti-
mate

‖w(t)‖2 + α2‖w(t)‖2
1 ≤ ν2

∫ t

0

‖v(τ)‖2
1dτ exp

(

t

α2
+

2Cλ
1/4
1

α2

∫ t

0

‖v(τ)‖1dτ

)

. (6.8)
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Next we show that on each finite interval [0, T ] we can estimate ‖v‖1 by a constant
depending only on ‖v0‖, ‖v0‖1 and the parameter α. Indeed, (3.3) implies that

d

dt

[

‖v(t)‖2 + α2‖v(t)‖2
1

]

≤ α−2‖h‖2
−1 + α2‖v(t)‖2

1.

Integrating the last inequality over (0, t) with respect to time variable we obtain

‖v(t)‖2 + α2‖v(t)‖2
1 ≤ ‖v0‖2 + α2‖v0‖2

1 + tα−2‖h‖2
−1 +

∫ t

0

[

‖v(τ)‖2 + α2‖v(τ)‖2
1

]

dτ.

By using the Gronwall inequality we get

‖v(t)‖2
1 ≤ DT eT , for all t ∈ [0, T ].

Here DT := α−2
[

‖v0‖2 + α2‖v0‖2
1 + Tα−2‖h‖2

−1

]

.

Hence (6.8) implies

‖w(t)‖2 + α2‖w(t)‖2
1 ≤ ν2TDT eT exp

(

α−2T + 2Cα−2λ1/4TD
1/2
T eT/2

)

. (6.9)

Remark 6.1. The problem of convergence of solutions of the NSV equations to solutions
of NS equations as α → 0 was studied in [39]. It is shown in [39] that strong solutions
of the NSV equations converge to strong solutions of the NS equations as α → 0, under
specified smallness conditions on the initial data of the problem.

Remark 6.2. The results obtained in this paper are valid also for the solutions of the
initial boundary value problem for the 3D NSV equations with periodic boundary condi-
tions.

Finally we would like to notice that the results reported here can be extended to other
similar equations, a subject of future work. For instance, for the 3D equations of motion
of Kelvin-Voight fluids of order L ≥ 1:

vt + (v · ∇)v − µ0∆vt − µ1∆v −
L
∑

l=1

βl∆ul + ∇p = f,

∂tul + αlul − v = 0, l = 1, ..., L.

where µ0, µ1, βl, αl > 0, l = 1, ..., L. Also for the generalized Benajamin-Bona-Mahony
(GBBM) equation:

ut − α2∆ut + ν∆u + ∇ · ~F (u) = h, (6.10)

where a smooth vector field ~F (u) satisfies the growth condition

|~F (u)| ≤ C(1 + |u|2).
The problem of existence of a finite dimensional global attractor and estimates for the
number of determining modes on the global attractor of Kelvin-Voight fluids of order
L ≥ 1 is established in [27]. In [45] the existence of a finite dimensional global attractor
is established for 1D GBBM equation under periodic boundary conditions. Existence of
a finite dimensional global attractor for 3D GBBM under periodic boundary conditions is
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proved in [6]. In [42] it was shown the existence of the global attractor for GBBM equation
in H1(R3). Moreover, the existence of a global attractor for a similar two-dimensional
model describing the motion of a second-grade fluid is established in [35].
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