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A two-level finite element method for time-dependent incompressible

Navier-Stokes equations with non-smooth initial data

Deepjyoti Goswami∗ and Pedro D. Damázio†

Abstract

In this article, we analyze a two-level finite element method for the two dimensional time-
dependent incompressible Navier-Stokes equations with non-smooth initial data. It involves solv-
ing the non-linear Navier-Stokes problem on a coarse grid of size H and solving a Stokes problem
on a fine grid of size h, h << H . This method gives optimal convergence for velocity in H1-norm
and for pressure in L2-norm. The analysis takes in to account the loss of regularity of the solution
at t = 0 of the Navier-Stokes equations.

Key Words. Incompressible Navier-Stokes, non-smooth initial data, two-level method, error esti-
mates.

1 Introduction

In this article, we consider a two-level semi-discrete finite element approximation to the two dimen-
sional time-dependent incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u− ν∆u+∇p = f(x, t), x ∈ Ω, t > 0(1.1)

with incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(1.2)

and initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0, on ∂Ω, t ≥ 0.(1.3)

Here, Ω is a bounded domain in R
2 with boundary ∂Ω and ν > 0 is the viscosity. u and p are the

velocity field and pressure, respectively. And f is a given force field.
Two-level or two-grid methods are well-established and efficient methods for solving non-linear

partial differential equations. Due to high computational cost of solving a non-linear problem on
a fine grid, we solve the original problem on a coarse grid and update the solution by solving a
linearized problem on a fine grid. In other words, in the first step, we discretize the non-linear PDE
on a coarse mesh, of mesh-size H and compute an approximate solution, say, uH . Then, in the
second step, we formulate a linearized problem, out of the original one, using uH and discretize it
on a fine mesh, of mesh-size h, h << H, thereby, compute an approximate solution, say, uh. With
appropriate h,H, we obtain same order of convergence of the error u − uh, as that of the error
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obtained by semi-discrete finite element Galerkin approximation on the find grid; but with far less
computational cost, since, instead of solving a large non-linear system, we solve a small non-linear
system and a large linear system.

In this article, we study the following two-level finite element approximation for the problem
(1.1)-(1.3): First, we compute a semi-discrete Galerkin finite element approximations (uH , pH), over
a coarse mesh of mesh-size H. Then, we use the approximation uH to compute a semi-discrete
Galerkin finite element approximations (uh, ph) of the following Stokes problem:

ut − ν∆u+ uH · ∇uH +∇p = f , ∇ · u = 0, in Ω(1.4)

over a fine mesh of mesh-size h << H.
The above algorithm is nothing new and in fact, this and similar algorithms have been studied

on numerous occasions. But to the best of our knowledge, no study has been done for non-smooth
initial data. Our main aim in this work is to do error analysis of the above mentioned two-level
method, under non-smooth initial data.

Two-grid method was first introduced by Xu [23, 24] for semi-linear elliptic problems and by
Layton et.al [14, 15, 16] for steady Navier-Stokes equations. It was carried out for time dependent
Navier-Stokes by Girault and Raviart [7] for semi-discrete case. The method may vary depending
on the algorithm, by formulating different linearize problem, to solve in the second step; like, in the
case of Navier-Stokes, one can chose a Stokes problem or an Oseen problem or a Newton step to
solve on the fine mesh. Several works in this direction, involving both semi-discrete and fully discrete
analysis, can be found in [1, 2, 9, 10, 11, 17, 18, 19, 20] and references therein.

The two-level methods are similar to non-linear Galerkin methods, post-processed and dynamical
post-processed methods, in the sense that, all these method try to control the computational cost
or efficiency by controlling the non-linear term, implementing similar ideas: solve the non-linear
problem on a coarse grid and use that solution to solve a linearized problem on a fine grid. A
discussion on this can be found out in [5].

But in all these methods, including two-level, very few articles can be found to carry out the
analysis, taking into account the loss of regularity of the solution of the Navier-Stokes equations at
the initial time. Recently, two articles [5, 6] have taken this into account. For example, both these
articles assume no more than second-order spatial derivative of the velocity bounded in L2, up to
initial time t = 0. Under realistic assumptions on the given data, the solution of the Navier-Stokes
equations suffers from lack of regularity at t = 0. For us to assume regularity at t = 0, we need that
the data satisfy some non-local compatibility conditions at t = 0 (see [12]). These conditions are
very hard to verify even for simple models and hardly appear in physical context. We have avoided
these conditions in our analysis and more. We have worked here with non-smooth initial data, that
is, initial velocity u0 belong to H1

0. Now, even the second-order spatial derivative of the velocity is
not bounded in L2, up to initial time t = 0. Lemma 2.1 tells us that ‖u(t)‖2 ∼ O(t−1/2). So, our
assumption on the initial data forces us to have only the first-order spatial derivative of the velocity
bounded in L2 at t = 0. This proves to be a bottle-neck in our error analysis.

Our work here closely resembles the work of [9] and we present here similar results that have
been obtained in [9], but with weaker condition on u0. In that sense, this work is devoted to the
technicalities required to deal with the non-smooth initial data.

Apart from the error analysis of this two-level method, we have also discussed the error analysis
of finite element Galerkin method for (1.1)-(1.3). Although, these later results are discussed in
[12], the results here vary slightly, due to non-smooth initial data. Also, the pressure estimate has
been improved for conforming finite element, in the sense that, it now reads as ∼ O(t−1/2) rather
than ∼ O(t−1). For smooth initial data, it can be shown to have no singularity at t = 0 (using
similar argument presented here, e.g., using Lemma 4.1 for pressure error), rather that the estimate
∼ O(t−1/2) in [12]. Similar improvement is also realized in the two-level method. Theorem 5.3 in
[9] states that the error in velocity is ∼ O(H2) and the error in pressure is ∼ O(t−1/2H2), when the
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initial data is smooth. Note that whereas the velocity error remains bounded at t = 0, it is not so for
the pressure error. In our case, we have shown that velocity and pressure errors are ∼ O(t−1H2) (see
Lemmas 6.3 and 6.4), when initial data is non-smooth. By following similar procedure, for smooth
initial data, we can show that the errors, in fact, are ∼ O(H2). This improves the presure error
presented in [9].

Finally, we observe that it is of practical importance to discretize in time and to implement the
fully discretize scheme to verify the usefulness of the present method. In fact, computational results
are shown in [11] to support the fact that this two-level method is better that the standard Galerkin
finite element method. But the analysis presented there, for a fully discrete two-level method is for
smooth initial data, that is, the initial velocity u0 is in H1

0 ∩ H2. We will deal with non-smooth
initial data for a fully discrete two-level method somewhere else.

In the following sections, we will assume C and K to be generic positive constants, where K
generally depends on the given data, that is, u0, f . And for the sake of convenience, we would write
v(t) as v when there arises no confusion.

The article is organized as follows. In section 2, we introduce some notations and preliminaries,
and present a priori estimates and regularity results for the solution of (1.1)-(1.3), when the initial
data is non-smooth. Section 3 deals with finite element Galerkin approximations, whereas Section 4
deals with the error analysis of the Galerkin approximation. The two-level method is briefly discussed
in Section 5 and its error analysis is carried out in Section 6.

2 Preliminaries

For our subsequent use, we denote by bold face letters the R
2-valued function space such as

H1
0 = [H1

0 (Ω)]
2, L2 = [L2(Ω)]2.

Note that H1
0 is equipped with a norm

‖∇v‖ =
(

2
∑

i,j=1

(∂jvi, ∂jvi)
)1/2

=
(

2
∑

i=1

(∇vi,∇vi)
)1/2

.

Further, we introduce some divergence free function spaces:

J1 = {φ ∈ H1
0 : ∇ · φ = 0}

J = {φ ∈ L2 : ∇ · φ = 0 in Ω,φ · n|∂Ω = 0 holds weakly},

where n is the outward normal to the boundary ∂Ω and φ · n|∂Ω = 0 should be understood in the
sense of trace in H−1/2(∂Ω), see [21]. For any Banach space X, let Lp(0, T ;X) denote the space of
measurable X -valued functions φ on (0, T ) such that

∫ T

0
‖φ(t)‖pX dt < ∞ if 1 ≤ p < ∞,

and for p = ∞
ess sup

0<t<T
‖φ(t)‖X < ∞ if p = ∞.

When there arises no confusion, we simply denote these spaces by Lp(X). Through out this paper,
we make the following assumptions:
(A1). For g ∈ L2, let the unique pair of solutions {v ∈ J1, q ∈ L2/R} for the steady state Stokes
problem

−∆v+∇q = g,

∇ · v = 0 in Ω, v|∂Ω = 0,
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satisfy the following regularity result

‖v‖2 + ‖q‖H1/R ≤ C‖g‖.

(A2). The initial velocity u0 and the external force f satisfy for positive constant M0, and for T
with 0 < T ≤ ∞

u0 ∈ J1, f , ft, ftt ∈ L∞(0, T ;L2) with ‖u0‖1 ≤ M0, sup
0<t<T

{

‖f‖, ‖ft‖, ‖ftt‖
}

≤ M0.

With P : L2 − J as orthogonal projection and ∆̃ = P (−∆) : J1 ∩ H2 as Stokes operator, we first
note that (A1) implies

‖v‖2 ≤ C‖∆̃v‖, v ∈ J1 ∩H2.

And (see [12, (2.4)])

(2.1) ‖v‖ ≤ λ
−1/2
1 ‖v‖1 ≤ λ−1

1 ‖v‖2, v ∈ J1 ∩H2,

where λ1 > 0 to be the least eigenvalue of the Stokes operator.
Before going into the details, let us introduce the weak formulation of (1.1)-(1.3). Find a pair of
functions {u(t), p(t)}, t > 0, such that

(ut,φ) + ν(∇u,∇φ) + (u · ∇u,φ) = (p,∇ · φ) + (f ,φ) ∀φ ∈ H1
0,(2.2)

(∇ · u, χ) = 0 ∀χ ∈ L2.

Equivalently, find u(t) ∈ J1, t > 0 such that

(2.3) (ut,φ) + ν(∇u,∇φ) + (u · ∇u,φ) = (f ,φ), ∀φ ∈ J1.

For existence and uniqueness and the regularity of the solution of the problem (2.2) or (2.3), we
refer to [12]. For the sake of completeness, we present below the a priori estimates and higher-order
estimates, which will be used in our error analysis. These vary slightly with the results presented in
[12] due to non-smooth initial data. And hence, we sketch a proof here.

Lemma 2.1. Assume that (A1) and (A2) hold and let 0 < α < νλ1. Then, for some constant
K > 0, which depends only on the given data, the weak solution pair (u, p) of (1.1)-(1.3) satisfies
the following estimates:

‖u(t)‖2 + e−2αt

∫ t

0
e2αs‖u(s)‖21ds ≤ K,(2.4)

‖u(t)‖21 + e−2αt

∫ t

0
e2αs

{

‖u(s)‖22 + ‖us(s)‖
2
}

ds ≤ K,(2.5)

τ∗(t)
{

‖ut(t)‖
2 + ‖u(t)‖22 + ‖p(t)‖21

}

+ e−2αt

∫ t

0
σ(s)‖us(s)‖

2
1ds ≤ K,(2.6)

(τ∗(t))2‖ut(t)‖
2
1 + e−2αt

∫ t

0
σ1(s)

{

‖us(s)‖
2
2 + ‖uss(s)‖

2 + ‖ps(s)‖
2
1

}

ds ≤ K,(2.7)

(τ∗(t))3/2
{

‖utt(t)‖+ ‖ut(t)‖
2
2 + ‖pt(t)‖

2
1

}

≤ K,(2.8)

where τ∗(t) = min{1, t}, σ(t) = τ∗(t)e2αt and σ1(t) = (τ∗(t))2e2αt.

Proof. We choose φ = e2αtu = eαtû in (2.3) and use (2.1) to find

1

2

d

dt
‖û‖2 +

(

ν −
α

λ1

)

‖û‖21 ≤
1

λ
1/2
1

‖f̂‖‖û‖1.(2.9)
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Use kickback argument, then integrate and multiply by e−2αt to obtain

‖u‖2 +
(

ν −
α

λ1

)

e−2αt

∫ t

0
‖û(s)‖21ds ≤ e−2αt‖u0‖

2 +
(1− e−2αt)

2α(νλ1 − α)
‖f‖2∞ =: K,

where ‖f‖∞ = ‖f‖L∞(L2).
Now choose φ = u in (2.3) and integrate from t to t+ t0 for some fix t0 > 0.

‖u(t+ t0)‖
2 +

∫ t+t0

t
‖u(s)‖21ds ≤ ‖u(t)‖2 +

λ1t0
ν

‖f‖2∞ ≤ K(t0).(2.10)

Next, we choose φ = ∆̃u in (2.3) to find (see [12, (2.11)])

d

dt
‖u‖21 + ν‖∆̃u‖2 ≤ C‖f‖2 +C‖u‖2‖u‖41.(2.11)

Keeping in mind (2.10), we apply uniform Gronwall lemma (see [22, Lemma 1.1, pp. 91]) to observe
that for fixed t0 > 0

‖u(t+ t0)‖1 ≤ K, t > 0.

Multiply (2.11) by e2αt, integrate with respect to time, use the above estimate to conclude the first
part of (2.5). Choose φ = e2αtut for the rest of (2.5).
For next estimate, we differentiate (2.3) with respect to time and put φ = σ(t)ut to get

d

dt

{

σ(t)‖ut‖
2
}

+ 2νσ(t)‖ut‖
2
1 = σt(t)‖ut‖

2 − σ(t)(ut · ∇u,ut) + σ(t)(ft,ut).

Observe that
(ut · ∇u,ut) ≤ ‖ut‖

2
L4(Ω)‖u‖1 ≤ C‖ut‖‖ut‖1‖u‖1.

And therefore, we have

d

dt

{

σ(t)‖ut‖
2
}

+ νσ(t)‖ut‖
2
1 ≤ Ce2αt‖ut‖

2(1 + ‖u‖21) + σ(t)‖ft‖
2.

Integrate with respect to time and use (2.5) to conclude part of (2.6). The rest of it can be proved
by using the equations (2.3) and (2.2).
Put φ = σ1(t)∆̃ut and φ = σ1(t)utt, respectively, after differentiating (2.3) and proceed in similar
fashion as above to find (σ1(t) = (τ∗(t))2e2αt)

(τ∗(t))2‖ut(t)‖
2
1 + e−2αt

∫ t

0
σ1(s)

{

‖us(s)‖
2
2 + ‖uss(s)‖

2
}

ds ≤ K.(2.12)

Differentiate the equation (2.2) and use (2.12) to obtain the pressure estimate of (2.7).
Finally, we differentiate (2.3) twice, with respect to time. First, put φ = σ2(t)utt, σ2(t) = (τ∗(t))3e2αt

and use (2.7) to obtain

(τ∗(t))3‖utt(t)‖
2
1 + e−2αt

∫ t

0
σ2(s)‖uss(s)‖

2
1ds ≤ K.

And then use the double differentiated equation and the equation (2.2) (after double differentiation)
with the above obtained estimate to conclude (2.8) and this completes the rest of the proof.

We present below Gronwall’s Lemma, which will be used subsequently.
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Lemma 2.2 (Gronwall’s Lemma). Let g, h, y be three locally integrable non-negative functions on
the time interval [0,∞) such that for all t ≥ 0

y(t) +G(t) ≤ C +

∫ t

0
h(s) ds+

∫ t

0
g(s)y(s) ds,

where G(t) is a non-negative function on [0,∞) and C ≥ 0 is a constant. Then,

y(t) +G(t) ≤
(

C +

∫ t

0
h(s) ds

)

exp
(

∫ t

0
g(s) ds

)

.

3 Classical Galerkin Method

From now on, we denote h with 0 < h < 1 to be a real positive discretization parameter tending
to zero. Let Hh and Lh, 0 < h < 1 be two family of finite dimensional subspaces of H1

0 and
L2/R, respectively, approximating velocity vector and the pressure. Assume that the following
approximation properties are satisfied for the spaces Hh and Lh:
(B1) For each w ∈ H1

0 ∩H2 and q ∈ H1/R there exist approximations ihw ∈ Hh and jhq ∈ Lh such
that

‖w − ihw‖+ h‖∇(w − ihw)‖ ≤ Ch2‖w‖2, ‖q − jhq‖ ≤ Ch‖q‖1.

Further, suppose that the following inverse hypothesis holds for wh ∈ Hh:

‖∇wh‖ ≤ Ch−1‖wh‖.(3.1)

To define the Galerkin approximations, we set for v,w,φ ∈ H1
0,

a(v,φ) = (∇v,∇φ)

and

b(v,w,φ) =
1

2
(v · ∇w,φ)−

1

2
(v · ∇φ,w).

Note that the operator b(·, ·, ·) preserves the antisymmetric property of the original nonlinear term,
that is,

b(vh,wh,wh) = 0 ∀vh,wh ∈ Hh.

The discrete analogue of the weak formulation (2.2) now reads as: Find uh(t) ∈ Hh and ph(t) ∈ Lh

such that uh(0) = u0h and for t > 0

(uht,φh) + νa(uh,φh) + b(uh,uh,φh)− (ph,∇ · φh) = (f ,φh),

(∇ · uh, χh) = 0,(3.2)

for φh ∈ Hh, χh ∈ Lh. Here u0h ∈ Hh is a suitable approximation of u0 ∈ J1.
In order to consider a discrete space analogous to J1, we impose the discrete incompressibility
condition on Hh and call it as Jh. Thus, we define Jh, as

Jh = {vh ∈ Hh : (χh,∇ · vh) = 0 ∀χh ∈ Lh}.

Note that Jh is not a subspace of J1. With Jh as above, we now introduce an equivalent Galerkin
formulation as: Find uh(t) ∈ Jh such that uh(0) = u0h and for t > 0

(3.3) (uht,φh) + νa(uh,φh) = −b(uh,uh,φh) + (f ,φh) ∀φh ∈ Jh.
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Since Jh is finite dimensional, the problem (3.3) leads to a system of nonlinear ordinary differential
equations. For global existence of a unique solution of (3.3) (or unique solution pair of (3.2)), we
again refer to [12].

For continuous dependence of the discrete pressure ph(t) ∈ Lh on the discrete velocity uh(t) ∈ Jh,
we assume the following discrete inf-sup (LBB) condition on the finite dimensional spaces Hh and
Lh:
(B2′) For every qh ∈ Lh, there exists a non-trivial function φh ∈ Hh and a positive constant K0,
independent of h, such that

|(qh,∇ · φh)| ≥ C‖∇φh‖‖qh‖L2/R.

Moreover, we also assume that the following approximation property holds true for Jh.
(B2) For every w ∈ J1 ∩H2, there exists an approximation rhw ∈ Jh such that

‖w − rhw‖+ h‖∇(w − rhw)‖ ≤ Ch2‖w‖2.

The L2 projection Ph : L2 7→ Jh satisfies the following properties (see [12]): for φ ∈ Jh,

(3.4) ‖φ− Phφ‖+ h‖∇Phφ‖ ≤ Ch‖∇φ‖,

and for φ ∈ J1 ∩H2,

(3.5) ‖φ− Phφ‖+ h‖∇(φ− Phφ)‖ ≤ Ch2‖∆̃φ‖.

We now define the discrete operator ∆h : Hh 7→ Hh through the bilinear form a(·, ·) as

a(vh,φh) = (−∆hvh,φ) ∀vh,φh ∈ Hh.(3.6)

Set the discrete analogue of the Stokes operator ∆̃ = P (−∆) as ∆̃h = Ph(−∆h). Note that the ∆̃h

restricted to Jh is invertible and we denote its inverse by (∆̃h)
−1; for details, see [12, 13]. Following

[13], we define discrete Sobolev norm as:

‖vh‖r = ‖(−∆̃h)
r/2vh‖, for vh ∈ Jh, r ∈ R.

Using Sobolev imbedding and Sobolev inequality, it is easy to prove the following Lemma (similar
to [13, (3.4)]).

Lemma 3.1. Suppose conditions (A1), (B1) and (B2) are satisfied. Then there exists a positive
constant K such that for v,w,φ ∈ Hh, the following holds:

(3.7) |(v · ∇w,φ)| ≤ K























‖v‖1/2‖∇v‖1/2‖∇w‖1/2‖∆hw‖1/2‖φ‖,

‖v‖1/2‖∆hv‖
1/2‖∇w‖‖φ‖,

‖v‖1/2‖∇v‖1/2‖∇w‖‖φ‖1/2‖∇φ‖1/2,

‖v‖‖∇w‖‖φ‖1/2‖∆hφ‖
1/2,

‖v‖‖∇w‖1/2‖∆hw‖1/2‖φ‖1/2‖∇φ‖1/2

Examples of subspaces Hh and Lh satisfying assumptions (B1) and (B2′) are abundant in literature,
for example, see [3, 4, 8].
We present below a couple of lemmas, one dealing with a priori and regularity estimates of uh and
the other, with higher-order regularity results. The proof is similar to that of Lemma 2.1.

Lemma 3.2. Under the assumptions of Lemmas 2.1 and 3.1, the semi-discrete Galerkin approxi-
mation uh of the velocity u satisfies, for t > 0,

‖uh(t)‖
2 + e−2αt

∫ t

0
e2αs‖uh(s)‖

2
1 ds ≤ K,(3.8)

‖uh(t)‖
2
1 + e−2αt

∫ t

0
e2αs

{

‖uh(s)‖
2
2 + ‖uh,s(s)‖

2
}

ds ≤ K,(3.9)

(τ∗(t))1/2
{

‖uh(t)‖2 + ‖p‖H1/R} ≤ K,(3.10)
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where τ∗(t) = min{1, t} and K depends only on the given data. In particular, K is independent of h
and t.

Lemma 3.3. Under the assumptions of Lemma 3.2, the semi-discrete Galerkin approximation uh

of the velocity u satisfies, for t > 0 and for r ∈ {0, 1}, i ∈ {1, 2}, r + i ≤ 2,

(3.11) (τ∗(t))r+2i−1‖Di
tuh(t)‖

2
r + e−2αt

∫ t

0
(τ∗(s))r+2i−1e2αs‖Di

suh(s)‖
2
r+1 ds ≤ K,

where Di
t =

∂i

∂ti
. And

e−2αt

∫ t

0
(τ∗(s))2e2αs{‖uh,ss(s)‖

2 + ‖ph,s(s)‖
2
H1/R} ds ≤ K,(3.12)

(τ∗(t))3/2
{

‖uht‖2 + ‖pht(t)‖1
}

≤ K.(3.13)

Here K depends only on the given data. In particular, K is independent of h and t.

4 Error Analysis: Galerkin Method

In this section, we briefly present a convergence analysis for Galerkin approximation. The analysis for
smooth initial data, that is, u0 ∈ J1∩H2 can be found in [12]. The analysis below is for non-smooth
initial data, that is, u0 ∈ J1. The proofs follow similar lines as those for smooth data (see [12]) apart
from a few modifications. We will simply try to highlight these modifications in our proofs.

Theorem 4.1. Let Ω be a convex polygon and let the conditions (A1)-(A2) and (B1)-(B2) be
satisfied. Further, let the discrete initial velocity u0h ∈ Jh with u0h = Phu0, where u0 ∈ J1. Then,
there exists a positive constant C, that depends only on the given data and the domain Ω, such that
for 0 < T < ∞ with t ∈ (0, T ]

‖(u− uh)(t)‖ + h‖∇(u− uh)(t)‖ ≤ KeKtt−1/2h2.

Proof. Denoting the Galerkin approximation error as E = u− uh, we split the error in two parts.

E = (u− vh) + (vh − uh) =: ξ + η,

where vh satisfies the linearized equation (5.3) from [12]. We have (see [12, Lemma 5.1]; same proof
will go through)

(4.1) e−2αt

∫ t

0
e2αs‖ξ(s)‖2ds ≤ Kh4.

For L∞(L2) estimate of ξ, we now split ξ as follows:

ξ = (u− vh) = (u− Shu) + (Shu− vh) =: ζ + θ,

where Sh is given by (4.52), [12]. Lemma 4.7, [12] tells us that

‖ζ‖+ h‖ζ‖1 ≤ Ch2{(1 + ‖u‖1)‖u‖2 + ‖p‖1}(4.2)

‖ζt‖+ h‖ζt‖1 ≤ Ch2{(1 + ‖u‖1)‖ut‖2 + ‖pt‖1}(4.3)

In order to complete the estimate for ξ, we only need to estimate θ. The equation in θ reads as

(4.4) (θt,φh) + νa(θ,φh) = −(ζt,φh), φh ∈ Jh.
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For σ(t) = τ∗(t)e2αt, we put φh = σ(t)θ in (4.4) to find

d

dt

{

σ(t)‖θ‖2
}

− σt(t)‖θ‖
2 + 2νσ(t)‖θ‖21 = −2σ(t)(ζt,θ).

Using Cauchy-Schwarz and Young’s inequality, we obtain

d

dt

{

σ(t)‖θ‖2
}

+ 2νσ(t)‖θ‖21 ≤ Ce2αt‖θ‖2 + σ1(t)‖ζt‖
2

≤ Ce2αt
{

‖ξ‖2 + ‖ζ‖2
}

+ σ1(t)‖ζt‖
2.

Integrate with respect to time and use (4.1), (4.2) and (4.3).

σ(t)‖θ(t)‖2 + ν

∫ t

0
σ(s)‖θ(s)‖21ds ≤ Ke2αth4 + Ch4

∫ t

0
e2αs

{

‖u(s)‖22 + ‖p(s)‖21
}

ds

+ Ch4
∫ t

0
σ1(s)

{

‖us(s)‖
2
2 + ‖ps(s)‖

2
1

}

Use (2.5) and (2.7) and then multiply by e−2αt to get

τ∗(t)‖θ(t)‖2 + e−2αt

∫ t

0
σ(s)‖θ(s)‖21ds ≤ Kh4.

Now an use of triangle inequality along with inverse hypothesis (3.1) results in

‖ξ(t)‖+ h‖ξ(t)‖1 ≤ Kt−1/2h2.(4.5)

It now remains to estimate η. The equation in η is

(4.6) (ηt,φh) + νa(η,φh) = Λ1,h(φh), φh ∈ Jh,

where

Λ1,h(φh) = b(uh,uh,φh)− b(u,u,φh) = −b(uh,E,φh)− b(E,u,φh).(4.7)

Due to non-smooth initial data, we need an intermediate estimate, before we proceed for L∞(L2)
estimate of η. First we need L2(L2) estimate of η. For that, choose φh = e2αt(−∆̃h)

−1η in (4.6) to
obtain

1

2

d

dt
‖η̂‖2−1 − α‖η̂‖2−1 + ν‖η̂‖2 = e2αtΛ1,h((−∆̃h)

−1η).(4.8)

Here, η̂ = eαtη. Using (4.7) and the definition of b(·, ·, ·), we observe that

Λ1,h((−∆̃h)
−1η) =− b(uh, ξ + η, (−∆̃h)

−1η)− b(ξ + η,u, (−∆̃h)
−1η)

=−
1

2
((uh · ∇)(ξ + η), (−∆̃h)

−1η)−
1

2
((uh · ∇)(−∆̃h)

−1η, ξ + η)

−
1

2
(((ξ + η) · ∇)u, (−∆̃h)

−1η)−
1

2
(((ξ + η) · ∇)(−∆̃h)

−1η,u).(4.9)

Use Lemma 3.1 to arrive at the following:

−
1

2
((uh · ∇)(−∆̃h)

−1η, ξ + η) ≤ C‖uh‖
1/2‖uh‖

1/2
1 ‖η‖

1/2
−1 ‖η‖

1/2(‖ξ‖+ ‖η‖)(4.10)

−
1

2
(((ξ + η) · ∇)u, (−∆̃h)

−1η) ≤ C(‖ξ‖+ ‖η‖)‖u‖1‖η‖
1/2
−2 ‖η‖

1/2(4.11)

−
1

2
(((ξ + η) · ∇)(−∆̃h)

−1η,u) ≤ C(‖ξ‖+ ‖η‖)‖η‖
1/2
−1 ‖η‖

1/2‖u‖1/2‖u‖
1/2
1 .(4.12)
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For the first term on the right-hand side of (4.9), we have
(with the notations Di =

∂
∂xi

and v = (v1, v2))

((uh · ∇)(ξ+η), (−∆̃h)
−1η) =

2
∑

i,j=1

∫

Ω
uh,iDi{(ξ + η)j}((−∆̃h)

−1η)j dx

= −

2
∑

i,j=1

∫

Ω
Diuh,i(ξ + η)j((−∆̃h)

−1η)j dx−

2
∑

i,j=1

∫

Ω
uh,iDi{((−∆̃h)

−1η)j}(ξ + η)j

= −((∇ · uh)(ξ + η), (−∆̃h)
−1η)− ((uh · ∇)(−∆̃h)

−1η, (ξ + η))

≤ C‖u‖1(‖ξ‖+ ‖η‖)‖η‖
1/2
−2 ‖η‖

1/2 + C‖uh‖
1/2‖uh‖

1/2
1 ‖η‖

1/2
−1 ‖η‖

1/2(‖ξ‖+ ‖η‖)(4.13)

in view of Lemma 3.1. Incorporate (4.10)-(4.13) in (4.9) and use Lemma 2.1 to find

Λ1,h((−∆̃h)
−1η) ≤ C‖ξ‖‖η‖

1/2
−1 ‖η‖

1/2
{

‖uh‖1 + ‖u‖1
}

+ C‖η‖
1/2
−1 ‖η‖

3/2‖u‖1

≤ ε‖η‖2 +K(‖η‖2−1 + ‖ξ‖2).(4.14)

Hence, with appropriate ε, we obtain from (4.8)

d

dt
‖η̂‖2−1 + ν‖η̂‖2 = K(‖η̂‖2−1 + ‖ξ̂‖2).

Integrate and use (4.1). Apply Gronwall’s lemma to coclude that

(4.15) ‖η(t)‖2−1 + e−2αt

∫ t

0
e2αs‖η(s)‖2ds ≤ KeKth4.

Now choose φh = σ(t)η in (4.6) to obtain

d

dt

{

σ(t)‖η‖2
}

+ 2νσ(t)‖η‖21 = σt(t)‖η‖
2 + 2σ(t)Λ1,h(η).

As in (4.9), we have

Λ1,h(η) = −b(uh, ξ,η)− b(ξ + η,u,η)

=−
1

2
((uh · ∇)ξ,η)−

1

2
((uh · ∇)η, ξ)−

1

2
(((ξ + η) · ∇)u,η)−

1

2
(((ξ + η) · ∇)η,u).(4.16)

Using Lemma 3.1, we find

−
1

2
(((ξ + η) · ∇)u,η)−

1

2
(((ξ + η) · ∇)η,u)

= −
1

2
((ξ · ∇)u,η)−

1

2
((ξ · ∇)η,u)−

1

2
((η · ∇)u,η)−

1

2
((η · ∇)η,u)

≤ C‖ξ‖{‖u‖
1/2
1 ‖u‖

1/2
2 ‖η‖1/2‖η‖

1/2
1 + ‖η‖1‖u‖

1/2‖u‖
1/2
2 }

+C‖η‖‖η‖1‖u‖1 + C‖η‖1/2‖η‖
3/2
1 ‖u‖1/2‖u‖

1/2
1 .(4.17)

−
1

2
((uh · ∇)η, ξ) ≤ C‖uh‖

1/2‖uh‖
1/2
2 ‖η‖1‖ξ‖.(4.18)

And as for the first term on the right-hand side of (4.16), we observe, as in (4.13),

−
1

2
((uh · ∇)ξ,η) = −

1

2
((∇ · uh)ξ,η)−

1

2
((uh · ∇)η, ξ)

≤ C‖uh‖
1/2
1 ‖uh‖

1/2
2 ‖ξ‖‖η‖1/2‖η‖

1/2
1 + C‖uh‖

1/2‖uh‖
1/2
2 ‖η‖1‖ξ‖.(4.19)
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Incorporating (4.17)-(4.19) in (4.16) and using Lemmas 2.1 and 3.2, we obtain

Λ1,h(η) ≤ K‖ξ‖‖η‖1(τ
∗(t))−1/4 +K(‖η‖‖η‖1 + ‖η‖1/2‖η‖

3/2
1 )

≤ K‖ξ‖‖η‖1(τ
∗(t))−1/4 + ε‖η‖21 +K‖η‖2,(4.20)

for some ε > 0. Therefore,

2σ(t)Λ1,h(η) ≤ 4εσ(t)‖η‖21 +Kσ(t)‖η‖2 +Ke2αt‖ξ‖2.

With appropriate ε, we now obtain

d

dt

{

σ(t)‖η‖2
}

+ νσ(t)‖η‖21 ≤ K
{

‖ξ̂‖2 + ‖η̂‖2
}

.

Integrate and use (4.1) and (4.15) to find that

(4.21) τ∗(t)‖η(t)‖2 + e−2αt

∫ t

0
σ(s)‖η(s)‖21ds ≤ KeKth4.

With inverse hypothesis (3.1), we conclude that

(4.22) ‖η(t)‖+ h‖η(t)‖1 ≤ KeKtt−1/2h2.

This along with (4.5) completes the proof.

Theorem 4.2. Under the assumptions of Theorem 4.1 and with an additional assumption of (B2′),
we have

‖(p − ph)(t)‖ ≤ KeKtt−1/2h.

Proof. Following Lemma 6.1, [12], and using (B1), (2.6) and (B2′) along with the observation that

Λ1,h(φh) ≤ K‖E‖1‖φh‖1

we obtain

‖(p − ph)(t)‖L2/R ≤ Kt−1/2h+K‖E(t)‖1 + C‖Et(t)‖−1,h,(4.23)

where

‖Et‖−1,h = sup
06=φ

h
∈Hh

< Et,φh >

‖φh‖1
.

Taking supremum over a bigger set, we find that

‖Et‖−1,h ≤ ‖Et‖−1 = sup
06=φ∈H1

0

< Et,φ >

‖φ‖1
.(4.24)

This is possible due to conforming finite elements. We now have from (4.23), using Theorem 4.1,

‖(p− ph)(t)‖L2/R ≤ KeKtt−1/2h+ C‖Et(t)‖−1.

We complete the proof by proving the following Lemma.

Lemma 4.1. The error E = u− uh due to Galerkin approximation satisfies, for t > 0

‖Et(t)‖−1 ≤ KeKtt−1/2h.
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Proof. The equation in E reads as

(Et,φh) + νa(E,φh) = Λ1,h(φh) + (p,∇ · φh), φh ∈ Jh.(4.25)

Now, for any φ ∈ H1
0, we use (4.25) to find

(Et,φ) = (Et, Phφ) + (Et,φ − Phφ)

= −νa(E, Phφ) + Λ1,h(Phφ) + (p,∇ · Phφ) + (Et,φ − Phφ).(4.26)

Using discrete incompressibility condition, H1-stability of Ph and (B1), we obtain

(4.27)















−νa(E, Phφ) ≤ C‖E‖1‖φ‖1
(p,∇ · Phφ) = (p − jhp,∇ · Phφ) ≤ Ch‖p‖1‖φ‖1
Λ1,h(Phφ) ≤ C‖E‖1‖φ‖1(‖u‖1 + ‖uh‖1)

(Et,φ− Phφ) = (ut,φ − Phφ) ≤ Ch‖ut‖‖φ‖1.

From (4.26), we now have, using the definition of negative norm

‖Et‖−1 ≤ C‖E‖1 + Ch‖p‖1 +K‖E‖1 + Ch‖ut‖.(4.28)

Use Lemma 2.1 and Theorem 4.1 to complete the rest of the proof.

Remark 4.1. Instead of using (4.24), if we have used a crude estimate, like ‖Et‖−1,h ≤ C‖Et‖ (as
in [12, (6.2)]), we have obtained

‖(p − ph)(t)‖ ≤ KeKtt−1h.

In that sense, we have improved the pressure error estimate for conforming finite elements.

Remark 4.2. In the process, we observe the following estimate, combining (4.1) and (4.15):

(4.29) e−2αt

∫ t

0
e2αs‖E(s)‖2ds ≤ KeKth4.

Below we present an estimate for Et, which will be needed in our error analysis for two-level method.

Theorem 4.3. Under the assumptions of Theorem 4.1, we have

(4.30) e−2αt

∫ t

0
σ1(s)‖Es(s)‖

2ds ≤ KeKth4.

Proof. The proof is similar to that of Theorem 4.1 and so, we will only sketch a proof here. First we
split the error:

Et = ξt + ηt.

The equation in ξt is given by

(ξtt,φh) + νa(ξt,φh) = (pt,∇ · φh).(4.31)

With Ph : L2(Ω) → Jh as L2-projection, we choose φh = σ1(t)Phξt = σ1(t)(ξt− (u−Phu)t) in (4.31)
to find (recall σ1(t) = (τ∗(t))2e2αt, τ∗(t) = min{1, t})

1

2

d

dt

{

σ1(t)‖ξt‖
2}+ νσ1(t)‖ξt‖

2
1 =

1

2
σ1,t(t)‖ξt‖

2 + σ1(t)(ξtt, (u− Phu)t)

+νσ1(t)a(ξt, (u− Phu)t) + σ1(t)(pt − jhpt,∇ · Phξt).
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Use projection properties (B1) and Cauchy-Schwarz inequality to obtain

1

2

d

dt

{

σ1(t)‖ξt‖
2}+ νσ1(t)‖ξt‖

2
1 ≤ Cσ(t)‖ξt‖

2 +
σ1(t)

2

d

dt
‖(u− Phu)t‖

2

+Ch.σ1(t)‖ξt‖1
{

‖ut‖2 + ‖pt‖1
}

(4.32)

(recall that σ(t) = τ∗(t)e2αt, τ∗(t) = min{1, t})
Use Young’s inequality and kickback argument. Integrate the resulting inequality to find

σ1(t)‖ξt‖
2 + ν

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds ≤ C

∫ t

0
σ(s)‖ξs(s)‖

2ds +Ch.σ1(t)‖ut‖
2
1

+Ch

∫ t

0
σ(s)‖us(s)‖

2
1ds+ Ch2

∫ t

0
σ1(s)

{

‖ut‖
2
2 + ‖pt‖

2
1

}

ds.

Use Lemma 2.1 to observe that

(4.33) (τ∗(t))2‖ξt‖
2 + νe−2αt

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds ≤ Ce−2αt

∫ t

0
σ(s)‖ξs(s)‖

2ds+Kh2.

To estimate the first term on the right hand-side of (4.33), we first recall the equation in ξ:

(ξt,φh) + νa(ξ,φh) = (p,∇ · φh), ∀φh ∈ Jh.

Choose φh = σ(t)Phξt above.

σ(t)‖ξt‖
2 +

ν

2

d

dt

{

σ(t)‖ξ‖21} ≤ Ce2αt‖ξ‖21 + Ch.σ(t)
{

‖ξt‖‖ut‖1 + ‖ξ‖1‖ut‖2 + ‖p‖1‖ξt‖1
}

.

Use kickback argument and then integrate with respect to time. Use Lemma 2.1 to obtain

∫ t

0
σ(s)‖ξs(s)‖

2ds+ σ(t)‖ξ(t)‖21 ≤ C

∫ t

0
e2αs‖ξ(s)‖21ds +Ke2αth2 +

ν

2C

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds.

Use (5.7) from [12], that is,

(4.34) e−2αt

∫ t

0
e2αs‖ξ(s)‖21ds ≤ Kh2

to find

(4.35) e−2αt

∫ t

0
σ(s)‖ξs(s)‖

2ds+ τ∗(t)‖ξ‖21 ≤ Kh2 +
ν

2C
e−2αt

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds.

Using (4.35) in (4.33) leads us to

(4.36) (τ∗(t))2‖ξt‖
2 + e−2αt

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds ≤ Kh2.

Next, we use parabolic duality argument to establish (as in Lemma 5.1 from [12], except that the
right hand-side of (5.8), [12] should now read σ1(t)ξt)

(4.37) e−2αt

∫ t

0
σ1(s)‖ξs(s)‖

2ds ≤ Kh4.

An estimate of ηt would now complete the proof. By definition, we can easily deduce the equation
satisfied by ηt.

(ηtt,φh) + νa(ηt,φh) = Λ1,h,t(φh),(4.38)
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where φ1,h,t is given by

Λ1,h,t(φh) = −b(uh,t,E,φh)− b(uh,Et,φh)− b(Et,u,φh)− b(E,ut,φh).(4.39)

Choose φh = σ1(t)(−∆̃h)
−1ηt to find

1

2

d

dt

{

σ1(t)‖ηt‖
2
−1}+ νσ1(t)‖ηt‖

2 ≤ Cσ(t)‖ηt‖
2
−1 + σ1(t)Λ1,h,t((−∆̃h)

−1ηt).(4.40)

Using similar proof technique of (4.14), we estimate the non-linear term Λ1,h,t as follows:

σ1(t)b(uh,t,E, (−∆̃h)
−1ηt) + σ1(t)b(E,ut, (−∆̃h)

−1ηt)

≤Cσ1(t)‖E‖‖ηt‖
1/2
−1 ‖ηt‖

1/2(‖uh,t‖1 + ‖ut‖1)

≤εσ1(t)‖ηt‖
2 + Cσ(t)‖ηt‖

2
−1 +Ke2αt‖E‖2(4.41)

and

σ1(t)b(uh,Et, (−∆̃h)
−1ηt) + σ1(t)b(Et,u, (−∆̃h)

−1ηt)

≤Cσ1(t)(‖ξt‖+ ‖ηt‖)‖ηt‖
1/2
−1 ‖ηt‖

1/2(‖uh‖1 + ‖u‖1)

≤Kσ1(t)‖ξt‖‖ηt‖
1/2
−1 ‖ηt‖

1/2 +Kσ1(t)‖ηt‖
1/2
−1 ‖ηt‖

3/2

≤εσ1(t)‖ηt‖
2 +Kσ(t)‖ηt‖

2
−1 +Kσ1(t)‖ξt‖

2.(4.42)

Incorporate (4.41) and (4.42) in (4.40). Use Young’s inequality and appropriate ε > 0 and finally,
integrate with respect to time to find

σ1(t)‖ηt(t)‖
2
−1 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2ds ≤ K

∫ t

0
σ(s)‖ηs(s)‖

2
−1ds +K

∫ t

0
e2αs‖E(s)‖2ds

+K

∫ t

0
σ1(s)‖ξs(s)‖

2ds.

Use (4.29) and (4.37) to obtain

σ1(t)‖ηt(t)‖
2
−1 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2ds ≤ K(t)eKth4 +K

∫ t

0
σ(s)‖ηs(s)‖

2
−1ds.(4.43)

To estimate the last term of (4.43), we recall the equation in η (4.6):

(ηt,φh) + νa(η,φh) = Λ1,h(φh).

Choose φh = σ(t)(−∆̃h)
−1ηt to find

σ(t)‖ηt‖
2
−1 +

ν

2

d

dt
{σ(t)‖η‖2} ≤

ν

2
σt(t)‖η‖

2 + σ(t)Λ1,h((−∆̃h)
−1ηt).(4.44)

Similar to (4.14), we estimate the non-linear term as follows:

σ(t)Λ1,h((−∆̃h)
−1ηt) = −σ(t)b(E,uh, (−∆̃h)

−1ηt)− σ(t)b(u,E, (−∆̃h)
−1ηt)

≤ Cσ(t)‖E‖‖ηt‖−1{‖uh‖2 + ‖u‖2}

Incorporate this in (4.44), use kickback argument and then integrate with respect to time. Next, use
Lemmas 2.1 and 3.2.

∫ t

0
σ(s)‖ηs(s)‖

2
−1ds+ σ(t)‖η(t)‖2 ≤ C

∫ t

0
e2αs‖η(s)‖2ds+K

∫ t

0
e2αs‖E(s)‖2ds.(4.45)
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Apply (4.15) and (4.29) in (4.45). Use the resulting estimate in (4.43) to obtain

σ1(t)‖ηt(t)‖
2
−1 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2ds ≤ K(t)eKth4.(4.46)

This along with (4.37) now completes the rest of the proof.

The pressure error estimate for the two-level method requires another estimate.

Lemma 4.2. Under the assumptions of Theorem 4.1, we have

(4.47)

∫ t

0
σ1(s)‖Es(s)‖

2
1ds ≤ KeKth2.

Proof. Keeping in mind (4.36), we only need the estimate in η. Choosing φh = σ1(t)ηt in (4.39) and
estimating non-linear as

Λ1,h,t(ηt) ≤ ε‖ηt‖
2
1 + C‖E‖21(‖uh,t‖1 + ‖ut‖1) + C‖ξt‖

2
1(‖uh‖

2
1 + ‖u‖21) +K‖ηt‖

2,

we find

σ1(t)‖ηt(t)‖
2 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2
1ds ≤ K

∫ t

0
σ(s)‖ηs(s)‖

2ds+K

∫ t

0
σ1(s)‖ξs(s)‖

2
1ds

+KeKth2
∫ t

0
σ(s)

{

‖uh,s(s)‖
2
1 + ‖us(s)‖

2
1}ds

Using (4.36) and Lemmas 2.1 and 3.3, we have

σ1(t)‖ηt(t)‖
2 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2
1ds ≤ K

∫ t

0
σ(s)‖ηs(s)‖

2ds+KeKth2.(4.48)

Now, for the first term on the right-hand side, we take φh = σ(t)ηt in the η equation, to obtain, as
in (4.44):

σ(t)‖ηt‖
2 +

ν

2

d

dt
{σ(t)‖η‖21} ≤

ν

2
σt(t)‖η‖

2
1 + σ(t)Λ1,h(ηt).

We estimate the non-linear term as:

Λ1,h(ηt) ≤ K‖ηt‖‖E‖1(‖uh‖
1/2
2 + ‖u‖

1/2
2 )

to find

σ(t)‖η(t)‖21 +

∫ t

0
σ(s)‖ηs(s)‖

2ds ≤ KeKth2 + C

∫ t

0
e2αs‖η(s)‖21ds.(4.49)

To estimate the last term, choose φh = e2αtη in the η equation and estimate the non-linear term as:

Λ1,h(η) ≤ ε‖η‖1 +K(‖ξ‖21 + ‖η‖2)

to obtain

d

dt
‖η̂‖2 + ν‖η̂‖21 ≤ K(‖ξ̂‖21 + ‖η̂‖2)

Integrate with respect to time and the use (5.7), [12], that is

(4.50)

∫ t

0
e2αs‖ξ(s)‖21ds ≤ Ke2αth2,
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to observe

‖η̂(t)‖2 +

∫ t

0
e2αs‖η(s)‖21ds ≤ Ke2αth2 +

∫ t

0
e2αs‖η(S)‖2ds.

Use Gronwall’s lemma.

(4.51) ‖η̂(t)‖2 +

∫ t

0
e2αs‖η(s)‖21ds ≤ KeKth2.

Combining (4.50) and (4.51), we conclude
∫ t

0
e2αs‖E(s)‖21ds ≤ KeKth2.(4.52)

Now from (4.49), we have

σ(t)‖η(t)‖21 +

∫ t

0
σ(s)‖ηs(s)‖

2ds ≤ KeKth2.(4.53)

And from (4.48), we have

σ1(t)‖ηt(t)‖
2 + ν

∫ t

0
σ1(s)‖ηs(s)‖

2
1ds ≤ KeKth2.(4.54)

Combining with (4.36), we complete the rest of the proof.

5 Two-Level FE Galerkin Method

In this section, we work with an additional space discretizing parameter H, that corresponds to a
coarse mesh. In other words, 0 < h < H and both h and H tend to 0. We introduce associated
conforming finite element spaces (HH , LH) and (Hh, Lh) such that (HH , LH) ⊂ (Hh, Lh). And this
two-level finite element is to find a pair (uh, ph) as follows:

First Level: We compute the mixed finite element approximation (uH , pH) ∈ (HH , pH) of (u, p)
of (2.2). In other words, we solve the nonlinear problem in a coarse mesh. Find (uH , pH) ∈ (HH , pH)
satisfying

(uHt,φH) + νa(uH ,φH)+b(uH ,uH ,φH)− (pH ,∇ · φH) = (f ,φH),

(∇ · uH , χH) = 0,(5.1)

for (φH , χH) ∈ (HH , LH).
Second Level: We solve a linearized problem on a fine mesh. In other words, we solve a Stokes

problem. Find (uh, ph) ∈ (Hh, Lh) satisfying

(uh
t ,φh) + νa(uh,φh)− (ph,∇ · φh) = (f ,φh)− b(uH ,uH ,φh),

(∇ · uh, χh) = 0,(5.2)

for (φh, χh) ∈ (Hh, Lh).
An equivalent way is to look for solution in a weekly divergent free space.

First Level: Find uH ∈ JH satisfying

(uHt,φH) + νa(uH ,φH) + b(uH ,uH ,φH) = (f ,φH),(5.3)

for φH ∈ JH .
Second Level: With uH as the solution of (5.3), find uh ∈ Jh satisfying

(uh
t ,φh) + νa(uh,φh) = (f ,φh)− b(uH ,uH ,φh),(5.4)

for φh ∈ Jh.
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Remark 5.1. The well-posedness of the above systems can be seen from the facts that (5.1) or (5.3)
is classical Galerkin approximation and hence is well-posed as is stated in Section 3. And (5.2) or
(5.4) represent linearized version. Given uH and with suitable uh(0), it is therefore an easy task to
show the existence of an unique solution pair (uh, ph) (or an unique solution uh) for the linearized
problem following the foot-steps of the non-linear problem.

Following Lemma 3.2, we can easily obtain the a priori estimates of uH .

Lemma 5.1. Under the assumptions of Lemma 3.2 and for uH(0) = PHu0, the solution uH of (5.3)
satisfies, for t > 0,

‖uH(t)‖+ e−2αt

∫ t

0
e2αs‖uH(t)‖21 ds ≤ K,(5.5)

‖uH(t)‖1 + e−2αt

∫ t

0
e2αs‖uH(t)‖22 ds ≤ K,(5.6)

(τ∗(t))1/2‖uH(t)‖2 ≤ K,(5.7)

where τ∗(t) = min{1, t} and K depends only on the given data. In particular, K is independent of
H and t.

The following higher-order estimate of uH is required for error analysis. The proof of the same is
similar to that of Lemma 3.3.

Lemma 5.2. Under the assumptions of Lemma 5.1, the solution uH of (5.3) satisfies, for t > 0,

(5.8) (τ∗)2(t)‖uH,t(t)‖
2
1 + (τ∗)3(t)‖uH,t(t)‖

2
2 + e−2αt

∫ t

0
τ∗(s)e2αs‖uH,s(s)‖

2 ds ≤ K.

For the a priori estimates of uh, we present another lemma.

Lemma 5.3. Under the assumptions of Lemma 5.1, the solution uh of (5.4) satisfies, for t > 0,

‖uh(t)‖ + e−2αt

∫ t

0
e2αs‖uh(t)‖21 ds ≤ K,(5.9)

‖uh(t)‖1 + e−2αt

∫ t

0
e2αs‖uh(t)‖22 ds ≤ K,(5.10)

Proof. Given uH along with the estimates of Lemma (5.1), we choose φh = e2αtuh(t) = eαtûh(t) in
(5.4) to obtain

1

2

d

dt
‖ûh‖2 − α‖ûh‖2 + ν‖ûh‖21 = (f̂ , ûh)− e2αtb(uH ,uH ,uh).(5.11)

Use Cauchy-Schwarz inequality, Poincaré inequality with first eigenvalue of Stokes operator as the
constant and Young’s inequality, we have

(f̂ , ûh) ≤ ‖f̂‖‖ûh‖ ≤
1

λ
1/2
1

‖f̂‖‖ûh‖1 ≤
ν

4
‖ûh‖21 +

1

νλ1
‖f̂‖2.(5.12)

From Lemmas 3.1 and 5.1, we find that

b(uH ,uH ,uh) ≤ ‖uH‖1/2‖uH‖
3/2
1 ‖uh‖1/2‖uh‖

1/2
1 + ‖uH‖‖uH‖1‖u

h‖1

≤ K +
ν

4
‖uh‖21
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Therefore,

(5.13) e2αtb(uH ,uH ,uh) ≤ Ke2αt +
ν

4
‖ûh‖21.

Putting the estimates (5.12)-(5.13) in (5.11) gives us

d

dt
‖ûh‖2 − 2α‖ûh‖2 + ν‖ûh‖21 ≤ Ke2αt +

1

νλ1
‖f̂‖2.

Use Poincaré inequality to get

d

dt
‖ûh‖2 +

(

ν −
2α

λ1

)

‖ûh‖21 ≤ Ke2αt +
1

νλ1
‖f̂‖2.(5.14)

Since 0 < α < νλ1/2, we have that ν − 2α/λ1 > 0.
Integrate (5.14) with respect to time.

‖ûh(t)‖2 +
(

ν −
2α

λ1

)

∫ t

0
‖ûh(s)‖21ds ≤ Ke2αt.

Multiply by e−2αt to conclude (5.9).
For the next estimate, we choose φh = e2αt∆̃hu

h(t) in (5.4) and proceed as above. For the non-linear
term, we again follow similar proof technique of (4.14) to obtain

b(uH ,uH , ∆̃hu
h) ≤ C‖uH‖1/2‖uH‖

1/2
2 ‖uH‖1‖u

h‖2.(5.15)

These estimates let us have

1

2

d

dt
‖ûh‖21 − α‖ûh‖21 + ν‖ûh‖22 ≤ ‖f̂‖‖ûh‖2 + Ceαt‖uH‖1/2‖uH‖

1/2
2 ‖uH‖1‖û

h‖2.(5.16)

Using Cauchy-Schwarz inequality and Poincaré inequality as earlier, we find that

d

dt
‖ûh‖21 +

(

ν −
α

2λ1

)

‖ûh‖22 ≤ C‖f̂‖2 + Ce2αt
{

‖uH‖2‖uH‖41 + ‖uH‖22
}

.(5.17)

Integrate (5.17) with respect to time, use Lemma 5.1 and finally multiply by e−2αt to obtain (5.10).

6 Error Estimate

In this section, we present the error estimate for the spatial approximation, that is, two-level finite
element approximation. We achieve the desired results through a series of Lemmas. For the sake of
convenience, henceforward, we will write KeKt simply as K.
We denote the error, due to two-level method, as e = uh − uh.
From the equations (3.3) and (5.4), we have the following error equation:

(et,φh) + νa(e,φh) = Λh(φh) ∀φh ∈ Jh,(6.1)

where

Λh(φh) = b(uH ,uH ,φh)− b(uh,uh,φh)

= b(uH ,uH − uh,φh) + b(uH − uh,uh,φh).(6.2)
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Lemma 6.1. Under the assumptions of Theorem 4.1 and with the additional assumption that uh(0) =
uh(0) and for 0 < α < νλ1/2, the following estimate

(6.3) ‖e(t)‖2−1 + e−2αt

∫ t

0
e2αs‖e(s)‖2ds ≤ KH4

holds, for t > 0.

Proof. Choose φh = e2αt(−∆̃h)
−1e(t) = eαt(−∆̃h)

−1ê(t) in (6.1) to obtain

(6.4)
1

2

d

dt
‖ê‖2−1 − α‖ê‖2−1 + ν‖ê‖2 = e2αtΛh((−∆̃h)

−1e).

Following (4.14) and using Lemmas 3.2 and 5.1, we find

Λ((−∆̃h)
−1e) = b(uH ,uH − uh, (−∆̃h)

−1e) + b(uH − uh,uh, (−∆̃h)
−1e)

≤ ‖uH − uh‖‖e‖
{

‖uH‖1 + ‖uh‖1
}

≤ K‖uH − uh‖‖e‖.

Incorporate this in (6.4).

(6.5)
d

dt
‖ê‖2−1 + ν‖ê‖2 ≤ 2α‖ê‖2−1 +K‖ûH − ûh‖

2.

Integrate (6.5) with respect to time. Using (4.29), we first observe that

∫ t

0
‖(ûH − ûh)(s)‖

2ds ≤

∫ t

0
‖(û− ûH)(s)‖2ds+

∫ t

0
‖(û− ûh)(s)‖

2ds ≤ Ke2αtH4.(6.6)

And hence

(6.7) ‖ê(t)‖2−1 + ν

∫ t

0
‖ê(s)‖2ds ≤ 2α

∫ t

0
‖ê(s)‖2−1ds+Ke2αtH4.

Multiply by e−2αt and use Gronwall’s Lemma to complete the rest of the proof.

Lemma 6.2. Under the assumptions of Lemma 6.1, the following estimate

(6.8) τ∗(t)‖e(t)‖2 + e−2αt

∫ t

0
σ(s)‖e(s)‖21ds ≤ K(t)H4

holds, for t > 0, where σ(t) = τ∗(t)e2αt, τ∗(t) = min{1, t}.

Proof. Choose φh = σ(t)e(t) in (6.1) to obtain

d

dt

{

σ(t)‖e‖2
}

+ 2ν σ(t)‖e‖21 = σt(t)‖e‖
2 + 2σ(t)Λh(e).(6.9)

To estimate the non-linear term, we follow (4.19) and use Lemmas 5.1 and 3.2.

Λh(e) ≤ C‖uH − uh‖‖e‖1
{

‖uH‖
1/2
1 ‖uH‖

1/2
2 + ‖uh‖

1/2
1 ‖uh‖

1/2
2

}

≤ K‖uH − uh‖‖e‖1
{

‖uH‖
1/2
2 + ‖uh‖

1/2
2

}

.(6.10)

And hence, we find from (6.9)

d

dt

{

σ(t)‖e‖2
}

+ 2ν σ(t)‖e‖21 ≤ C‖ê‖2 +Kσ(t)‖e‖1‖uH − uh‖
{

‖uH‖
1/2
2 + ‖uh‖

1/2
2

}

.
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Use Cauchy-Schwarz inequality and then kickback argument to yield

d

dt

{

σ(t)‖e‖2
}

+ ν σ(t)‖e‖21 ≤ C‖ê‖2 +Kσ(t)‖uH − uh‖
2
{

‖uH‖2 + ‖uh‖2
}

.(6.11)

Use Lemmas 5.1 and 3.2 to estimate the last term of (6.11) as follows:

Kσ(t)‖uH − uh‖
2
{

‖uH‖2 + ‖uh‖2
}

≤ K‖ûH − ûh‖
2.

We have used the fact that τ∗(t) ≤ 1. Incorporate this in (6.11) and integrate in time. Use (6.6) to
estimate the last term.

σ(t)‖e(t)‖2 + ν

∫ t

0
σ(s)‖e(s)‖21ds ≤ C

∫ t

0
‖ê(s)‖2ds+Ke2αtH4.(6.12)

Now use Lemma 6.1 and then multiply the resulting inequality by e−2αt to complete the rest of the
proof.

Lemma 6.3. Under the assumptions of Lemma 6.1, the following estimate

(6.13) (τ∗(t))2‖e(t)‖21 + e−2αt

∫ t

0
σ1(s)‖es(s)‖

2ds ≤ K(t)H4

holds, for t > 0, where σ1(t) = (τ∗(t))2e2αt.

Proof. Choose φh = σ1(t)et(t) in (6.1) to obtain

2σ1(t)‖et‖
2 + ν

d

dt

{

σ1(t)‖e‖
2
1

}

= νσ1,t(t)‖e‖
2
1 + 2σ1(t)Λh(et).(6.14)

Integrate (6.14) with respect to time.

2

∫ t

0
σ1(s)‖es(s)‖

2ds+ νσ1(t)‖e(t)‖
2
1 ≤ C

∫ t

0
σ(s)‖e(s)‖21ds + 2

∫ t

0
σ1(s)Λh(es) ds.(6.15)

We rewrite the non-linear terms as follows:

Λh(et) = b(uH ,uH − uh, et) + b(uH − uh,uh, et)

=
d

dt

{

b(uH ,uH − uh, e) + b(uH − uh,uh, e)
}

− b(uH,t,uH − uh, e)

− b(uH ,uH,t − uh,t, e)− b(uH,t − uh,t,uh, e)− b(uH − uh,uh,t, e).

And hence

σ1(t)Λh(et) = σ1(t)
(

b(uH ,uH − uh, et) + b(uH − uh,uh, et)
)

=
d

dt

{

σ1(t)
(

b(uH ,uH − uh, e) + b(uH − uh,uh, e)
)}

− σ1,t(t)
(

b(uH ,uH − uh, e) + b(uH − uh,uh, e)
)

− σ1(t)b(uH,t,uH − uh, e)

− σ1(t)
(

b(uH ,uH,t − uh,t, e) + b(uH,t − uh,t,uh, e) + b(uH − uh,uh,t, e)
)

.(6.16)

As seen earlier, we have

−b(uH,t,uH − uh, e)− b(uH − uh,uh,t, e)

≤ C‖uH − uh‖‖e‖1
{

‖uH,t‖
1/2
1 ‖uH,t‖

1/2
2 + ‖uh,t‖

1/2
1 ‖uh,t‖

1/2
2

}
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Use Lemmas 3.3 and 5.2 to conclude that

(6.17) − b(uH,t,uH − uh, e)− b(uH − uh,uh,t, e) ≤ K(τ∗(t))−3/2‖uH − uh‖‖e‖1.

Similarly

(6.18) − b(uH ,uH − uh, e)− b(uH − uh,uh, e) ≤ K(τ∗(t))−1/2‖uH − uh‖‖e‖1

and

(6.19) − b(uH ,uH,t − uh,t, e)− b(uH,t − uh,t,uh, e) ≤ K(τ∗(t))−1/2‖uH,t − uh,t‖‖e‖1.

Incorporate (6.17)-(6.19) in (6.16) and integrate with respect to time. Re-use (6.18) to find

∫ t

0
σ1(s)Λh(es) ds ≤ σ1(t)

(

b(uH ,uH − uh, e) + b(uH − uh,uh, e)
)

+K

∫ t

0
e2αs

{

(τ∗(s))1/2‖(uH − uh)(s)‖+ (τ∗(s))3/2‖(uH,s − uh,s)(s)‖
}

‖e(s)‖1ds

≤Ke2αt(τ∗(t))3/2‖uH − uh‖‖e‖1 + C

∫ t

0
σ(s)‖e(s)‖21ds

+K

∫ t

0
e2αs

{

‖(uH − uh)(s)‖
2 + (τ∗(s))2‖(uH,s − uh,s)(s)‖

2
}

ds

≤
ν

2
σ1(t)‖e‖

2
1 +Kσ(t)‖uH − uh‖

2 + C

∫ t

0
σ(s)‖e(s)‖21ds

+K

∫ t

0
e2αs

{

‖(uH − uh)(s)‖
2 + (τ∗(s))2‖(uH,s − uh,s)(s)‖

2
}

ds.(6.20)

Put (6.20) in (6.15) to obtain

2

∫ t

0
σ1(s)‖es(s)‖

2ds+
ν

2
σ1(t)‖e‖

2
1 ≤ C

∫ t

0
σ(s)‖e(s)‖21ds +Kσ(t)‖uH − uh‖

2

+K

∫ t

0
e2αs

{

‖(uH − uh)(s)‖
2 + (τ∗(s))2‖(uH,s − uh,s)(s)‖

2
}

ds.(6.21)

Now, use Lemma 6.2. For the remaining part, rewrite uH − uh as u − uh − (u − uH). Then use
(4.29) and Theorems 4.1 and 4.3 to complete the rest of the proof.

Lemma 6.4. Under the assumptions of Lemma 6.1 and additionally that the assumption (B2′)
holds, we have

(6.22) ‖ph − ph‖ ≤ K(t)(τ∗(t))−1H2.

Proof. The LBB condition (B2′) tells us that, for t > 0

(6.23) ‖ph − ph‖L2/R ≤ K0 sup
06=φ

h
∈Hh

(ph − ph,∇ · φh)

‖φh‖1
.

From (3.2) and (5.2), we have, for φh ∈ Hh

(ph − ph,∇ · φh) = (et,φh) + νa(e,φh)− Λh(φh)

≤ C‖φh‖1
{

‖et‖−1,h + ‖e‖1
}

+K(τ∗(t))−1/4‖uH − uh‖‖φh‖1.
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We have estimated Λh as in (6.10) and have used Lemmas 5.1 and 5.3. Using (6.23), we obtain,
thanks to Lemma 4.1 and 6.3

‖ph − ph‖L2/R ≤ C‖et‖−1,h +K(τ∗(t))−1H2.(6.24)

Following (4.24), we observe

‖et‖−1,h ≤ ‖et‖−1.

Keeping in mind that, for φ ∈ H1
0, Phφ ∈ Jh, we use (6.1) to write (et,φ) as in (4.26) and similar to

estimates in (4.27), we find

(et,φ) ≤ C‖e‖1‖φ‖1 + C‖uH − uh‖{‖uH‖
1/2
1 ‖uH‖

1/2
2 + ‖uh‖

1/2
1 ‖uh‖

1/2
2 }‖φ‖1 + Ch‖et‖‖φ‖1.

(6.25)

Use Lemmas 5.1, 5.3 and 6.3. We again rewrite uH −uh as u−uh− (u−uH) and use Theorem 4.1.
Now, for φ 6= 0, we divide (6.25) by φ to finally obtain

‖et‖−1 ≤ K(τ∗(t))−1H2 + Ch‖et‖.

And hence, from (6.24), we find

‖ph − ph‖L2/R ≤ CH‖et‖+K(τ∗(t))−1H2.

Now the following lemma completes the proof.

Lemma 6.5. Under the assumptions of Lemma 6.1, the following estimate holds, for t > 0.

‖et‖ ≤ K(τ∗(t))−1H.

Proof. Differentiate the error equation (6.1) with respect to time.

(ett,φh) + νa(et,φh) = Λh,t(φh) ∀φh ∈ Jh,(6.26)

where

Λh,t(φh) =b(uH,t,uH − uh,φh) + b(uH ,uH,t − uh,t,φh) + b(uH,t − uh,t,uh,φh)

+ b(uH − uh,uh,t,φh).(6.27)

Choose φh = σ1(t)et in (6.26) to find

d

dt

{

σ1(t)‖et‖
2
}

+ 2νσ1(t)‖et‖
2
1 ≤ σ1,t(t)‖et‖

2 + 2σ1(t)Λh,t(et).(6.28)

Similar to (6.17)-(6.19), we obtain

2σ1(t)Λh,t(et) ≤ Cσ1(t)‖et‖1
{

‖uH,t‖1 + ‖uh,t‖1
}

‖uH − uh‖1

+Cσ1(t)‖et‖1
{

‖uH‖1 + ‖uh‖1
}

‖uH,t − uh,t‖1.(6.29)

Incorporate (6.29) in (6.28). Use kickback argument and then integrate with respect to time.

σ1(t)‖et(t)‖
2 + ν

∫ t

0
σ1(s)‖et‖

2
1 ≤ C

∫ t

0
σ(s)‖et(s)‖

2ds+K

∫ t

0
σ1(s)‖(uH,s − uh,s)(s)‖

2
1ds

+KH2

∫ t

0
σ(s)

(

‖uH,s(s)‖
2
1 + ‖uh,s(s)‖

2
1

)

ds(6.30)
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Use Lemmas 2.1 and 5.3 to bound the last term of (6.30). For the second last term, we rewrite
uH,s − uh,s as us − uh,s − (us − uH,s) and use Lemma 4.2.

(6.31) σ1(t)‖et(t)‖
2 + ν

∫ t

0
σ1(s)‖et‖

2
1 ≤ C

∫ t

0
σ(s)‖et(s)‖

2ds+KH2.

To estimate the first term on the right hand-side of (6.31), we put φh = σ(t)et in (6.1).

σ(t)‖et‖
2 +

ν

2

d

dt
{σ(t)‖e‖21} = σt(t)‖e‖

2
1 + σ(t)Λh(et).(6.32)

We take care of the non-linear term as earlier.

Λh(et) = b(uH ,uH − uh, et) + b(uH − uh,uh, et)

≤ C‖et‖‖uH − uh‖1
(

‖uH‖1/2‖uH‖
1/2
2 + ‖uh‖

1/2‖uh‖
1/2
2

)

+ C‖et‖‖uH − uh‖
1/2‖uH − uh‖

1/2
1

(

‖uH‖
1/2
1 ‖uH‖

1/2
2 + ‖uh‖

1/2
1 ‖uh‖

1/2
2

)

≤ K‖et‖‖uH − uh‖1
(

‖uH‖
1/2
2 + ‖uh‖

1/2
2

)

.

We have used Lemmas 5.1 and 3.2. Incorporate in (6.32) and after kickback argument, integrate
with respect to time.

∫ t

0
σ(s)‖es(s)‖

2ds+ σ(t)‖e(t)‖21 ≤ C

∫ t

0
e2αs‖e(s)‖21ds+K

∫ t

0
e2αs‖E(s)‖21ds.

Use (4.52) to obtain

∫ t

0
σ(s)‖es(s)‖

2ds+ σ(t)‖e(t)‖21 ≤ C

∫ t

0
e2αs‖e(s)‖21ds+KH2.(6.33)

To estimate the first term on the right hand-side of (6.33), we choose φh = e2αte in (6.1) to find

1

2

d

dt
‖ê‖2 +

(

ν −
α

λ1

)

‖ê‖21 ≤ e2αtΛh(e) ≤ K‖ê‖1
{

eαt‖uH − uh‖1}.

Use kickback argument and then integrate with respect to time.

e2αt‖e(t)‖2 +

∫ t

0
e2αs‖e(s)‖21ds ≤ K

∫ t

0
e2αs‖E(s)‖21ds.

We recall that e(0) = 0. Apply (4.52) to get

(6.34) e2αt‖e(t)‖2 +

∫ t

0
e2αs‖e(s)‖21ds ≤ KH2.

Now, from (6.33), we have

∫ t

0
σ(s)‖es(s)‖

2ds+ σ(t)‖e(t)‖21 ≤ KH2.(6.35)

And from (6.31)

(6.36) σ1(t)‖et(t)‖
2 + ν

∫ t

0
σ1(s)‖et‖

2
1 ≤ KH2.

And this completes the rest of the proof.
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Remark 6.1. In the Lemma 6.5, we have desired and obtained a lower order estimate, which is of
O(H) instead of O(H2). Note that in the proof, we have avoided O(H2) estimates. For example, for
the second last term (6.30), we do not follow the argument that we have used to bound the last term
of (6.21). Instead, we have used Lemma 4.2. An optimal estimate of ‖et‖ would read O(t−3/2H2)
and which could be achieved by choosing φh = σ2(t)et in (6.26), instead of σ1(t)et as in the proof
of Lemma 6.5. But this would lead to a higher order singularity of pressure error estimate at t = 0.
Our pressure error estimate (6.22) and velocity error estimate (6.13) have same order of singularity
at t = 0, which is not the case in [9]. Even for smooth initial data, we can obtain error estimates for
both velocity and pressure, that have same order of singularity at t = 0, i.e, of O(H2), by following
our proof technique. This improves the pressure error estimate of [9]. To be precise, in [9], to
estimate the pressure error, ‖et‖ is used (see (5.39) from [9]). Taking advantage of conforming finite
element, we have used ‖et‖−1 instead. And we are awarded with a better pressure error estimate.
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