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ON A LINEARIZED BACKWARD EULER METHOD FOR THE
EQUATIONS OF MOTION OF OLDROYD FLUIDS OF ORDER ONE∗
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Abstract. In this paper, a linearized backward Euler method is discussed for the equations of
motion arising in the Oldroyd model of viscoelastic fluids. Some new a priori bounds are obtained
for the solution under realistically assumed conditions on the data. Further, the exponential decay
properties for the exact as well as the discrete solutions are established. Finally, a priori error
estimates in H1 and L2-norms are derived for the the discrete problem which are valid uniformly for
all time t > 0.
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1. Introduction. The motion of an incompressible fluid in a bounded domain
Ω in R

2 is described by the system of partial differential equations

∂u

∂t
+ u · ∇u −∇ · σ + ∇p = F(x, t), x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

with appropriate initial and boundary conditions. Here, σ = (σik) denotes the stress
tensor with trσ = 0, u represents the velocity vector, p is the pressure of the fluid,
and F is the external force. The defining relation between the stress tensor σ and
the rate of deformation tensor D = (Dik) = 1

2 (uixk
+ ukxi), called the equation of

state or sometimes the rheological equation, in fact, establishes the type of fluids
under consideration. When σ = 2νD (using Newton’s law) with ν the kinematic
coefficient of viscosity, we obtain Newton’s model of incompressible viscous fluid and
the corresponding system is widely known as Navier–Stokes equations. This has been
a basic model for describing the flow at moderate velocities of the majority of the
incompressible viscous fluids encountered in practice. However, there are many fluids
with complex microstructure, such as biological fluids, polymeric fluids, suspensions,
and liquid crystals, which are used in the current industrial processes and show (non-
linear) viscoelastic behavior that cannot be described by the classical linear viscous
Newtonian models. The deparature from the Navier–Stokes behavior manifests itself
in a variety of ways, such as non-Newtonian viscosity, stress relaxation, and nonlin-
ear creeping. The model of rate type such as Oldroyd fluids (see [4], [23], [32] ) can
predict the stress relaxation as well as the retardation of deformation and, therefore,
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have become popular for describing polymeric suspension. In order to model the be-
havior of a dilute polymer solution in a Newtonian solvent, the extra stress tensor is
often split into two components: a viscoelastic one and a purely viscous one. So the
Oldroyd fluids of order one as it is known in the Russian literature (see [23], [2], [18])
are described by the defining relation(

1 + λ
∂

∂t

)
σ = 2ν

(
1 + κν−1 ∂

∂t

)
D,

where λ, ν, κ are positive constants with (ν−κλ−1) > 0. Here, ν denotes the kinematic
viscocity, λ is the relaxation time, and κ represents the retardation time. In the form
of an integral equation, we write the above defining relation as

σ(x, t) = 2κλ−1D(x, t) + 2λ−1(ν − κλ−1)

∫ t

0

exp(−λ−1(t− τ))D(x, τ) dτ

+(σ(x, 0) − 2κλ−1D(x, 0)) exp(−λ−1t).

Now the equation of motion of the Oldroyd fluids of order one can be described most
naturally by the system of integrodifferential equations

∂u

∂t
+ u · ∇u − μΔu −

∫ t

0

β(t− τ)Δu(x, τ) dτ + ∇p = f , x ∈ Ω, t > 0,(1.1)

and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(1.2)

with initial and boundary conditions

u(x, 0) = u0, x ∈ Ω, and u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.(1.3)

Here, Ω is a bounded domain in two-dimensional Euclidean space R
2 with smooth

boundary ∂Ω, μ = κλ−1 > 0 and the kernel β(t) = γ exp(−δt), where γ = λ−1(ν −
κλ−1) and δ = λ−1. For details of the physical background and its mathematical
modeling, see [4], [17], [23], [24], and [32].

Throughout this paper, we shall assume that μ = 1 and the nonhomogeneous
term f = 0. In fact, assuming conservative force, the function f can be absorbed in
the pressure term.

As in Temam [28], we recast the above problem (1.1)–(1.3) as an abstract evolu-
tion equation in an appropriate function space setting. Let us denote by Hm(Ω) the
standard Hilbert–Sobolev space and by ‖·‖m the norm defined on it. When m = 0, we
call H0(Ω) as the space of square integrable functions L2(Ω) with the usual norm ‖ · ‖
and inner product (·, ·). Further, let H1

0 (Ω) be the completion of C∞
0 (Ω) with respect

to H1(Ω)-norm. In fact, the seminorm ‖∇φ‖ on H1
0 (Ω) is a norm and is equivalent to

H1-norm. We also use the following function spaces for the vector valued functions.
Define

D(Ω) := {φ ∈ (C∞
0 (Ω))2 : ∇ · φ = 0 in Ω},

H := the closure of D(Ω) in (L2(Ω))2 − space,

and

V := the closure of D(Ω) in (H1
0 (Ω))2 − space.
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Note that under some smoothness assumptions on the boundary ∂Ω, it is possible to
characterize V as

V := {φ ∈ (H1
0 )2 : ∇ · φ = 0 in Ω}.

The spaces of vector functions are indicated by boldface letters, for instance, H1
0 =

(H1
0 (Ω))2. The inner product on H1

0 is denoted by

(∇φ,∇w) =
2∑

i=1

(∇φi,∇wi)

and the norm by

‖∇φ‖ =

(
2∑

i=1

‖∇φi‖2

) 1
2

.

Using the Poincaré inequality, it can be shown that the norm on H1
0 is equivalent

to H1 = (H1(Ω))2- norm. Let P denote the orthogonal projection of L2(Ω) (=
(L2(Ω))2) onto H. Now the orthogonal complement V⊥ of V in L2(Ω) consists
of functions φ such that φ = ∇p for some p ∈ H1(Ω)/R. We define the Stokes
operator Av = −PΔv, v ∈ D(A) = H2

⋂
V. The Stokes operator is a closed

linear self-adjoint and positive operator on H with densely defined domain D(A)
in H. Note that its inverse is compact in H; see [28]. Moreover, we set the sth
power of A as As for every s ∈ R. For 0 ≤ s ≤ 2, D(As/2) is a Hilbert space
with the inner product (As/2v, As/2w) and norm ‖As/2v‖ := (As/2v, As/2v)1/2. For
v ∈ D(As/2), 0 ≤ s ≤ 2, we note that ‖v‖s and ‖As/2v‖ are equivalent. We also
define a bilinear operator B(u,v) = P((u · ∇)v), u,v ∈ V.

With the notations described above, we now rewrite the problem (1.1)–(1.3) in
its abstract form as follows.

Find u(t) ∈ D(A) such that for t ≥ 0

du

dt
(t) + Au(t) + B(u(t),u(t)) +

∫ t

0

β(t− s)Au(s) ds = 0, t > 0,(1.4)

u(0) = u0.

In an Oldroyd fluid, the stresses after instantaneous cessation of the motion decay
like exp(−λ−1t), while the velocities of the flow after instantaneous removal of the
stresses die out like exp(−κ−1t). Therefore, it is of interest to discuss the exponential
decay property of the solution of (1.4), and we derive these results in section 2. For
some related studies in the decay of solution of the linear parabolic equations with
memory, see [30] and [3].

The main focus of this paper is to discuss the linearized backward Euler method
for time discretization of the system of equations (1.4). For the temporal discretization
of the above abstract problem (1.4), let k denote the time step and tn = nk. For
smooth function φ defined on [0,∞), set φn = φ(tn) and ∂̄tφ

n = (φn − φn−1)/k. For
the integral term, we apply the right rectangle rule as

qn(φ) = k

n∑
j=1

βn−jφ
j ≈

∫ tn

0

β(tn − s)φ(s) ds,(1.5)

where βn−j = β(tn − tj).
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Now the linearized version of the backward Euler method applied to the problem
(1.4) determines a sequence of functions {Un}n≥0 ⊂ D(A) as solutions of

∂̄tU
n + AUn + B(Un−1,Un) + qn(AU) = 0, n > 0,(1.6)

U0 = u0.

The main objective of this paper is to derive the following result.
Theorem 1. Let u0 ∈ D(A) and let Un satisfy (1.6). Then there is a positive

constant C independent of k but that may depend on ‖u0‖2 and Ω such that for some
k0 > 0 with 0 < k < k0 and for positive α with 0 < α < min(δ, λ1)

‖u(tn) − Un‖1 ≤ C(‖u0‖2)e
−αtnk

(
t−1/2
n + log

1

k

)
,

where λ1 is the least eigenvalue of the Stokes operator A.
Once Theorem 1 is proved, the proof of the following theorem becomes routine

work. However, we shall indicate only the major steps without proving it in detail in
the end of section 3.

Theorem 2. Under the assumptions of Theorem 1, there is a positive constant
C independent of k but that may depend on ‖u0‖2 and Ω such that for some k0 > 0
with 0 < k < k0 and 0 < α < min(δ, λ1)

‖u(tn) − Un‖ ≤ C(‖u0‖2)e
−αtnk.

Based on the analysis of Ladyzenskaya [20] for the solvability of the Navier–Stokes
equations, Oskolkov [24] proved the global existence of unique “almost” classical so-
lutions in finite time interval for the initial and boundary value problem (1.1)–(1.3).
The invesigations on solvability were further continued by the coworkers of Oskolkov
[19] and Agranovich and Sobolevskii [1] under various sufficient conditions. In these
articles, the regularity results are proved which are, in principle, based on some non-
local compatibility conditions for the data at t = 0. Note that these compatibility
conditions are either hard to verify or difficult to meet in practice. In case of Navier–
Stokes equations, we refer to Heywood and Rannacher [14] for a similar kind of non-
local conditions. In the present article, we have obtain some new a priori bounds
for the solutions of (1.4) under realistically assumed conditions on the initial data.
Recently, Sobolevskii [27] discussed the long-time behavior of solution under some
stabilizing conditions on the nonhomogeneous forcing function using a combination
of energy arguments and semigroup theoretic approach. When the forcing function
is zero, we have derived, in sections 2 and 3, the exponential decay properties for the
exact solution as well as for the discrete solution using only energy arguments.

For earlier works on the numerical approximations to the solutions of the prob-
lem (1.1)–(1.3), see [2] and [5]. While Akhmatov and Oskolkov [2] applied a finite
difference scheme to the equation of motion arising in the Oldroyd model, Cannon et
al. [5] analyzed a modified nonlinear Galerkin scheme for a periodic problem using
spectral Galerkin procedure and discussed the rates of convergence for the semidis-
crete approximations. Recently, Pani and Yuan [26] and He et al. [12] applied finite
element methods to discretize the spatial variables and derived optimal error esti-
mates for the problems (1.1)–(1.3) without using nonlocal compatibility conditions.
In all these pappers [5], [26], [12], only semidiscrete approximations are discussed
keeping the time variable continuous. In this article, we have proposed and analyzed
a time discretization scheme based on linearized modification of the backward Euler
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method. Note that the results on higher order time discretization can easily be proved
under the assumption that the exact solutions are sufficiently smooth when t is near
0. These regularity results as we have mentioned earlier entail nonlocal compatibility
conditions for the initial data which cannot be verified in practice. Recently, in the
context of Oldroyd B fluid, which is a generalization of Oldroyd fluid of order one,
a second order Crank–Nicolson scheme [8] is used for the temporal discetization in
conjuction with the finite element methods for spatial discretization under regularity
requirements on the solutions which cannot be realistically assumed. Therefore, an
attempt has been made in this paper to discuss the error estimates for the linearized
modified backward Euler scheme (1.6) applied to (1.4) under realistically assumed
conditions on the initial data. Finally, in section 4, we conclude with a summary and
possible extensions.

The approach of the present article is influenced by the earlier results of Fujita and
Mizutani [10], Thomée [29], and references therein on the approximation of semigroups
for the parabolic problems; Okamoto [22] on the spatial discretization and Geveci [11]
on the time discretization of the Navier–Stokes equations; and Thomée and Zhang
[31] for the time discretization of the linear parabolic integrodifferential equations
with nonsmooth initial data.

2. Some a priori estimates. For our future use, we make use of the positive
definite property (see [21], for a definition) of the kernel β of the integral operator in
(1.1). This can be seen as a consequence of the following lemma. For a proof, see
Sobolevskii [27, p. 1601] and McLean and Thomeé [21].

Lemma 3. For arbitrary α > 0, t∗ > 0, and φ ∈ L2(0, t∗), the following positive
definite property holds:∫ t∗

0

(∫ t

0

exp [−α(t− s)]φ(s) ds

)
φ(t) dt ≥ 0.

Since β(t) = γe−δt with γ > 0, therefore, the above result is true for β(t).
Below, we discuss some a priori bounds for the solution u of (1.4).
Lemma 4. Let 0 < α < min (δ, λ1) and u0 ∈ L2(Ω). Then, the following estimate

holds:

‖u(t)‖ ≤ e−αt‖u0‖, t > 0.

Moreover,

2

(
1 − α

λ1

)∫ t

0

e2ατ‖A1/2u(τ)‖2dτ ≤ ‖u0‖2.

Proof. Setting û(t) = eαtu(t) for some α > 0, we rewrite (1.4) as

d

dt
û − αû + e−αtB(û, û) + Aû +

∫ t

0

β(t− τ)eα(t−τ)Aû(τ) dτ = 0.(2.1)

Form L2-inner product between (2.1) and û. Note that (B(û, û), û) = 0, (Au,v) =

(A
1
2 u, A1/2v), and ‖û‖2 ≤ λ−1

1 ‖A1/2û‖2, where λ1 is the least eigenvalue of the Stokes
operator A. Then

d

dt
‖û‖2 + 2

(
1 − α

λ1

)
‖A1/2û‖2(2.2)

+ 2

∫ t

0

β(t− τ)eα(t−τ)(A1/2û(τ), A1/2û(τ))dτ ≤ 0.
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After integrating (2.2) with respect to time, the third term becomes nonnegative,
since δ > α, and the second term on the left-hand side of (2.2) is also nonnegative if
α < λ1. With 0 < α < min (δ, λ1), we find that

‖û‖ ≤ ‖u0‖.

Moreover,

2

(
1 − α

λ1

)∫ t

0

e2ατ‖A1/2u(τ)‖2dτ ≤ ‖u0‖2.

This completes the rest of the proof.
Lemma 5. Under the hypothesis of Lemma 4, the solution u of (1.4) satisfies

‖A1/2u(t)‖2 + e−2αt

∫ t

0

e2ατ‖Au(τ)‖2 dτ ≤ C(‖A1/2u0‖)e−2αt.

Proof. Forming L2-inner product between (2.1) and Aû, we obtain

(ût, Aû) + ‖Aû‖2 +

∫ t

0

β(t− τ)eα(t−τ)(Aû(τ), Aû) dτ = α(û, Aû)(2.3)

− e−αt(B(û, û), Aû).

Note that

(ût, Aû) =
1

2

d

dt
‖A1/2û‖2.

On integration of (2.3) with respect to time and using Lemma 3 along with the
definition of β, it follows for 0 < α ≤ δ that

‖A1/2û(t)‖2 + 2

∫ t

0

‖Aû(τ)‖2 dτ ≤ ‖A1/2u0‖2 + 2α

∫ t

0

(û, Aû) dτ(2.4)

− 2

∫ t

0

e−ατ (B(û, û), Aû) dτ

= ‖A1/2u0‖2 + I1 + I2.

To estimate |I1|, we apply the Poincaré inequality and Cauchy–Schwarz inequality
with ab ≤ 1

2εa
2 + ε

2b
2, a, b ≥ 0, ε > 0. Then the use of Lemma 4 yields

|I1| ≤ C(α, λ1, ε)

∫ t

0

‖A1/2û(τ)‖2 dτ + ε

∫ t

0

‖Aû(τ)‖2 dτ(2.5)

≤ C(α, λ1, ε)‖u0‖2 + ε

∫ t

0

‖Aû(τ)‖2 dτ.

For the estimation of I2, we apply Hölder’s inequality repeatedly with the form of the
Sobolev inequality (see Temam [28])

‖φ‖L4(Ω) ≤ C‖φ‖ 1
2 ‖A1/2φ‖ 1

2 , φ ∈ H1(Ω),

to obtain

|(B(û, û), Aû)| ≤ ‖B(û, û)‖‖Aû‖
≤ C‖û‖ 1

2 ‖A1/2û‖‖Aû‖ 3
2 .
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Thus,

|I2| ≤ C

∫ t

0

e−ατ‖û‖ 1
2 ‖A1/2û‖ ‖Aû‖ 3

2 dτ.

An application of Young’s inequality ab ≤ ap

εp/q
+ εbq

q , a, b ≥ 0, ε > 0, and 1
p + 1

q = 1

with p = 4 and q = 4
3 yields

|I2| ≤ C(ε)

∫ t

0

e−4ατ‖û‖2‖A1/2û‖4 dτ + ε

∫ t

0

‖Aû‖2 dτ.(2.6)

Substituting (2.5)–(2.6) in (2.4), and using ε = 1
2 , we find that

‖A1/2û(t)‖2 +

∫ t

0

‖Aû(τ)‖2 dτ ≤ C(α, λ1, ‖A1/2u0‖) + C

∫ t

0

e−4ατ‖û‖2‖A1/2û‖4 dτ.

An application of Gronwall’s lemma yields

‖A1/2û(t)‖2+

∫ t

0

‖Aû(τ)‖2 dτ≤ C(α, λ1, ‖A1/2u0‖) exp

{
C

∫ t

0

e−4ατ‖û‖2‖A1/2û‖2 dτ

}
.

Using the a priori bounds in Lemma 4 for 0 < α < min (δ, λ1), we obtain the desired
result. This completes the proof.

Remark 1. Based on the Faedo–Galerkin method and the a priori bounds derived
in the above two lemmas, it is possible to prove the existence of global strong solu-
tions to the problem (1.1)–(1.3). For a similar analysis in the case of Navier–Stokes
equations, see Heywood [13], Temam [28], and Ladyzenskaya [20]. Since the analysis
is quite standard, we state without proof the global existence theorem [25].

Theorem 6. Assume that u0 ∈ D(A). Then for any given time T > 0 with
0 < T ≤ ∞, there exists a unique strong solution u of (1.4) satisfying

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V) ∩H1(0, T ;H),

and the initial condition in the sense that

‖A1/2(u(t) − u0)‖ −→ 0, as t −→ 0.

Recently, Cannon et al. [5] proved existence of a global weak solution u satisfying

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V), T > 0,

for a periodic problem, under the assumption that the forcing function f ∈ L∞(0,∞;L2)
and u0 ∈ H. It is easy to extend our analysis to (1.1)–(1.3) with periodic boundary
conditions and f = 0.

Below, we derive some new regularity results without nonlocal assumptions on
the data.

Lemma 7. Under the assumptions of Lemma 4, there is a positive constant C
such that

‖Au(t)‖ + ‖ut‖ ≤ C(‖Au0‖)e−αt, t > 0,(2.7)

and (∫ t

0

e2αs‖A1/2ut(s)‖2 ds

)1/2

≤ C(‖Au0‖).(2.8)
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Further, the following estimate holds:

‖A1/2ut(t)‖ +

(
σ(t)

∫ t

0

σ(s)‖Aut(s)‖2 ds

)1/2

≤ C(‖Au0‖)
(τ∗(t))1/2

e−αt, t > 0,(2.9)

where σ(t) = τ∗(t)e2αt and τ∗(t) = min(t, 1).
Proof. From (2.1), we obtain

eαt‖ut‖ ≤ ‖Aû‖ + e−αt‖B(û, û)‖ +

∫ t

0

β(t− s)eα(t−s)‖Aû(s)‖ ds.(2.10)

Using the form of B and the Sobolev inequality, it follows that

‖B(û, û)‖ ≤ C‖û‖ 1
2 ‖A1/2û‖‖Aû‖ 1

2(2.11)

≤ C‖û‖‖A1/2û‖2 + C‖Aû‖.

On squaring (2.10) and integrating with respect to time, we find from (2.11) that∫ t

0

e2αs‖ut‖2 ds ≤ C

[∫ t

0

‖Aû‖2 ds +

∫ t

0

e−2αs‖û‖2‖A1/2û‖4 ds(2.12)

+

∫ t

0

(

∫ s

0

β(s− τ)eα(s−τ)‖Aû(τ)‖ dτ)2 ds

]
.

For the last term on the right-hand side of (2.12), use the form of β and Hölder’s
inequality to obtain

I =

∫ t

0

(∫ s

0

β(s− τ)eα(s−τ)‖Aû(τ)‖ dτ

)2

ds

= γ2

∫ t

0

(∫ s

0

e−(δ−α)(s−τ)‖Aû(τ)‖ dτ

)2

ds

≤ γ2

∫ t

0

(∫ s

0

e−(δ−α)(s−τ) dτ

)(∫ s

0

e−(δ−α)(s−τ)‖Aû(τ)‖2 dτ

)
ds

≤ γ2

δ − α

∫ t

0

(∫ s

0

e−(δ−α)(s−τ)‖Aû‖2 dτ

)
ds.

Using a change of variable, we find that

I ≤ γ2

δ − α

∫ t

0

(∫ s

0

e−(δ−α)τ‖Aû(s− τ)‖2 dτ

)
ds.

Now a change in the order of integration yields

I ≤ γ2

δ − α

∫ t

0

e−(δ−α)τ

(∫ t

τ

‖Aû(s− τ)‖2 ds

)
dτ

≤ γ2

(δ − α)2

∫ t

0

e−(δ−α)(t−τ)

(∫ t

0

‖Aû‖2 ds

)
dτ,

and hence,

I ≤
(

γ

δ − α

)2 ∫ t

0

‖Aû(s)‖2 ds.(2.13)
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Using (2.13) in (2.12), we arrive at∫ t

0

e2αs‖ut‖2 ds ≤ C

[∫ t

0

‖Aû‖2 ds +

∫ t

0

e−2αs‖û‖2‖A1/2û‖4 ds

]
(2.14)

≤ C(‖A1/2u0‖).

Differentiate (1.4) with respect to time, and integrate by parts with respect to the
temporal variable for the integral term to obtain

utt + Aut +

∫ t

0

β(t− s)Aus(s) ds = −(B(ut,u) + B(u,ut)) − β(t)Au0.(2.15)

Forming an inner product between (2.15) and e2αtut, we arrive at

1

2

d

dt
‖eαtut‖2 + e2αt‖A1/2ut‖2 +

∫ t

0

β(t− s)eα(t−s)(A1/2eαsus, A
1/2eαtut) ds

= α‖eαtut‖2 − e2αt ((B(ut,u) + B(u,ut),ut) − β(t)(Au0,ut)) .(2.16)

Note that (B(û, eαtut), e
αtut) = 0. Thus, it follows after integration of (2.16) with

respect to time and using the positivity property of the kernel, i.e., Lemma 3 that

e2αt‖ut‖2 + 2

∫ t

0

e2αs‖A1/2ut‖2 ds ≤ ‖ut(0)‖2 + 2α

∫ t

0

e2αs‖ut‖2 ds

+ 2

∫ t

0

e−αs|B(eαsût, û), eαsut)| ds + 2γ‖Au0‖
∫ t

0

e−(δ−α)s‖eαsut‖ ds.(2.17)

The last term on the right-hand side of (2.17) is bounded by

≤ C(α, δ, γ)

[
‖Au0‖2 +

∫ t

0

e2αs‖ut‖2 ds

]
.(2.18)

For the second term on the right-hand side of (2.17), we note with the help of Sobolev
inequality that

2

∫ t

0

e−αs|(B(eαsût, û), eαsut)| ds ≤ C sup
0≤s≤t

‖A1/2û(s)‖4

∫ t

0

e−4αs(e2αs‖ut‖2) ds

+

∫ t

0

e2αs‖A1/2ut‖2 ds.(2.19)

On substitution of (2.18)–(2.19) in (2.17) and using Lemmas 4 and 5, we obtain

e2αt‖ut‖2 +

∫ t

0

e2αs‖A1/2ut‖2 ds(2.20)

≤ C(δ, α)

[
‖ut(0)‖2 + ‖Au0‖2 +

∫ t

0

e2αs‖ut‖2 ds

]
.

From the main equation (1.4), we have at t = 0, ‖ut(0)‖ ≤ C(‖Au0‖), and hence,
using (2.14) we find that

‖ut‖2 + e−2αt

∫ t

0

e2αs‖A1/2ut(s)‖2 ds ≤ C(‖Au0‖)e−2αt.(2.21)
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To estimate ‖Au(t)‖, we now form an inner product between (2.1) and Aû(t) to obtain

‖Aû‖2 ≤ eαt‖ut‖‖Aû‖ + e−αt|(B(û, û), Aû)| + α‖û‖‖Aû‖(2.22)

+

∫ t

0

β(t− s)eα(t−s)‖Aû(s)‖‖Aû(t)‖ ds.

The first three terms on the right-hand side of (2.22) are bounded by

≤ C(ε)[‖û‖2 + e2αt‖ut‖2 + e−4αt‖û‖2‖A1/2û‖4] + ε‖Aû‖2.

For the last term on the right-hand side of (2.22), we have applied the Hölder’s
inequality with Sobolev inequality. Then the last term is bounded by

C(γ, δ, α, ε)

∫ t

0

e2ατ‖Au(τ)‖2 dτ + ε‖Aû‖2.

Note that we have used e−2(δ−α)(t−s) ≤ 1. On substituting in (2.22), we choose ε = 1
4 .

An appeal to Lemmas 4 and 5 with the estimate (2.21) yields

‖Aû‖2 ≤ C(‖Au0‖),

and thus we complete the proof of (2.7)–(2.8).
In order to derive (2.9), we now differentiate (1.4) with respect to time and then

form an inner product with σ(t)Aut, where σ(t) = τ∗(t)e2αt, to obtain

1

2

d

dt
(σ(t)‖A1/2ut‖2) + σ(t)‖Aut‖2 = −σ(t)(Au, Aut) +

1

2
σt‖A1/2ut‖2(2.23)

−σ(t)

∫ t

0

βt(t− s)(Au(s), Aut(t)) ds− τ∗(t)e−αt
(
B(eαtut, û)

+ B(û, eαtut), e
αtAut

)
= I1 + I2 + I3 + I4.

For I1, we use Young’s inequality to arrive at

|I1| ≤
γ2

2ε
τ∗(t)‖Aû‖2 +

ε

2
σ(t)‖Aut‖2.(2.24)

Since σt = τ∗t e
2αt + 2ατ∗e2αt with τ∗, τ∗t ≤ 1, we obtain

|I2| ≤ C(α)e2αt‖A1/2ut‖2.(2.25)

To estimate I4, a use of Sobolev inequality with Young’s inequality yields

|I4| ≤ C(ε)e2αt‖A1/2ut‖2(‖A1/2û‖‖Aû‖ + ‖A1/2û‖2) + εσ(t)‖Aut‖2.(2.26)

Since βt(t− s) = − 1
δβ(t− s), we obtain a bound for I3 as

|I3| ≤
γ2

2εδ2
τ∗

(∫ t

0

e−(δ−α)(t−s)‖Aû(s)‖ ds
)2

+
ε

2
σ(t)‖Aut‖2,(2.27)

and hence, integrating with respect to time and using the estimate (2.3) for I term,
we find that∫ t

0

|I3| ds ≤
γ2

2εδ2
τ∗I +

ε

2

∫ t

0

σ(s)‖Aut‖2 ds(2.28)

≤ C(γ, δ, α, ε)τ∗(t)

∫ t

0

‖Aû(s)‖2 ds +
ε

2

∫ t

0

σ(s)‖Aut(s)‖2 ds.
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Multiply (2.23) by 2 and integrate with respect to time. Substitute (2.24)–(2.28) in
(2.23). With ε = 1

4 , it now follows that

σ(t)‖A1/2ut‖2 +

∫ t

0

σ(s)‖Aut(s)‖2 ds ≤ C(γ, δ, α)

[
τ∗

∫ t

0

‖Aû(s)‖2 ds(2.29)

+

∫ t

0

e2αs‖A1/2ut‖2(‖A1/2û‖‖Aû‖ + ‖A1/2û‖4) ds

]

+

∫ t

0

e2αs‖A1/2ut(s)‖2 ds.

Using Lemmas 4 and 5 and the estimates (2.7) and (2.8) in (2.29), we obtain the
required result (2.9), and this completes the rest of the proof.

Remark 2. The estimate for ‖A1/2ut‖ shows the singular behavior near t = 0 and
also indicates the exponential decay property as t −→ ∞. In Lemma 7, the regularity
results are derived without any nonlocal compatibility conditions.

3. Decay properties for the discrete solution and error estimates. In this
section, we discuss the decay properties for the solution of the linearized backward
Euler method. Finally, we derive a priori bounds for the error in H1-norm and present
briefly the error estimate in L2-norm.

The right-hand rectangle rule qn which is used to discretize the integral in (1.4)
is positive in the sense that

k

J∑
n=1

qn(φ)φn ≥ 0 ∀φ = (φ1, . . . , φJ)T .

For a proof, we refer to McLean and Thomée [21, pp. 40–42]. Moreover, the following
Lemma is easy to prove using the line of proof of [21].

Lemma 8. For any α ≥ 0, J > 0, and sequence {φn}∞n=1, the following positivity
property holds:

k2
J∑

n=1

⎛
⎝ n∑

j=1

e−α(tn−tj)φj

⎞
⎠φn ≥ 0.

Lemma 9. With 0 < α < min (δ, λ1), choose k0 > 0 small so that for 0 < k ≤ k0

(λ1k + 1) > eαk.

Then the discrete solution UJ , J ≥ 1 of (1.6) is exponentially stable in the following
sense:

‖UJ‖ + e−αtJ

(
k

J∑
n=1

‖A1/2Ûn‖2

)1/2

≤ C(λ1, α) ‖U0‖e−αtJ , J ≥ 1,(3.1)

and

‖A1/2UJ‖ ≤ C(λ1, α, ‖A1/2U0‖)e−αtJ , J ≥ 1.(3.2)

Proof. Setting Ûn = eαtnUn, we rewrite (1.6) as

eαtn ∂̄tU
n + AÛn + e−αtn−1B(Ûn−1, Ûn) + eαtnqn(AU) = 0.
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Note that

eαtn ∂̄tU
n = eαk∂̄tÛ

n −
(
eαk − 1

k

)
Ûn.

On substitution and then multiplying the resulting equation by e−αk, we obtain

∂̄tÛ
n −

(
1 − e−αk

k

)
Ûn + e−αkAÛn + e−αtnB(Ûn−1, Ûn)(3.3)

+ γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)AÛj = 0.

Forming an inner product between (3.3) and Ûn, use

(B(Ûn−1, Ûn), Ûn) = 0, ‖Ûn‖2 ≤ 1

λ1
‖A1/2Ûn‖2, and (∂̄tÛ

n, Ûn) ≥ 1

2
∂̄t‖Ûn‖2

to obtain

1

2
∂̄t‖Ûn‖2 +

(
e−αk −

(
1 − e−αk

k

)
λ−1

1

)
‖A1/2Ûn‖2(3.4)

+ γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)(A1/2Ûj , A1/2Ûn) ≤ 0.

With 0 < α < min (λ1, δ), choose 0 < k0 such that for 0 < k < k0

(λ1k + 1) ≥ eαk.

Then for 0 < k ≤ k0, the coefficient of the second term on the left-hand side of (3.4),(
e−αk − ( 1−e−αk

k )λ−1
1

)
, becomes positive. Multiplying (3.4) by 2k and summing from

n = 1 to J , the last term becomes nonnegative by Lemma 8 and thus we obtain the
estimate (3.1).

For the estimate (3.2), we form an inner product between (3.3) and AÛn and
observe that

(∂̄tÛ
n, AÛn) = (∂̄tA

1/2Ûn, A1/2Ûn) ≥ 1

2
∂̄t‖A1/2Ûn‖2.

Altogether, we find that

1

2
∂̄t‖A1/2Ûn‖2 + e−αk‖AÛn‖2 + γe−αkk

n∑
j=1

e−(δ−α)(tn−tj)(AÛj , AÛn)(3.5)

≤
(

1 − e−αk

k

)
(Ûn, AÛn) − e−αtn(B(Ûn−1, Ûn), AÛn).

Multiplying (3.5) by 2k and summing from n = 1 to J , the third term on the left-hand
side becomes nonnegative by applying Lemma 8 as 0 < α < δ. Then, we obtain

‖A1/2ÛJ‖2 + 2ke−αk
J∑

n=1

‖AÛn‖2 ≤ ‖A1/2U0‖2 + 2(1 − e−αk)k

J∑
n=1

|(Ûn, AÛn)|

+ 2e−αkk

J∑
n=1

e−αtn−1 |(B(Ûn−1, Ûn−1), AÛn)|(3.6)

≤ ‖A1/2U0‖2 + I1 + I2.
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To estimate I1, we have by the mean value theorem 1−e−αk

k = αe−αk∗
for some

0 < k∗ < k, and hence, using (3.1), we find that

|I1| ≤ 2αe−αk∗
k

J∑
n=1

‖A1/2Ûn‖2 ≤ C(λ1, α)‖U0‖2.

For I2, a repeated use of Hölder’s inequality with Sobolev inequality yields

e−αtn−1 |(B(Ûn−1, Ûn), AÛn)| ≤ Ce−αtn−1‖Ûn−1‖1/2‖A1/2Ûn−1‖1/2

‖A1/2Ûn‖1/2‖AÛn‖3/2.

By an application of Young’s inequality, it follows that

|I2| ≤ Cke−αk
J∑

n=1

e−4αtn−1(‖Ûn−1‖2‖A1/2Ûn−1‖2)‖A1/2Ûn‖2

+ ke−αk
J∑

n=1

‖AÛn‖2.

Using the estimate ‖Ûn−1‖ and

k‖A1/2ÛJ−1‖2 ≤ k

J∑
n=1

‖A1/2Ûn‖2,

we easily find that from (3.1)

|I2| ≤ C(λ, α)‖U0‖2ke−αk
J−1∑
n=1

e−4αtn−1‖A1/2Ûn−1‖2‖A1/2Ûn‖2

+ C‖U0‖4e−αke−4αtJ−1 ‖A1/2ÛJ‖2 + ke−αk
J∑

n=1

‖AÛn‖2.

Now substitute the estimates of I1 and I2 in (3.6). For small k, we note that (1 −
C‖U0‖4e−4αk) can be made positive. Then apply discrete Gronwall’s lemma with
estimate (3.1) to complete the rest of the proof.

3.1. Error analysis. Now we are ready to discuss the proof of our main result
that is the proof of Theorem 1.

Let εn be the quadrature error associated with the quadrature rule (1.5) and for
φ ∈ C1[0, tn], let it be given by

εn(φ) :=

∫ tn

0

β(tn − s)φ(s) ds− qn(φ).

Note that the quadrature error εn satisfies

|εn(φ)| ≤ Ck

∫ tn

0

∣∣∣∣ ∂∂s (β(tn − s)φ(s))

∣∣∣∣ ds(3.7)

≤ Ck

∫ tn

0

(|βs(tn − s)| |φ(s)| + |β(tn − s)| |φs(s)|) | ds.
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For the proof of the main Theorem, we appeal to the semigroup theoretic ap-
proach; see Thomée [29], Fujita and Kato [9], and Okamoto [22]. It is well known
that the Stoke’s operator −A generates an analytic semigroup, say, E(t), t > 0 on H;
see [28] or [9]. Moreover, the following estimates are also satisfied:

‖ArE(t)‖ ≤ Ct−re−λ1t, t > 0, r > 0,(3.8)

and for r ∈ (0, 1], and v ∈ D(Ar), the domain of Ar,

‖(E(t) − I)v‖ ≤ Crt
r‖Arv‖, t > 0,(3.9)

where Cr is a positive constant. For a proof, see [6, p. 383]. Further, we use the
discrete semigroup Ek, which is given by

Ek = (I + kA)
−1

.

Using spectral representation of A [29], the following estimate is easy to derive:

‖ArEn
k ‖ ≤ Ct−r

n e−λ1tn , tn > 0, 0 < r ≤ 1.(3.10)

Now, using Duhamel’s principle, (1.4) is written in an equivalent form as

u(t) = E(t)u0 −
∫ t

0

E(t− s)Ãu(s) ds−
∫ t

0

E(t− s)B(u(s),u(s)) ds,

where for simplicity of symbol, we denote

Ãu(t) =

∫ t

0

β(t− τ)Au(τ) dτ.

Similarly, using discrete semigroup Ek = (I + kA)−1, we rewrite (1.6) as

Un = En
ku0 −

n∑
j=1

kEn−j+1
k qj(AU) −

n∑
j=1

kEn−j+1
k B(Uj−1,Uj).

Proof of Theorem 1. Note that the error en := u(tn)−Un is written in the form

en = (E(tn) − En
k )u0 −

⎛
⎝∫ tn

0

E(tn − s)Ãu(s) ds−
n∑

j=1

kEn−j+1
k qj(AU)

⎞
⎠

−

⎛
⎝∫ tn

0

E(tn − s)B(u(s),u(s)) ds−
n∑

j=1

kEn−j+1
k B(Uj−1,Uj)

⎞
⎠(3.11)

= In1 − In2 − In3 .

Since Fn
k := (E(tn)−En

k ) denotes the error operator for the purely parabolic problem,
then following Thomée [29], we estimate A1/2In1 as

‖A1/2In1 ‖ = ‖A1/2Fn
k u0‖ ≤ C(‖Au0‖,Ω)

e−αtn

t
1/2
n

k.(3.12)
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In order to estimate ‖A1/2In2 ‖, i.e., the memory term, we first rewrite In2 as

In2 =

⎛
⎝∫ tn

0

E(tn − s)
(
Ãu(s) − Ãu(tn)

)
ds−

n∑
j=1

kEn−j+1
k

(
qj(Au) − Ãu(tn)

)⎞⎠

+

⎛
⎝∫ tn

0

E(tn − s) ds−
n∑

j=1

kEn−j+1
k

⎞
⎠ Ãu(tn)(3.13)

+
n∑

j=1

kEn−j+1
k qj(Ae) = In2,1 + In2,2 + In2,3.

For In2,2, we obtain using the semigroup property

∫ tn

0

E(tn − s) −
n∑

j=1

kEn−j+1
k = −Fn

k A
−1,

and hence, using the definition of β, we arrive at

‖A1/2In2,2‖ = ‖A1/2Fn
k A

−1Ãu(tn)‖

≤ Ck
e−λ1tn

t
1/2
n

e−αtn‖
∫ tn

0

e−(δ−α)(tn−τ)Aû(τ) dτ‖

≤ Ck
e−λ1tn

t
1/2
n

e−αtn

(∫ tn

0

‖Aû(τ)‖2 dτ

)1/2

.

An application of Lemma 5 yields for 0 < α < min(λ1, δ, )

‖A1/2In2,2‖ ≤ C(‖A1/2u0‖)k
e−αtn

t
1/2
n

.

For estimating In2,3, we first use the change of variable and then the change of sum-
mation to obtain

A1/2In2,3 =

n−1∑
j=0

kAEn−j
k A−1/2

j+1∑
i=1

kβj+1−iAei =

n−1∑
j=0

kAEn−j
k

j∑
i=0

kβj−iA
1/2ei+1

= k

n−1∑
i=0

⎛
⎝n−1∑

j=i

kβj−iAEn−j
k

⎞
⎠A1/2ei+1

= k

n−1∑
i=0

⎛
⎝n−1∑

j=i

kβn−iAEn−j
k

⎞
⎠A1/2ei+1

−k

n−1∑
i=0

⎛
⎝n−1∑

j=i

k(βn−i − βj−i)AEn−j
k

⎞
⎠A1/2ei+1.
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For the first term on the right-hand side of A1/2In2,3, we have from the spectral property
of the Stoke’s operator and r(λ) = (1 + λ)−1:∥∥∥∥∥∥k

n−1∑
j=i

AEn−j
k

∥∥∥∥∥∥ = sup
λ∈Sp(A)

∣∣∣∣∣∣
n−1∑
j=i

kλr(kλ)n−j

∣∣∣∣∣∣ ≤ sup
λ>0

n−1∑
j=i

λr(λ)n−j

≤ sup
λ>0

λr(λ)

1 − r(λ)
= 1,

where Sp(A) is the spectrum of the Stokes operator A. For the second term on the
right-hand side of A1/2In2,3, we use the smoothing property (3.8) of En

k , and therefore
we obtain

‖A1/2In2,3‖

≤ γk
n−1∑
i=0

e−δ(tn−ti)

∥∥∥∥∥∥k
n−1∑
j=i

AEn−j
k

∥∥∥∥∥∥ ‖A1/2ei+1‖

+ γk

n−1∑
i=0

⎛
⎝n−1∑

j=i

k|(e−δtn−i − e−δtj−i)| ‖AEn−j
k ‖

⎞
⎠ ‖A1/2ei+1‖

≤ Cke−αtn

n−1∑
i=0

eαti‖A1/2ei+1‖

+Cke−αtn

n−1∑
i=0

eαti

⎛
⎝n−1∑

j=i

ke−(δ−α)(tj−ti)
e−δ(tn−tj) − 1

(tn − tj)
e−(λ1−α)(tn−tj)

⎞
⎠ ‖A1/2ei+1‖.

Using the meanvalue property of the exponential function, we find that⎛
⎝n−1∑

j=i

ke−(δ−α)(tj−ti)
e−δ(tn−tj) − 1

(tn − tj)
e−(λ1−α)(tn−tj)

⎞
⎠ ≤ C,

and hence we arrive at

‖A1/2In2,3‖ ≤ Ce−αtne−αkk

n∑
i=0

eαti‖A1/2ei‖.

Now for the term In2,1, we first rewrite it as

In2,1 =

n∑
j=1

∫ tj

tj−1

(E(tn − s) − E(tn−j+1))
(
Ãu(s) − Ãu(tn)

)
ds

+

n∑
j=1

∫ tj

tj−1

E(tn−j+1)
(
Ãu(s) − Ãu(tj)

)
ds

+

n∑
j=1

kFn−j+1
k

(
Ãu(tj) − Ãu(tn)

)
+

n∑
j=1

kEn−j+1
k εj(Au)

= Mn
1 + Mn

2 + Mn
3 + Mn

4 .
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For Mn
1 , we write it as

A1/2Mn
1 =

n∑
j=1

∫ tj

tj−1

A3/2E(tn − s)A−1 (I − E(s− tj−1))
(
Ãu(s) − Ãu(tn)

)
ds.

Thus, using (3.8)–(3.9), we obtain

‖A1/2Mn
1 ‖ ≤

n∑
j=1

∫ tj

tj−1

‖A3/2E(tn − s)‖ ‖A−1 (I − E(s− tj−1))
(
Ãu(s) − Ãu(tn)

)
‖ ds

≤ Ck

∫ tn

0

e−λ1(tn−s)

(tn − s)3/2
‖Ãu(s) − Ãu(tn)‖ ds.

In order to estimate ‖Ãu(s) − Ãu(tn)‖, we note that

Ãu(s) − Ãu(tn) =

∫ s

0

(β(s− τ) − β(tn − τ))Au(τ) dτ −
∫ tn

s

β(tn − τ)Au(τ) dτ,

and hence, using the definition of β, the mean value theorem, 0 < α < min (λ1, δ),
and Lemma 7, we now obtain

‖Ãu(s) − Ãu(tn)‖ ≤ γe−δs
(
1 − e−δ(tn−s)

)∫ s

0

eδτ‖Au(τ)‖ dτ

+ γ

∫ tn

s

e−δ(tn−τ)‖Au(τ)‖ dτ

≤ δγ(tn − s)e−αse−δs∗
∫ s

0

e−(δ−α)(s−τ)‖eατAu(τ)‖ dτ

+ C(‖Au0‖, γ)

∫ tn

s

e−δ(tn−τ)e−ατ dτ

≤ δγ(tn − s)e−αs

(∫ s

0

e−2(δ−α)(s−τ) dτ

)1/2(∫ s

0

e2ατ‖Au(τ)‖2 dτ

)1/2
+ C(‖Au0‖, γ)(tn − s)e−αs.

Using Lemma 5 and the boundedness of∫ s

0

e−2(δ−α)(s−τ) dτ ≤ 1

2(δ − α)
,

we arrive at

‖Ãu(s) − Ãu(tn)‖ ≤ C(‖Au0‖)(tn − s)e−αs.

Therefore,

‖A1/2Mn
1 ‖ ≤ C(‖Au0‖)ke−αtn

∫ tn

0

e−(λ1−α)(tn−s)

(tn − s)1/2
ds

≤ C(‖Au0‖)ke−αtn

∫ tn

0

e−(λ1−α)τ

τ1/2
dτ

≤ C(‖Au0‖)ke−αtn

∫ ∞

0

e−(λ1−α)τ

τ1/2
dτ ≤ C(‖Au0‖)ke−αtn .
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To estimate Mn
2 , we use the definition of Ã and the property (3.8) to find that

‖A1/2Mn
2 ‖ ≤

n∑
j=1

∫ tj

tj−1

‖A1/2E(tn−j+1)‖‖Ãu(s) − Ãu(tj)‖ ds

≤ C

n∑
j=1

∫ tj

tj−1

e−λ1(tn−tj−1)

(tn − tj−1)1/2
‖Ãu(s) − Ãu(tj)‖ ds.

Since

‖Ãu(s) − Ãu(tj)‖ ≤ C(‖Au0‖)(tj − s)e−αs ≤ C(‖Au0‖)ke−αs,

we now obtain

‖A1/2Mn
2 ‖ ≤ C(‖Au0‖)ke−αtn

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

(
eαtj−1

∫ tj

tj−1

e−αs ds

)

≤ C(‖Au0‖)ke−αtn

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Note that we have used the boundedness of the summation term within the bracket.
In order to estimate Mn

3 , we use the property of Fn
k and obtain

‖A1/2Mn
3 ‖ ≤ Ck2

n∑
j=1

e−λ1(tn−tj−1)

(tn − tj−1)3/2
‖Ãu(tj) − Ãu(tn)‖.

As in the estimate of ‖A1/2Mn
1 ‖, we now find that

‖A1/2Mn
3 ‖ ≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Finally for Mn
4 , we note that

‖A1/2Mn
4 ‖ ≤

n∑
j=1

k‖AEn−j+1
k ‖ ‖εj(A1/2u)‖.

Using (3.8), we obtain

‖A1/2Mn
4 ‖ ≤

n∑
j=1

k
e−λ1(tn−tj−1)

(tn − tj−1)
‖εj(Au)‖.

To complete the estimate, we use (3.7) to compute the quadrature error ‖εj(Au)‖ as

‖εj(Au)‖ ≤ Ck

∫ tj

0

(
|βs(tj − s)‖A1/2u(s)‖ + |β(tj − s)|‖A1/2us(s)‖

)
ds,
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and hence we find from Lemma 6 that

‖εj(Au)‖ ≤ C(‖Au0‖)ke−αtj

∫ tj

0

e−(δ−α)(tj−s) ds

+ Cke−αtj

(∫ tj

0

e−2(δ−α)(tj−s) ds

)1/2 (∫ tj

0

e2αs‖A1/2us(s)‖2 ds

)1/2

≤ C(‖Au0‖)ke−αtj .

Thus, we arrive at

‖A1/2Mn
4 ‖ ≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn−j+1)

⎞
⎠

≤ C(‖Au0‖)ke−αtne−αk

⎛
⎝k

n∑
j=1

1

(tn−j+1)

⎞
⎠

≤ C(‖Au0‖)k
(

log
1

k

)
e−αtn .

All together, we therefore obtain

‖A1/2In2 ‖ ≤ C(‖Au0‖)e−αtnk

(
1 + log

1

k

)
+ C(‖A1/2u0‖)

e−αtn

t
1/2
n

k(3.14)

+ Ce−αtnk

n−1∑
i=0

eαti‖A1/2ei‖ + Cke−αk‖A1/2en‖.

Finally, in order to estimate In3 involving the nonlinear term, we may split it as in
Geveci [11] and apply Hölder’s inequality, Sobolev imbedding theorem with Sobolev
inequality. Lastly, with the help of Lemmas 4, 5, 7, and 9, we obtain

‖A1/2In3 ‖ ≤ C(‖Au0‖)
e−αtn

t
1/2
n

k + C(‖A1/2u0‖)e−αtnk1/4‖A1/2en‖(3.15)

+ Ce−αtnk

n−1∑
i=0

eαti

(tn − ti)3/4
‖A1/2ei‖.

On substituting (3.12), (3.14), and (3.15) in (3.9), we obtain, for sufficiently small k,

eαtn‖A1/2en‖ ≤ C(‖Au0‖)
[
k

(
t−1/2
n + log

1

k

)
(3.16)

+ k
n−1∑
i=0

(
1

(tn − ti)3/4
+ 1

)
eαti‖A1/2ei‖

]
.

Using the generalized discrete Gronwall’s lemma (see Lemma 7.1 in [7]) and the ar-
guments of Okamoto [22, p. 635], we complete the rest of the proof.

The convergence in L2-norm now becomes a routine work. However, we indicate,
below, only the major steps in the proof for achieving this result.

Proof of Theorem 2. From (3.9), the error en satisfies

en = In1 − In2 − In3 .
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Since a straightforward modification of H1-estimates of Geveci [11] yields the L2-
estimates of In1 and In3 , it remains to estimate ‖In2 ‖. Note that the L2-estimates of
In2.2 and In2,3 in (3.13) follow easily as

‖In2,2‖ = ‖Fn
k A

−1Ãu(tn)‖

≤ Cke−λ1tn‖
∫ tn

0

β(tn − s)Au(s) ds‖

≤ Cke−αtn

(∫ tn

0

‖Au(s)‖2 ds

)1/2

≤ C(‖A1/2u0‖)ke−αtn

and

‖In2,3‖ = ‖k
n−1∑
j=0

AEn−j
k

j∑
i=0

kβj−ie
i+1‖.

We repeat the analysis for estimating A1/2In2,3 in Theorem 1, but now ei+1 is made

free of A1/2. Thus, we obtain

‖In2,3‖ ≤ Ce−αtnk

n−1∑
i=0

eαti‖ei‖ + Ck‖en‖.

In order to estimate In2,1, it is a routine matter to derive the estimates of ‖Mn
1 ‖, ‖Mn

2 ‖,
and ‖Mn

3 ‖. To complete the rest of the proof, we therefore need an estimate for ‖Mn
4 ‖.

Note that

‖Mn
4 ‖ ≤

n∑
j=1

k‖A1/2En−j+1
k ‖ ‖εj(A1/2u)‖

≤ Ck

n∑
j=1

e−λ1(tn−tj−1)

(tn − tj−1)1/2
‖εj(A1/2u)‖.

Using the estimate of ‖εj(A1/2u)‖ as in the proof of Theorem 1, we now obtain

‖Mn
4 ‖ ≤ C(‖Au0‖)ke−αtn

⎛
⎝k

n∑
j=1

e−(λ1−α)(tn−tj−1)

(tn − tj−1)1/2

⎞
⎠

≤ C(‖Au0‖)ke−αtn .

Note that the summation in the bracket is bounded by a constant which is independent
of k. This completes the rest of the proof.

4. Conclusion. In this paper, we have proved new regularity results for the
solutions which are valid for all time t > 0 without nonlocal compatibility conditions
for the data and established the exponential decay property for the exact solution.
Further, we have derived optimal error estimates in H1 and L2-norms for the linearized
backward Euler scheme under realistically assumed conditions on the initial data.
Here, the analysis is not complete as at each time level, we have still to solve an
infinite dimensional problem. However, we can easily derive the error estimates for a
completely discrete scheme by combining the present analysis with the semidiscrete
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results obtained in [26]. Since the problem (1.1)–(1.3) can be thought of as an integral
perturbation of the Navier–Stokes equations, we would like to investigate how far the
results on finite element analysis combined with higher order time discretizations of
the Navier–Stokes equations [15], [16], [22] can be carried over to the present case. We
shall pursue this in future. Finally, we note that we have discussd our results only for
the two-dimensional problem and we can easily generalize the analysis of this paper
to the problem in three-dimensional bounded domain under smallness conditions on
the initial data.
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