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Abstract

In this paper, a variant of nonlinear Galerkin method is proposed and analysed for equa-
tions of motions arising in a Kelvin-Voigt model of viscoelastic fluids. Some new a priori
bounds are obtained for the exact solution when the forcing function is independent of time
or belongs to L∞ in time. As a consequence, existence of a global attractor is shown. For
the spectral Galerkin scheme, existence of a unique discrete solution to the semidiscrete
scheme is proved and again existence of a discrete global attractor is established. Further,
optimal error estimate in L∞(L2) and L∞(H1

0)-norms are proved. Finally, a modified non-
linear Galerkin method is developed and optimal error bounds are derived. It is observed
that optimum accuracy in L∞(H1

0) is achieved when N = O(n3), for dimension d = 2, and
N = O(n5/2), for d = 3. Moreover, for optimal accuracy in L∞(L2)-norm, it is noted that
N = O(n3/2), when dimension d = 2, and N = O(n5/4), in d = 3. It is further shown for
both methods that error estimates are valid uniformly in time under uniqueness condition.

Keywords: Viscoelastic fluids, Kelvin-Voigt model, nonlinear Galerkin method, spectral ap-
proximations, a priori error bound, uniform convergence in time .
AMS 1991 Classification:

1. Introduction. The motion of an incompressible fluid in a bounded domain Ω in Rd

( d = 2, 3 ) is described as in Chorin and Marsden [3] and Joseph [8] by the following system
of partial differential equations:

∂u

∂t
+ (u · ∇)u−∇σ +∇p = F(x, t), x ∈ Ω, t > 0, (1.1)

and

∇ · u = 0, x ∈ Ω, t > 0, (1.2)

with appropriate initial and boundary conditions. Here σ = (σik) denotes the stress tensor
with trσ = 0, u represents the velocity vector, p is the pressure of the fluid and F is the external
force. The defining relation between the stress tensor σ and the tensor of deformation velocities
D = (Dik) = 1

2(uixk + ukxi), called the equation of state or sometimes rheological equation, in
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fact establishes the type of fluid under consideration. In the fag end of the nineteenth century,
models of viscoelastic fluids have been proposed which take into consideration the prehistory
of the flow. One such model was proposed by Kelvin [11] and Voigt [19] and hence, this model
is named after them. In this case, see Oskolkov [14], the rheological relation is expressed by

σ = 2ν(1 + κν−1 ∂

∂t
)D, ν, κ > 0, (1.3)

where ν is the kinematic coefficient of viscosity and κ is the retardation time. On substitution
of (1.3) in (1.1)–(1.2), we now obtain the following equations of motion for a Kelvin-Voigt
fluid:

ut + (u · ∇)u− κ∆ut − ν∆u +∇p = F(x, t), x ∈ Ω, t > 0, (1.4)

and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0, (1.5)

with initial and homogeneous Dirichlet boundary conditions

u(x, 0) = u0 in Ω, u = 0 on ∂Ω, t ≥ 0. (1.6)

Here, Ω is a bounded domain in two or three dimensional Euclidean space Rd (d = 2, 3) with
smooth boundary ∂Ω. For this particular setting, the Kelvin-Voigt fluid is characterized by the
fact that after instantaneous removal of the stresses, the velocity of the flow does not vanish
immediately, but fades out like exp(−κ−1t) see Oskolkov [14].

In this paper, we first derive some a priori bounds for the solution of (1.4)–(1.6). Then we
apply spectral Galerkin method to discretize in the direction of space, keeping time variable
continuous and call it semi-discrete scheme. We establish optimal error estimates for the semi-
discrete scheme. Finally, a variant of nonlinear spectral Galerkin method is analyzed and
optimal error estimates in L∞(L2) as well as L∞(H1)-norms are derived.

It is to be noted that the system can be thought of as a perturbation of the Navier-Stokes
equations in the sense that −κ∆ut is added to the NS equations. Therefore, we would like to
investigate ‘how far the results on spectral Galerkin analysis for the Navier-Stokes equations
(see, [17], [7]) can be carried over to the present case’.

Based on the analysis of Ladyzenskaya [12], Oskolkov [14] has proved global existence
of unique ‘almost’ classical solution in finite time interval for the initial and boundary value
problem (1.4)–(1.6).

Earlier,Rautmann [17] has discussed spectral Galerkin method for Navier-Stokes equations
and derived error estimates which may be thought of local in time in the sense that the
constants involved in error analysis depend exponentially on time. Subsequently, Heywood [7]
has analysed spectral Galerkin method for Navier-Stokes equations and established a priori
error estimates in L∞(H1)-norm which is valid for uniform in time under the assumption that
the exact solution is asymptotically stable. This analysis is further extended to the Kelvin-
Vight system (1.4)–(1.6) by Oskolkov [15] and again error estimate is proved for L∞(H1)-norm.

While there are substantial literature available on nonlinear spectral Galerkin method
applied to the Navier-Stokes system, see, He et al. [4]-[6] and in the context of Oldroyd model,
see Cannon et al.[2], there is hardly any literature devoted to the system (1.4)–(1.6). Thus,
the present investigation is a step towards achieving this. In this article, we not only discuss
the optimal error estimates in L2 for the spectral Galerkin method, but also derive optimal
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a priori estimates for the nonlinear Galerkin method which is valid uniformly in time under
uniqueness assumption. which is discussed in Section 3. We now summarise our major results
in this article as follow:

• New regularity results for the system (1.4)–(1.6) are derived by using a change of
variable û = eαtu to take care of the forcing function which may be independent of
time or may be L∞ in time. As a consequence, existence of a global attractor is derived.

• For the spectral Galerkin method, existence of a unique discrete solution is proved us-
ing a priori estimates for the discrete problem and again as a remark existence of a
global discrete attractor is shown. Further, optimal error estimates in L∞(L2) and
L∞(H1

0)-norms are established. It is also observed that super-convergence phenomenon
in L∞(H1

0)-norm is derived, when spectral Galerkin approximation say uSG is compared
with the N th-trucation say uN of the spectral series. Under the assumption of unique-
ness, error estimates are valid uniformly in time. Analogous results were proved for
Navier-Stokes Equation for Galerkin method by Archilla [1] and non linear
Galerkin method by Novo [13].

• Finally, a modified nonlinear Galerkin method is applied to (1.4)–(1.6). It is observed
that optimum accuracy in L∞(H1

0) is achieved when N = O(n3), for dimension d = 2,
and N = O(n5/2), for d = 3. Moreover, for optimal accuracy in L∞(L2)-norm, it is noted
that N = O(n3/2), when dimension d = 2, and N = O(n5/4), in d = 3. Like spectral
Galerkin method, here also superconvergence phenomenon is observed.

Through out this article, C is considered as a generic positive constant which varies from time
to time.

2. Preliminaries and A priori Bounds. In the first part of this Section, we present
some preliminaries to be used in our subsequent analysis. Then we formulate the problem and
discuss a priori bounds.

Let Hm(Ω) be standard Hilbert Sobolev spaces with norm ‖ · ‖m. Let Lp(Ω), 1 ≤ p ≤ ∞
be usual Lebesque measurable spaces with norm ‖ · ‖Lp(Ω). When p = 2, we denote the norm
on L2(Ω) simply as ‖ · ‖ and inner-product as (·, ·). Further, let H1

0 (Ω) : {φ ∈ H1(Ω) : φ =
0 on ∂Ω}. On H1

0 (Ω), the seminorm ‖∇φ‖ is in fact a norm which is equivalent to H1-norm
due to Poincaré inequality. We shall also use the following function spaces for the vector valued
functions. Define

D(Ω) := {φ ∈ (C∞0 (Ω))d : ∇ · φ = 0 in Ω},

H := the closure of D(Ω) in (L2(Ω))d − space

and
V := the closure of D(Ω) in (H1

0 (Ω))d − space.

Note that since Ω is a bounded and some regularity assumptions on the boundary ∂Ω, it is
possible to characterize V as

V := {φ ∈ (H1
0 (Ω))d : ∇ · φ = 0 in Ω}.

The spaces of vector functions will be indicated with boldface letters, for instance H1
0 =

H1
0(Ω) = (H1

0 (Ω))d. The inner-product on H1
0 will be denoted by

(∇φ,∇w) =
d∑
i=1

(∇φi,∇wi)

3



and norm

‖∇φ‖ = (
d∑
i=1

‖∇φi‖2)
1
2 .

Using Poincaré inequality, it can be shown that the norm on H1
0 is equivalent to H1 =

(H1(Ω))d- norm. Let P denote the orthogonal projection of L2(Ω) (= (L2(Ω))d) onto V.
Now the orthogonal complement V⊥ of V in L2(Ω) consists of functions φ such that φ = ∇q
for some q ∈ H1(Ω)/R. For more details, we refere to [18].

We denote by A = P(−∆) = −P∆, the Stokes operator which is a self-adjoint, positive
definite, and a closed linear operator on V with domain H2⋂V. Note that A has a compact
inverse. Let {λk} be the sequence of eigenvalues with 0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . ., λk →∞
as k → ∞, and let {φk} be the corresponding eigenvectors of the Stokes operator A, i.e.,
Aφk = λkφ

k. It is easy to check that {φk} forms an orthogonal set in H, V and H2⋂V.
Since A is positive definite, As/2 is defined on D(As/2) ⊇ H2⋂V, 0 < s ≤ 2. Note that for all

v ∈ D(As/2), ‖v‖s and ‖As/2v‖ are equivalent, again refer to [18]
Since λ1 is the first eigenvalue of the Stokes operator, we have the following form of the

Poincaré inequality: For φ ∈ H2⋂V,

‖φ‖ ≤ λ−
1
2

1 ‖A
1/2φ‖ ≤ λ−1

1 ‖Aφ‖. (2.1)

Following Temam [18], we rewrite the equations (1.1)–(1.3) in an abstract form as: Find
u(t) ∈ V such that for t ∈ (0,∞)

ut + κAut + νAu +B(u,u) = f (2.2)

u(0) = u0, (2.3)

where B(u,v) = P((u · ∇)v) and f = PF.
In the sequel, we shall use the following estimate (see Temam [18]): For u,v,w ∈ V, we

have |(B(u,v),w)| ≤ ‖A1/2u‖ ‖A1/2v‖ ‖A1/2w‖; so, there exist a positive constant M such
that

M := sup
u,v,w∈V

|(B(u,v),w)|
‖A1/2u‖ ‖A1/2v‖ ‖A1/2w‖

. (2.4)

2.1 A Priori Bounds.

In this subsection, we discuss some a priori bounds for the exact solution u of (2.2)-(2.3).

Lemma 2.1 Assume that f ∈ L∞(0,∞,L2(Ω)), and u0 ∈ V. Then, for 0 < α ≤ λ1ν
2(1+κλ1) the

solution u of (2.2)-(2.3) satisfies

||u(t)||2 + κ||A1/2u(t)||2 + 2β

∫ t

0
e−2α(t−s)‖A1/2u(s)‖2 ds ≤ e−2αt

[
||u0||2 + κ||A1/2u0||2

]
+

1

2αλ1ν
||f ||2L∞(L2)(1− e

−2αt) = K0(t) ≤ K0,∞,

where β =
(
ν
2 − α(κ+ 1

λ1

)
≥ 0 and K0,∞ = supt∈[0,∞)K0(t).

Proof. Set û = eαtu in (2.2) to obtain

eαtut + κeαtAut + νAû + e−αtB(û, û) = f̂ . (2.5)
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Taking the inner-product with (2.5) and û, we observe that (B(û, û), û) = 0, and hence,
we obtain

1

2

d

dt

(
||û||2 + κ||A1/2û||2

)
− α

(
||û||2 + κ||A1/2û||2

)
+ ν||A1/2û||2 = (f̂ , û). (2.6)

Since ||û||2 ≤ 1
λ1
||A1/2û||2, it follows by using the Young’s inequality that

(f̂ , û) ≤ ||f̂ ||||û|| ≤ 1√
λ1
‖f̂‖ ‖A1/2û‖ ≤ 1

2λ1ν
||f̂ ||2 +

ν

2
||A1/2û||2. (2.7)

On substituting (2.7) in (2.6), we arrive at

d

dt

(
||û||2 + κ||A1/2û||2

)
+ 2(

ν

2
− α(κ+

1

λ1
))||A1/2û||2 ≤ 1

λ1ν
||f̂ ||2. (2.8)

Choose α > 0 such that (ν2 − α(κ+ 1
λ1

)) = β ≥ 0, that is,

0 < α ≤ λ1ν

2(1 + κλ1)
.

Then integrate (2.8) with respect to time from 0 to t, to obtain

||u||2 + κ||A1/2u||2 + β

∫ t

0
e−2α(t−s)‖A1/2u(s)‖2 ds ≤ e−2αt

[
||u0||2 + κ||A1/2u0||2

]
+

1

λ1ν
e−2αt

∫ t

0
e2αs||f(s)||2 ds, (2.9)

and from which we conclude that

||u||2 + κ||A1/2u||2 ≤ e−2αt
[
||u0||2 + κ||A1/2u0||2

]
+

1

2αλ1ν
||f ||L∞(L2)(1− e−2αt).

This completes the rest of the proof.

Remark 2.1 As a consequence of the above Lemma 2.1, we obtain from (2.8) with α = 0

d

dt

(
||u||2 + κ||A1/2u||2

)
+ 2ν||A1/2u||2 ≤ 1

λ1ν
||f ||2. (2.10)

Integrating in time from t to t+ T, and using Lemma 2.1, we now arrive at for a fixed T > 0
and for all t ≥ 0, the following estimate:∫ t+T

t
‖A1/2u(s)‖2 ds ≤ K0(t) +

T

λ1ν
||f ||2L∞(L2). (2.11)

Remark 2.2 When f ∈ L2(0,∞; L2(Ω)), then integrating (2.10) with respect to time from 0
to t, we find that ∫ t

0
‖A1/2u(s)‖2 ds ≤ K0(t) (2.12)
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Lemma 2.2 Under the weaker assumption on f, that is, f ∈ L∞(0,∞;V ∗), the following a
priori bound holds for 0 < α ≤ λ1ν

2(1+κλ1)

||u(t)||2 + κ||A1/2u(t)||2 + 2β

∫ t

0
e−2α(t−s)‖A1/2u(s)‖2 ds ≤ e−2αt

[
||u0||2 + κ||A1/2u0||2

]
+

1

2αν
||f ||2L∞(V∗)(1− e

−2αt) = K0(t),

where ||v||V∗ := ||A−1/2v||, and β =
(
ν
2 − α(κ+ 1

λ1

)
≥ 0.

Proof. we now estimate the right had side of (2.6) as:

(f̂ , û) ≤ ||f̂ ||V∗ ||û||V ≤
1

2ν
||f̂ ||2V∗ +

ν

2
||A1/2û||2. (2.13)

Now substitute (2.13) in (2.6). Then use kickback argument and integrate with respect to
time to complete the proof.

Using the above a priori bounds and applying Bubnov-Galerkin procedure, it is possible
to prove the global existence of a unique solution u of (1.4)–(1.6) in (0,∞). We note that
Oskolkov [14] has proved existence of a unique solution to (1.4)–(1.6) for finite time. However,
the result in [14] can not be extended to prove global existence for t ∈ (0,∞) as the constant
in the a priori bound tends to ∞ as t −→∞. Subsequently, Karazeeva et al. [10] have proved
uniform bound, see (2.4) in page 97 under the condition that f ∈ L1(0,∞; L2(Ω)) not for the
case f ∈ L∞(0,∞; L2(Ω)) as claimed in Theorem 2.1.

Note that taking limit superior as time tends to infinity, we obtain:

lim sup
t−→∞

(
||u(t)||2 + κ||A1/2u(t)||2

)
≤ 1

2αν
||f ||2L∞(V∗). (2.14)

Moreover, we would like to obtain a slightly different estimate corresponding to (2.14), which
will be used in Sections 3 and 4. Now again after substituting (2.13) in (2.6), we rewrite it
as

d

dt

(
||û||2 + κ||A1/2û||2

)
+ ν||A1/2û||2 ≤ α

(
||û||2 + κ||A1/2û||2

)
+

1

ν
||f̂ ||2V∗ . (2.15)

Integrate (2.15) with respect to time from 0 to t, then multiply by e−2αt to obtain(
||u||2 + κ||A1/2u||2

)
+ νe−2αt

∫ t

0
e2αs||A1/2u||2 ds ≤ e−2αt

(
||u0||2 + κ||A1/2u0||2

)
+ 2αe−2αt

∫ t

0
e2αs

(
||u||2 + κ||A1/2u||2

)
+

1

ν
e−2αt

∫ t

0
e2αs||f ||2V∗ ds. (2.16)

Now taking limit superior in (2.16) as t −→∞, we arrive at

ν

2α
lim sup
t−→∞

‖A1/2u(t)‖2 ≤ 1

2αν
||f ||2L∞(V∗),

and hence,

lim sup
t−→∞

‖A1/2u(t)‖ ≤ 1

ν
||f ||L∞(V∗). (2.17)

As a consequence of (2.14), we obtain below the following result.
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Corollary 2.1 There exists a bounded absorbing set

BR : {v ∈ V : (‖v‖2 + κ‖A1/2v‖2)1/2 ≤ R},

for the problem (2.2)-(2.3), that is, there exists R > 0 such that for any u0 ∈ V, there is
t∗ := t∗((‖u0‖2 + κ‖A1/2u0‖2)1/2) such that for all t ≥ t∗, the solution u(t) of the problem
(2.2)-(2.3) satisfies u(t) ∈ BR.

In fact R can be chosen as

R2 :=
1

αν
||f ||2L∞(V∗),

where α may be chosen as λ1ν
2(1+κλ1) . Note that following the analysis of [10] or [9], we can show

existence of a global attractor say A ⊂ V.
Below, we discuss a priori estimate for κ‖Au‖ and ‖A1/2u‖.

Lemma 2.3 Assume, in addition to the hypotheses in Lemma 2.1, that u0 ∈ D(A). Then,
there exists a positive constant C which may depend on the constant in Sobolev inequality and
Sobolev imbedding such that the solution u satisfies the following a priori bound

‖A1/2u(t)‖2 + κ‖Au(t)‖2 + β

∫ t

0
e−2α(t−s)‖Au(s)‖2 ds ≤ e−2αt

[
‖A1/2u0‖2 + κ‖Au0‖2

]
+

(
C
K3

0,∞
2ακ3

+
1

αν
‖f‖2L∞(L2)

)
(1− e−2αt) =: K1(t) ≤ K1,∞,

where K0,∞ and β are as in Lemma 2.1 and K1,∞ = supt∈[0,∞)K1(t).

Proof. Form an inner-product between (2.5) and Aû to obtain

1

2

d

dt

(
‖A1/2û‖2 + κ‖Aû‖2

)
− α‖A1/2û‖2 − κα‖Aû‖2 + ν‖Aû‖2

= (f̂ , Aû) + (e−αtB(û, û), Aû). (2.18)

For the nonlinear term on the right-hand side of (2.18), an application of Hölder’s inequality
with Ladyzhenskaya inequality

‖A1/2φ‖L3 ≤ CS‖A1/2φ‖1/2‖Aφ‖1/2

yields
|(B(û, û), Aû)| ≤ ‖û‖L6‖A1/2û‖L3‖Aû‖ ≤ C(CS , CI)‖A1/2û‖3/2‖Aû‖3/2,

where CI is a positive constant in the Sobolev imbedding theorem. Thus, using Young’s
inequality, we obtain

|(e−αt(Bû, û), Aû)| ≤ C(CS , CI)e
−4αt‖A1/2û‖6 +

ε

2
‖Aû‖2.

Note that

|(f̂ , Aû)| ≤ 1

2ν
‖f̂‖2 +

ν

2
‖Aû‖2.

Altogether, we now arrive at

1

2

d

dt
(‖A1/2û‖2 + κ‖Aû‖2) + β‖Aû‖2 ≤ 1

2ν
‖f̂‖2 + Ce−4αt‖A1/2û‖6. (2.19)
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With 0 < α < λ1ν
2(λ1κ+1) , the coefficient β of the second term on the left-hand side of (2.19)

becomes nonnegative and hence, we obtain

d

dt
(‖A1/2û‖2 + κ‖Aû‖2) + β‖Aû‖2 ≤ 2

ν
‖f‖2 + Ce−4αt‖A1/2û‖6. (2.20)

We integrate (2.20) with respect to time from 0 to t and use Lemma 2.1 to arrive at

‖A1/2u(t)‖2 + κ‖Au(t)‖2 + β

∫ t

0
e−2α(t−s)‖Au(s)‖2 ds ≤ e−2αt

[
‖A1/2u0‖2 + κ‖Au0‖2

]
+ Ce−2αt

∫ t

0
e2αs‖A1/2u‖6ds+

2

ν
e−2αt

∫ t

0
e2αs‖f‖2ds

≤ e−2αt
[
‖A1/2u0‖2 + κ‖Au0‖2

]
+

(
C
K3

0,∞
ακ3

+
1

αν
‖f‖L∞(L2)

)
(1− e−2αt).

This completes the rest of the proof.

Remark 2.3 If f = 0 or if ‖eα0tf(t)‖L2(Ω) ≤ C, for some α0 > 0 and for all t > 0, we

have exponential decay property for ‖u‖, ‖A1/2u‖ and ‖Au‖, that is, for t > 0 and 0 < α ≤
min( λ1ν

2(1+κλ1) , α0)

‖u(t)‖, ‖A1/2u(t)‖, ‖Au(t)‖ = O(e−αt). (2.21)

3. Semidiscrete Spectral Galerkin Method. In this section, we discuss a spectral
Galerkin method and derive some a priori error estimates which are useful for our next section.

Let {φi}∞i=1 be an orthogonal basis of V consisting of eigenvectors of A where {λi}∞i=1 is
the set of the corresponding eigenvalues. For N ∈ N consider VN =Span{φ1,φ2, . . . ,φN} ⊂ V
and let PN be the orthogonal projection of V onto VN . Then the following estimates hold
true for PN . For a proof, see Rautmann [17], [ Lemmas 2.1, 2.3, 2.4].

Lemma 3.1 For v ∈ V, we have

‖v −PNv‖2 ≤ 1

λN+1
‖A1/2v‖2.

Moreover, if v ∈ H2⋂V, then

‖v −PNv‖2 ≤ 1

λN+1
‖A1/2(v −PNv)‖2 ≤ 1

λ2
N+1

‖Av‖2.

Now, the standard Spectral Galerkin Method consists of determining an approximation uSG(t) ∈
VN such that

d

dt
uSG + κA

d

dt
uSG + νAuSG + PNB(uSG,uSG) = PN f (3.1)

uSG(0) = PNu0. (3.2)

Note that (3.1)-(3.2) can be written equivalently as

(
d

dt
uSG,v) + κ(A1/2 d

dt
uSG, A

1/2v) + ν(A1/2uSG, A
1/2v) + (B(uSG,uSG),v)

= (f ,v) ∀v ∈ VN , (3.3)

(uSG(0),v) = (PNu0,v) ∀v ∈ VN . (3.4)
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Lemma 3.2 For a given uSG(0) ∈ VN , exists a unique solution uSG(t) ∈ VN , for all t ≥ 0
satisfying (3.3)-(3.4).

Proof. Since VN is finite dimensional, (3.3)-(3.4) leads to a system of nonlinear ordinary
differential equations with given initial condition. Using Picard’s Theorem, there exists a
unique solution uSG(t) in t ∈ (0, tN ) for some 0 < tN . In order to continue for all time, we
need to establish an a priori bound for uSG(t). Choose v = uSG in (3.3) and then proceed
exactly as in the proof of Lemma 2.1 to obtain

‖uSG(t)‖2 + κ‖A1/2uSG(t)‖2 ≤ e−2αt
[
‖uSG(0)‖2 + κ‖A1/2uSG(0)‖2

]
+

1

2αλ1ν
‖f‖2L∞(L2)(1− e

−2αt). (3.5)

Since uSG(0) = PNu(0) then , ‖uSG(0)‖ and ‖A1/2uSG(0)‖ are bounded by ‖A1/2u(0)‖. Thus,
uSG(t) is bounded for all t > 0 and this completes the existence of a unique solution for all
t > 0. This completes existence of a unique global solution to the problem (3.3)-(3.4).

As a consequence of (3.5), there exists a bounded absorbing set

BR1 : {uSG ∈ VN : (‖uSG‖2 + κ‖A1/2uSG‖2)1/2 ≤ R1},

for the problem (3.3)-(3.4), that is, there exists R1 > 0 such that for any uSG(0) ∈ VN , there
is t∗ := t∗((‖uSG(0)‖2 + κ‖A1/2uSG(0)‖2)1/2) such that for all t ≥ t∗∗, the solution uSG(t) of
the problem (3.3)-(3.4) satisfies uSG(t) ∈ BR1 . Now, set R1 so that

R2
1 :=

1

αν
||f ||2L∞(V∗),

where α may be chosen as λ1ν
2(1+κλ1) .

Therefore, we obtain easily the following result.

Lemma 3.3 There exists a global attractor AN ⊂ VN to the discrete problem (3.3)-(3.4),
which attracts bounded sets in VN .

We shall not pursue issues related to the dimension of global attractor (see, [9]), and conver-
gence of discrete attractors etc. here as this is not the main purpose of this article.

For our future use, we discuss below the boundedness of AuSG. Note that following the
proof technique of Lemma 2.2, we can easily obtain:

1

2

d

dt
(‖A1/2ûSG‖2 + κ‖AûSG‖2) + β‖AûSG‖2 ≤

1

2ν
‖PN f‖2 + Ce−4αt‖A1/2ûSG‖6.

Then integrating with respect to t from 0 to t, and using (3.5), we obtain

‖A1/2uSG(t)‖2 + κ‖AuSG(t)‖2 + β

∫ t

0
e−2α(t−s)‖AuSG(s)‖2 ds

≤ e−2αt
[
‖A1/2PNu0‖2 + κ‖APNu0‖2

]
+
(
C
K3

0,∞
ακ3

+
1

αν
‖PN f‖2L∞(L2)

)
(1− e−2αt)

≤ C
[
‖A1/2u0‖2 + κ‖Au0‖2

]
+
(
C
K3

0,∞
ακ3

+
1

αν
‖f‖2L∞(L2)

)
. (3.6)

This completes the boundedness of ‖AuSG‖.
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3.1 Errors Estimates.

In this subsection, we discuss the error analysis of the semidiscrete spectral Galerkin approxi-
mation uSG.

Theorem 3.1 Let u be the solution of (2.2) and uSG be the semi-discrete Galerkin approxi-
mation of u satisfying (3.1). Then, there is a positive constant C depending on ‖Au(0)‖ and
‖f‖L∞(L2) such that for 0 < α < λ1ν

2(λ1κ+1) and for fixed T > 0 with t ∈ (0, T ) the following
estimate holds

‖u(t)− uSG(t)‖ ≤ C

λN+1
eCt. (3.7)

Moreover, under the uniqueness assumption:

M

ν2
‖f‖L∞(V∗) < 1, (3.8)

where M is given as in (2.4),the following uniform in time estimate holds for t > 0 :

‖u(t)− uSG(t)‖ ≤ C

λN+1
. (3.9)

Proof. Using the definition of PN , we write

u− uSG = (u−PNu) + (PNu− uSG)

= (u−PNu) + ESG,

where ESG = PNu − uSG. Since the estimates of u − PNu are known from Lemma 3.1, it is
enough to estimate ‖ESG‖. From (2.2) and (3.1), we obtain the following expression for the
difference ESG

(
d

dt
ESG,v) + κ(A1/2 d

dt
ESG, A

1/2v) + ν(A1/2ESG, A
1/2v) = Λ(v), (3.10)

where Λ(v) = −
(
B(u,u)−B(uSG,uSG),v

)
.

Choose v = e2αtESG(t) in the (3.10) and set ÊSG(t) = eαtESG(t) to obtain

1

2

d

dt

(
‖ÊSG‖2 + κ‖A1/2ÊSG‖2

)
−α‖ÊSG‖2 − κα‖A1/2ÊSG‖2 + ν‖A1/2ÊSG‖2

= Λ(eαtÊSG). (3.11)

Note that

Λ(eαtÊSG) = −e−αt
[
(B((û−PN û), û), ÊSG) + (B(ÊSG, û), ÊSG)

+ (B(ûSG, û−PN û), ÊSG) + (B(ûSG, ÊSG), ÊSG)
]
. (3.12)

Here, the last term on the right-hand side of (3.12) is zero. To estimate the first term on the
right-hand side of (3.12), we use Hölders inequality and Sobolev inequality to obtain

|(B(û−PN û, û), ÊSG)| ≤ C‖û−PN û‖‖A1/2û‖L3‖ÊSG‖L6

≤ C‖û−PN û‖‖Aû‖ ‖A1/2ÊSG‖,
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and hence, using the Young’s inequality, we arrive at

e−αt|(B(û−PN û, û), ÊSG)| ≤ C(ε)e−2αt‖û−PN û‖2‖Aû‖2 +
ε

2
‖A1/2ÊSG‖2.

Similarly for the second term on the right-hand side of (3.12), we find that

e−αt|(B(ÊSG, û), ÊSG)| ≤ Ce−2αt‖ÊSG‖2‖Aû‖2 +
ε

2
‖A1/2ÊSG‖2.

For the third term on the right-hand side of (3.12), we note that

(B(ûSG, û−PN û), ÊSG) = (B(ûSG, ÊSG), û−PN û),

and hence, using Sobolev inequality with Hölders inequality, we obtain

|e−αt(B(ûSG, û−PN û), ÊSG)| ≤ Ce−αt‖A1/2ûSG‖1/2‖AûSG‖1/2‖A1/2ÊSG‖‖û−PN û‖

≤ C(ε)e−2αt‖A1/2ûSG‖‖AûSG‖‖û−PN û‖2 +
ε

2
‖A1/2ÊSG‖2.

Thus,

|Λ(eαtÊSG)| ≤ 3ε

2
‖A1/2ÊSG‖2 + Ce−2αt‖ÊSG‖2‖A1/2û‖2

+ Ce−2αt(‖Aû‖2 + ‖A1/2ûSG‖ ‖AûSG‖)‖û−PN û‖2.

On substituting in (3.11), we arrive at

1

2

d

dt
(‖ÊSG‖2 + κ‖A1/2ÊSG‖2) + (−κα+ ν − 3ε

2
− α

λ1
)‖A1/2ÊSG‖2

≤ C(ε)e−2αt‖A1/2û‖2‖ÊSG‖2

+ C(‖Au‖2 + ‖A1/2uSG‖ ‖AuSG‖)‖û−PN û‖2. (3.13)

Choose ε = ν/3 in (3.13) and then use a priori bounds from Lemmas 2.1-2.3 to obtain

d

dt

(
‖ÊSG‖2 + κ‖A1/2ÊSG‖2

)
+ (ν − 2α(

1

λ1
+ κ)) ‖A1/2ÊSG‖2

≤ C
(
‖Au‖2 + ‖A1/2uSG‖ ‖AuSG‖

)
‖û−PN û‖2 + C‖A1/2u‖2‖ÊSG‖2

≤ C(K0,∞,K1,∞, κ
−1)

λ2
N+1

‖Aû‖2 + C‖A1/2u‖2‖ÊSG‖2. (3.14)

Integrating (3.14) with respect to time and choosing 0 < α ≤ λ1ν
2(1+κλ1) we find that

‖ESG‖2 + κ‖A1/2ESG‖2 ≤ C(K0,∞,K1,∞, κ
−1)

1

λ2
N+1

+ C

∫ t

0
‖A1/2u‖2‖ESG‖2 ds

again

‖ESG‖2 + κ‖A1/2ESG‖2 ≤ C(K0,∞,K1,∞, κ
−1)

1

λ2
N+1

+ C

∫ t

0
‖A1/2u‖2(‖ESG‖2 + κ‖A1/2ESG‖2) ds

as ESG(0) = 0.
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Using Gronwall’s lemma, it now follows that

‖ESG(t)‖2 ≤ C(K0,∞,K1,∞, κ
−1)

λ2
N+1

exp(C

∫ t

0
‖A1/2u‖2ds)

A use of triangle inequality with Lemma 2.2 and Lemma 3.1 completes the proof of the estimate
(3.7).

To derive (3.9), we note from the property of PN and Lemma 2.2 that

‖u(t)−PNu(t)‖ ≤ C

λN+1
‖Au(t)‖ ≤ C

λN+1
, (3.15)

which is valid for all t > 0. Therefore, it is now enough to obtain an uniform in time estimate
for ESG. We now estimate the nonlinear term (3.12) as folows:

Λ(eαtÊSG) = −e−αt
[
(B((û−PN û), û), ÊSG) + (B(ÊSG, û), ÊSG) + (B(ûSG, û−PN û), ÊSG)

]
≤ Ce−αt‖û−PN û‖

(
‖Aû‖+ ‖A1/2ûSG‖1/2‖AûSG‖1/2

)
‖A1/2ÊSG‖

+ Me−αt‖A1/2û‖ ‖A1/2ÊSG‖2.

Note that for the third term on the right hand side of the nonlinear term (3.12), we have used
the property (2.4). Now using the property of PN , Lemmas 2.1-2.2 ans Lemma 3.1, we arrive
at

Λ(eαtÊSG) ≤ C 1

λN+1
‖Aû‖ ‖A1/2ÊSG‖+M‖A1/2u‖ ‖A1/2ÊSG‖2. (3.16)

On substituting (3.16)in (3.11), we then integrate from 0 to t to obtain

(
‖ESG‖2 + κ‖A1/2ESG‖2

)
+ 2e−2αt

∫ t

0
e2αs(ν −M‖A1/2u‖) ‖A1/2ESG‖2 ds

≤ 2αe−2αt
∫ t

0
e2αs

(
‖ESG‖2 + κ‖A1/2ESG‖2

)
ds

+ C
1

λN+1
e−2αt

∫ t

0
e2αs‖Au‖ ‖A1/2ESG‖ ds. (3.17)

Taking limit superior as t −→∞ in (3.17) and using (2.17), we arrive at

1

ν
(1−Mν−2‖f‖L∞(V∗)) lim sup

t−→∞
‖A1/2ESG(t)‖2 ≤ C 1

λN+1
lim sup
t−→∞

‖A1/2ESG(t)‖,

and hence, from the uniqueness condition (3.8), we now obtain

lim sup
t−→∞

‖A1/2ESG(t)‖ ≤ C 1

λN+1
.

Thus,

lim sup
t−→∞

‖ESG(t)‖ ≤ C 1

λN+1
,
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and

lim sup
t−→∞

‖u(t)− uSG(t)‖ ≤ C 1

λN+1
.

This completes the rest of the proof.

As consequence of the Theorem 3.1, we obtain a super-convergence result for ‖A1/2ESG(t)‖
and we now derive easily the following estimate.

Corollary 3.1 Under hypotheses of Theorem 3.1, there exists a positive constant C such that

‖A1/2(u− uN )(t)‖ ≤ C

λ
1/2
N+1

. (3.18)

Remark 3.4 We now note that the estimate (3.7) in Theorem 3.1 is valid for finite T > 0,
otherwise it blows up as t −→∞. When f = 0, then the uniqueness condition (3.8) is satisfied
and the uniform-in-time estimate (3.9) holds. Moreover, it is easy to see from the proof of the
Theorem 3.1 and the a priori bounds in Section 2 that

‖(u− uN )(t)‖ ≤ C(K0,∞,K1,∞, κ
−1)

λN+1
e−αt, t > 0.

Moreover, f ∈ L2(0,∞; L2(Ω)), then the result (3.9) of the Theorem 3.1 is valid for all t > 0
without the uniqueness assumption (3.8).

4. Nonlinear Galerkin Method. Let Vn = Span {ϕ1, · · · , ϕn} and consider Pn :
H −→ Vn be the orthogonal projection and Qn = I − Pn be the orthogonal complement.
Consider the split u = p + q where p = Pnu ∈ Vn corresponds to the small eigenvalues, i.e.,
represents the large eddies of the flow and q = Qnu ∈ H\Vn corresponds to large eigenvalues,
represents the small eddies of the flow.

Apply Pn and Qn, respectively, to the abstract equations (2.2) to obtain

dp

dt
+ κA

dp

dt
+ νAp + PnB(p + q,p + q) = Pnf , (4.1)

and
dq

dt
+ κA

dq

dt
+ νAq + QnB(p + q,p + q) = Qnf . (4.2)

From the properties of the orthogonal projections and Lemma 3.1, we note that

||q|| = ||(I −Pn)u|| ≤ 1

λn+1
||Au|| ≤ C(K0,∞,K1,∞)

λn+1
, t ≥ 0

and hence, q(t) carries a small part of the kinetic energy. Thus, it is reasonable to approximate
the term QnB(p + q,p + q) as

QnB(p + q,p + q) ≈ Qn(B(p,p) +B(p,q) +B(q,p)). (4.3)

The entire process leads to the following modified Nonlinear Galerkin Method: Find (y, z)
such that

dy

dt
+ κA

dy

dt
+ νAy + PnB(y + z,y + z) = Pnf , (4.4)
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and
dz

dt
+ κA

dz

dt
+ νAz + Qn[B(y + z,y) +B(y, z)] = Qnf . (4.5)

Since z(t) ∈ H \Vn, the equation (4.5) represents an infinite dimensional system. Thus, we
have to approximate z.

Consider VN = span{ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕN}. Let the finite dimensional approxi-
mation again called it as z(t) ∈ VN \Vn and y(t) ∈ Vn satisfy

dy

dt
+ κA

dy

dt
+ νAy + PnB(y + z,y + z) = Pnf , (4.6)

and
dz

dt
+ κA

dz

dt
+ νAz + QN

n

[
B(y + z,y) +B(y, z)

]
= QN

n f (4.7)

with y(0) = Pnu0 and z(0) = QN
n u0, where N > n, and QN

n = PN − Pn = Qn −QN . Note
that for simplicity of notation, we still represent y(t) as the approximation of large eddies and
z(t) as the approximate of small eddies. Thus, uMG(t) = y(t) + z(t) is an approximation of
u(t).

Following the arguments leading to the a priori bounds in (3.5) and (3.6), we easily obtain
the following estimates for the discrete solution uMG of (4.6)-(4.7): There exists a positive
constant C such that

‖uMG(t)‖2 + κ‖A1/2uMG(t)‖2 ≤ C
[
‖u(0)‖2 + κ‖A1/2u(0)‖2

]
(4.8)

+
1

2αλ1ν
‖f‖L∞(L2),

and

‖A1/2uMG(t)‖2 + κ‖AuMG(t)‖2 + β

∫ t

0
e−2α(t−s)‖AuMG(s)‖2 ds

≤ C
[
‖A1/2u0‖2 + κ‖Au0‖2

]
+
(
C
K3

0,∞
ακ3

+
1

αν
‖f‖L∞(L2)

)
. (4.9)

Remark 4.5 Note that since dq
dt is also small, it is possible to drop it. However, the term Adq

dt
may not be small, therefore, we prefer to keep both the time derivative terms in the modified
nonlinear Galerkin method.

4.1 A Priori Error Estimates .

In this subsection, we discuss a priori optimal error estimates for the modified nonlinear
Galerkin scheme (4.6)-(4.7).

Using the projection PN , we now split

eMG(t) = u(t)− uMG(t)

=
(
u(t)−PNu(t)

)
+
(
PNu(t)− uMG(t)

)
=

(
u(t)−PNu(t)

)
+ EMG(t).

Using the properties of Pn and QN
n , we may rewrite whenever required in our analysis the

term EMG as EMG = PnEMG + QN
n EMG. Note that EMG(0) = 0.
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Theorem 4.1 Let u be the solution of (2.2) and uMG = y + z be the semi-discrete nonlin-
ear Galerkin approximation of u satisfying (4.6)-(4.7). Then, there is a positive constant C
depending on ‖Au0‖ and ‖f‖L∞(L2) such that for 0 < α < λ1ν

2(λ1κ+1) and for fixed T > 0 with

t ∈ (0, T ) the following estimate holds

‖u(t)− uMG(t)‖ ≤ C
( 1

λN+1
+

1

λrn+1

)
eCT . (4.10)

where r = 3/2, if d = 2 and r = 5/4, when d = 3. Moreover, under the uniqueness assumption
(3.8) the following uniform in time estimate holds for t > 0 :

‖u(t)− uMG(t)‖ ≤ C
( 1

λN+1
+

1

λrn+1

)
. (4.11)

Proof. Since the estimate of u(t)−PNu(t) is known from Lemma 3.1, it is enough to derive
the estimate of EMG. From (2.2) and (4.6)-(4.7), we easily obtain( d

dt
EMG,v

)
+ κ

(
A1/2 d

dt
EMG, A

1/2v
)

+ ν
(
A1/2EMG, A

1/2v
)

= Λ(v), (4.12)

where

Λ(v) = −
(
PNB(u,u)−QN

n B(y + z, y + z),v
)
−
(
B(y + z, y) +B(y, z),v

)
.

Choose v = e2αtEMG = eαtÊMG in (4.12) and rewrite the resulting equation as

1

2

d

dt

(
||ÊMG||2 + κ||A1/2ÊMG||2

)
− α

(
||ÊMG||2 + κ||A1/2ÊMG||2

)
+ ν||A1/2ÊMG||2

= eαtΛ(ÊMG), (4.13)

To estimate the term on the right-hand side of (4.13), we first rewrite it as

eαtΛ(ÊMG) = −e−αt
[(
B(ÊMG, û), ÊMG

)
+
(
B(ûMG, (I −PN )û), ÊMG

)
+

(
B((I −PN )û, û), ÊMG

)
+
(
B(ẑ, ẑ),Qn

N ÊMG)
]
. (4.14)

As in the proof of Theorem 3.1, we now estimate the terms on the right-hand side of (4.14) as
follows. Note that using standard Hölders inequality, Sobolev imbedding theorem and Sobolev
inequality, we obtain easily

e−αt|
(
B(ÊMG, û), ÊMG

)
| ≤ C(ε)e−2αt||Aû||2||ÊMG||2 +

ε

2
||A1/2ÊMG||2. (4.15)

Similarly, the second and third terms on the right-hand side of (4.14) can be estimated as

e−αt
[
|
(
B(ûMG, (I −PN )û), ÊMG

)
|+ |

(
B((I −PN )û, û), ÊMG

)
|
]

≤ C(ε)e−2αt
(
‖Aû‖2 + ‖AûMG‖2

)
‖(I −PN )û‖2 +

ε

2
||A1/2ÊMG||2

≤ C(ε)

λ2
N+1

e−2αt
(
‖Aû‖2 + ‖AûMG‖2

)
+
ε

2
||A1/2ÊMG||2.

(4.16)
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For the fourth term on the right hand side of (4.14), we estimates it depending on d. When
d = 2, we now estimate using generalized Holder’s inequality and Ladyzhenskaya inequality

‖v‖L4(Ω) ≤ C‖v‖1/2 ‖A1/2v‖1/2, if d = 2,

as ∣∣∣e−αt(B(ẑ, ẑ),Qn
N ÊMG

)∣∣∣ ≤ Ce−αt‖ẑ‖2L4 ‖A1/2ÊMG‖

≤ Ce−αt‖ẑ‖ ‖A1/2b̂z‖ ‖A1/2ÊMG‖

≤ C(ε)

λ3
n+1

e−2αt||Aû||4 +
ε

2
||A1/2ÊMG||2. (4.17)

When d = 3, use again generalized Holder’s inequality and Ladyzhenskaya inequality

‖v‖L3(Ω) ≤ C‖v‖1/2 ‖A1/2v‖1/2, if d = 3,

as ∣∣∣e−αt(B(ẑ, ẑ),Qn
N ÊMG

)∣∣∣ ≤ Ce−αt‖ẑ‖L3 ‖A1/2ẑ‖ ‖ÊMG‖L6

≤ Ce−αt‖ẑ‖1/2 ‖A1/2b̂z‖3/2 ‖A1/2ÊMG‖

≤ C(ε)

λ
5/2
n+1

e−2αt||Aû||4 +
ε

2
||A1/2ÊMG||2. (4.18)

Substituting (4.14)-(4.18) appropriately in (4.13) and then with ε = ν/3, we obtain after
integration with respect to time from 0 to t, and multiplying by e−2αt with use of a priori
bounds of Lemmas 2.1-2.2, Lemma 4.1 the following:

‖EMG(t)‖2 + κ‖A1/2EMG(t)‖2 ≤ C(K0,∞,K0,∞)
( 1

λ2
N+1

+
1

λ2r
n+1

)
+ C

∫ t

0
‖Au‖2 ‖EMG‖2 ds, (4.19)

where r = 3/2, when d = 2 and r = 5/4, if d = 3. An application of Gronwall’s Lemma with
approximation property of PN and triangle inequality yields the estimate (4.10).

In order to estimate (4.11), we again follow the proof technique of the second part of
Theorem 3.1. Since the estimate of ‖u−PNu‖ is known from Lemma 3.1 which is valid for all
t > 0, it is, therefore, sufficient to obtain an uniform in time estimate for EMG. For nonlinear
term (4.14), except for the first term on the right hand side, we estimate the remaining terms
as in (4.16)-(4.17). For the first term, we estimate as follows:

e−αt|
(
B(ÊMG, û), ÊMG

)
| ≤ Me−2αt‖A1/2û‖ ‖A1/2ÊMG‖2. (4.20)

We now estimate the nonlinear term (4.14) as folows:

Λ(eαtÊMG) ≤ Ce−αt
( 1

λN+1
+

1

λrn+1

)
‖Aû‖ ‖A1/2ÊMG‖

+ Me−αt ‖A1/2û‖ ‖A1/2ÊMG‖2. (4.21)
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On substituting (4.21)in (4.13), we then integrate from 0 to t to obtain

(
‖EMG‖2 + κ‖A1/2EMG‖2

)
+ 2e−2αt

∫ t

0
e2αs(ν −M‖A1/2u‖) ‖A1/2EMG‖2 ds

≤ 2αe−2αt
∫ t

0
e2αs

(
‖EMG‖2 + κ‖A1/2EMG‖2

)
ds

+ C
( 1

λN+1
+

1

λrn+1

)
e−2αt

∫ t

0
e2αs‖Au‖ ‖A1/2EMG‖ ds. (4.22)

Taking limit superior as t −→∞ in (4.22) and using (2.17), we arrive at

1

ν
(1−Mν−2‖f‖L∞(V∗)) lim sup

t−→∞
‖A1/2EMG(t)‖2 ≤ C

( 1

λN+1
+

1

λrn+1

)
lim sup
t−→∞

‖A1/2EMG(t)‖,

and hence, from the uniqueness condition (3.8), we now obtain

lim sup
t−→∞

‖A1/2EMG(t)‖ ≤ C
( 1

λN+1
+

1

λrn+1

)
.

Thus,

lim sup
t−→∞

‖EMG(t)‖ ≤ C
( 1

λN+1
+

1

λrn+1

)
,

and

lim sup
t−→∞

‖u(t)− uMG(t)‖ ≤ C
( 1

λN+1
+

1

λrn+1

)
.

This completes the rest of the proof.

As consequence of Theorem 4.1, we obtain the following error estimate.

Corollary 4.1 Under hypothese of Theorem 4.1, there exists a positive constant C such that

‖A1/2(u− uMG)(t)‖ ≤ C
( 1

λ
1/2
N+1

+
1

λrn+1

)
, (4.23)

where r = 3/2, if d = 2, and r = 5/4, when d = 3.
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