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Abstract

Here, a posteriori error estimates of finite element method are derived for Burgers
equation in two-dimension. By use of constructing an appropriate Burgers recon-
struction, some posteriori estimates in L>°(L?), L>°(H') and L?(L?) norms with
optimal order of convergence are established for the semidiscrete scheme. Further-
more, a fully discrete scheme with corresponding posteriori estimates are studied
based on backward Euler scheme. Finally, some numerical results are presented to
verify the performance of the established posteriori error estimators.
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1. Introduction

We assume that  is a bounded polygonal domain in R? with a sufficiently
smooth boundary 0f) for our study in this paper. Consider the following Burgers
equations

u —vAu+uV-u=f inQx(0,7],
u=0 on 99 x (0,77, (1.1)
u = U on Q x {0},

where u, f and ug are the velocity, the prescribed body force, and the initial velocity
respectively with the diffusion coefficient v > 0, and the finite time 7" > 0.

In the last decade years, there is a growing demand of designing and develop-
ing reliable and efficient space-time numerical algorithms for the parabolic partial
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differential equations. Most of these methods are based on a posteriori error esti-
mators due to the significant advantages of the adaptive method [2]. Although the
theory of a posteriori error estimates of finite element method for elliptic problems
is well-developed [3, 28], the theory for parabolic problems is less developed, and
only a few results have been published until now, such as the spatial semidiscrete
adaptivity [4, 5], the time semidiscrete adaptivity [18, 23] and space-time completely
discrete scheme [12, 29, 30]. Combining the energy technique with the idea of el-
liptic reconstruction, Makridakis and Nochetto established an optimal a posteriori
error estimates of semidiscrete finite element method for linear parabolic problem in
[21]. Later, based on backward Euler method, Lakkis and Makridakis [20] extended
these techniques to completely discrete cases. The role of the elliptic reconstruction
in a posteriori error estimates is similar to the role played by elliptic projection
introduced by Wheeler [33] for obtaining optimal a priori error estimates of finite
element method for parabolic problems. Thanks to the elliptic reconstruction @, the
error u — uyp, (up is the numerical solution) can be split into two parts, one is u — u
and the other is u — uy. The estimates of u — uy, are based on a posteriori analysis
of an elliptic problem, while the estimates of u — % can be controlled by energy
arguments in terms of the estimates of w— wuy. This analysis is further developed for
linear parabolic problems by maximum norm estimates [11], discontinuous Galerkin
method [15] or the mixed finite element method [22].

Although some results about evolution equations have been reported, for non-
linear case, there are still some open research issues. In this paper, we focus on the
development of a posteriori error bounds for Burgers equation. Burgers equation
is of interest primarily as a model for the unsteady incompressible Navier-Stokes
equations. This equation has been investigated by many scientists [3, 6, 31]. There
are examples of a posteriori error bounds for the steady Burgers equation [32] and
incompressible Navier-Stokes equations [8, 9, 25, 26]. By energy method and an
appropriate elliptic reconstruction, Makridakis et. al. have established a posteri-
ori estimates with optimal norms for linear parabolic problem and unsteady Stokes
equation in [11, 19, 20], respectively. Here, based on the techniques developed by
Makridakis, we consider a posteriori error estimates of finite element method for two
dimensional Burgers equation. By introducing an appropriate Burgers reconstruc-
tion, a posteriori error estimates with optimal order of convergence are derived in
both semidiscrete and fully discrete formulations.

This article is organized as follows. In Section 2, we formulate the finite element
method and recall some basic results. In Section 3, we present a posteriori error
estimates of finite element method for spatial semidiscrete formulation. In Section
4, we present the fully discrete formulation and establish the corresponding a poste-
riori error estimates. Finally, we provide some numerical experiments to verify the
performances of established error estimators.



2. Preliminaries

In this section, we present some classical results about Burgers equation and
recall some important lemmas which are useful to derive our main results.

2.1. Basic notations and function setting for Burgers equation

For the mathematical setting of problem (1.1), we denote
X =H}(Q), Y=1L*Q), DA =HQ)NX,

where A is the Laplace operator Au = —Awu. Standard notations are used for the
Sobolev spaces with the norm and the seminorms in this work (see [1]). For all
T > 0 and integer number n > 0, define

T
dZ
H™(0,T; WP (Q)) = {v € WHP(Q); ) / (zllvllspo)dt < oo},
~ 0
0<i<n
with the norm given by

T di
lollmoravssiay = 3 ([ (Gl

0<i<n

1
8,]),9)2] 2.

Especially, as n = 0, we denote the norm as

T
1
(T /0 l0]2,0dt)}
Let

L0, T; WP(Q)) = {v € W*P(Q);ess sup |vsp0 < oo}
0<t<T

with the norm

[Vl oo 0,750 () = €55 sup||v]lsp.a-
0<t<T

For the initial data ug, we need the following assumption.
(A1). The initial velocity ug € D(A) and f, f; € L?(0,T;Y) are assumed to satisfy

T 1
[ Augllo + (/O (115 + 1feli5)dt) < C.

Throughout of whole paper, the letter C' > 0 denotes a generic constant, independent
of mesh parameter and time step, and maybe different at different occurrences.
The continuous bilinear form a(-,-) on X x X is defined by

a(u,v) = v(Vu, Vo),



and the trilinear form by respectively
b(u,v,w) = (uV -v,w) Y u,v,weX.
It is easy to verify that b(-, -, ) satisfies the following important properties
b(u, v, w)| < N|[Vullo[[Vullof[Vwlo, (2.1)

— [b(u,v,w)|
for all u,v,w € X, where N = supyy, 4 wex SalolSoloISwllo? and

[b(w, v, w)[ + [b(v, u, w)| + [b(w, u, v)| < Col|Vullof|Avllo][w]lo, (2.2)

forallu e X,v € D(A), weY.
For the subsequence convenience, we recall the Gronwall lemmas, which will be
frequently used in the analysis of a posteriori error estimates (see [9, 10]).

Lemma 2.1. Let g(t), h(t), y(t) be three locally integrable nonnegative functions
on time interval [0,00), such that for any fixed time to > 0 and all t > tg

t t
y(t)+G(t) <C —I—/ h(s)ds —i—/ g(s)y(s)ds,
to to
where G(t) is a nonnegative function on [0,00), C >0 is a constant. Then,
t t
u(t) + G < (0 + / h(s)ds) expl / o(s)ds).
to to

With above notations, the variational formulation of problem (1.1) reads as: For
all t € (0,7, find u € X, such that for all v € X

(ut,v) + a(u,v) + b(u, u,v) = (f,v). (2.3)

Remark 2.2. For the bounded of the exact solution, it follows from v = u; in (2.3),
(2.2) and Lemma 2.1 that

t
2CF Jo |1 Aul|3ds
14

t t
IVullg+ [ un(s)lds < exol )(vIva)i +2 [ 1715ds).

2.2. Finite element approzimation

Let h > 0 be a real positive parameter. The finite element subspace X of X
is characterized by Tj, = T5(2), a partitioning of Q into triangles K assumed to be
uniformly shape-regular as h — 0, see [10] for details.



Definition 2.3 (Elliptic projection). ForV v € X, we define a projection oper-
ator Ry € Xy, by

a(v — Rp,vp) =0 (2.4)
for all vy, € Xy, Furthermore, for any v € D(A) operator Ry, satisfies (see [10]):
[ = Rallo + hl|V (v = Ry)lo < Ch?. (2.5)

Now, we present the spatial semidiscrete finite element formulation for problem
(1.1): Find up € Xy, for all t € (0,7 such that

(Uht, Uh) + a(uh, Uh) + b(uh, Up, vh) = (f, vh) Y v, € Xy, (2.6)

Since the bilinear form (Vuy, V) is coercive on X, x Xp, it generates an in-
vertible operator Ay : Xj, — X}, through the definition (see [16, 17])

1/2 2
(Ahuh,vh) = (Ah/ uh,Ai/ Uh) = (Vuh,Vvh), Y up, vp € Xp.
By using a similar argument to one used in [13, 14, 27] about the nonlinear

convection-diffusion problem, we can obtain the following result.

Lemma 2.4. Assume that ) is a bounded polygonal domain with a sufficiently
smooth boundary 0), under the assumption of (A1), there exists a constant C' such
that

T
IV (= w)lf+ [ 1V )i < 2
0

Furthermore, for the semidiscrete finite element scheme (2.6), the following
smooth properties of uy hold.

Lemma 2.5. Under the assumptions of Lemma 2.4, there exists a constant C such
that

t t
H&MM+WWW%+/HM%®%%+/WW@%®SG
0 0

Proof. For the L?-norm of ||Apup||o, there is

lnunle =  sup s tnlllo
werz@p  lonllo

For V v, € L%*(Q)2, we split v, into two parts, i.e., there exist uniqueness fu}b € Xy
and v? € Xﬁ, such that v = v} +v? € X, & Xt = L2(Q)? . Then, according to the
definition of Ay, one finds

(Apun,vn) = (Apup, vy) + (Apup, vi) = (Apup, vp).



As a consequence, we

|Apunllo =

IN

IN

<

have
sup [(Antn, vn)llo sup 1 (Anvn, v)lo
0£vper2@?  llvnllo 0#vleX), v llo
0#£v, €L? ()2
sup 1(V (u = up), Vo) llo + [1(Au, v) [lo
040} €X), [vnllo
0#v, €L?(Q)?
sup IV (u = up) ol Vopllo + [[Aullol|v o
00l €X), llvnllo

O#U;LELz(Q)Q
Ch™ [V (u — up)llo + [|Aullo-

It follows from Lemma 2.4 that

Choosing vy, = upt

vd

2
sl + 2

t ~
Anunl+ [ Anun(s) s < C.
0
in (2.6) and using (2.1), we obtain

IVunll2 = (f,une) — blupn, up, upt)

< | fllolluntllo + Coll Anunllol| Vur llolluntllo
1

< IR+ Coll AnunliB I Vunllg + §”uhtH(2)'

VAN

Integrating with respect to time from 0 to ¢, using Lemma 2.1 and (2.7), we find

that

95

t 2C¢C ¢
wVw%+%”WM$%®Sem(;f)@MMM®%+2AHM@Q-

9

(2.8)

We end this section by introducing some properties about L?-projection opera-
tor, which can be found in reference [10].

Lemma 2.6. Assume that there exist two L?-projection operators Iy, : X — X}, and

I X — X (X)) wil

(¢ — If'¢, wp) =

[ be defined in Section 4), which are defined by

0 VuwyeXyor X, ¢eX (ID takes I, or ID).

Furthermore, if ¢ € D(A), the following properties hold

Wlg — I ¢llo.e < Ch |9ll2i (= 0,1), 6~ I;'6

where wi = Ugrng29K' and wp = Upng2pK forV K, K' € Ty,.

1/2
0.8 < Chyl (1]l



3. A posteriori error estimates for semidiscrete formulation

In this section, we present a posteriori error estimates of Burgers equation in
spatial semidiscrete formulation (2.6), and establish the computable upper and lower
bounds for numerical solution uj, in various of norms.

Let e, = up — u. It follows from (2.3) and (2.6) that e, satisfies

(eut, V) + aley,v) + b(up, up, v) — blu, u,v) = r(v), (3.1)
where the residual r(v) is given by
r(v) = (unt,v) + v(Vup, Vo) + b(up, up,v) — (f,v). (3.2)

From (2.6), we know that r(v) = 0 for V v, € Xj,.
We split the error e, into two parts

ey =up —u=(U—u)— (U—up) =& — Nu-
Then, (3.1) can be rewritten as
(gutv ’U) + a(ﬁu, U) + b(§u> Uhs U) + b(“: Em U)
=7(v) + (Mut, v) + a(Mu, v) + b(Nu, un, v) + b(u, Ny, v). (3-3)

Now, we introduce the Burgers reconstruction w € X of uy(t) for all t € (0,T7.

Definition 3.1 (Burgers reconstruction). For given up, we define the Burgers
reconstruction u(t) satisfying

a(u — up,v) + b(Ny, up, v) + b(u, Ny, v) = —r(v). (3.4)

Remark 3.2. For the given up,r, from the continuity and coercivity of a(-,-), it is
easy to know that (3.4) admits a unique solution u € X for all t € (0,T].

By the definition of (3.4), equation (3.3) can be transformed into
(§ut, ) + al€us v) + b(Eus un, v) + b(u, &u, v) = (Nut, V). (3.5)

3.1. Error estimates between exact solution and Burgers reconstruction

In this subsection, we derive some estimates about problem (3.5) by using the
energy method and some standard techniques in the analysis of parabolic equations.

Lemma 3.3. Assume that €2 is a bounded polygonal domain with a sufficiently
smooth boundary 0. Let &, be the solution of (3.5). Then, for all t € (0,T],
there exists a constant C such that

et +v [ 1965 13ds < (IO + [ Inelds). (:6)

(AIveutlo+ [ ewlo)izas) ' < (21960l + ([ Ina)liis)")- 37



Proof. Choosing v = &, in (3.5), by Cauchy inequality and (2.2), we obtain
that

1d
S G+ VIVENR = (nu &) = bl wns €0) — bl €us )
< fmueloliéallo + ColllAwunllo + | Aullo) I V€uloligulo
(| Anunl3 + I 4ul3) 4 | v
< - 2, 2, 7 2
< ( . + 5 )6l + Slmuld + S1VEI3

Kicking the last term, using Lemma 2.3 and integrating with respect to time from
0 to t, we yield

t t t
lEa(t)]2 + v / IVEu(s)12ds < llE(O)]% + / 1ut(s) |3ds + C / €u(s)|2ds. (3.8)
0 0 0

The result in (3.6) comes from Lemma 2.1.
Secondly, taking v = A&, in (3.5) and using Cauchy inequality, one finds

1d
5 g7 IVEulld + VIIA&lG = (nur, A&u) = b(&u, un, ALu) = b(u, &u, ALu)
< lnurlloll A€ullo + Coll Anunllo + [ Aullo) IV Eulloll A€ullo
C? 1 v
< ARl + [AulIVES + llmullg + 5 A5 (3.9)

Kicking the last term in (3.9), integrating it with respect to time from 0 to ¢, using
Lemmas 2.1 and 2.5. we obtain that

¢ t
Ve +v [ 146 < (19O + [ Ima(s)lBds). (310
Thirdly, differentiating (3.5) with respect to time and choosing v = &, in terms

of (2.1), (2.2) and Lemma 2.5, we obtain that

1d
5%“§ut\\3+VHV§utH3

(77utta gut) - b(guta Up, gut) - b(gm Uht, gut) - b(uta £u> gut) - b(u, guty gut)
I7uttllol|€utllo + Co ((HAhuhHo + || Aulo) [|Eutllo + HAquoHuhtHo> [VE&utllo + Coll Autllol| VEullolEutllo

14
Cu (JImuteld + A€ 3lluncl3 + I Auel BV ENZ) + Ca (11 Anunld + I Aul} + 1) I€utld + 1Vl

IN

IN

Kicking the last term and integrating it with respect to time from 0 to ¢, using
Lemma 2.1, (3.6) and (3.10) we arrive at

t
l€utll3 + v /0 |V |2ds

t t
< ClOIB+IEOE + I + [ Inarias + [ Imalfas). 3:11)

8



Finally, taking v = &, in (3.5) one finds that

Hfut”g 2 dtHvé.’U‘HO = (Uut;fut) - b(guvuh7§Ut) - b(u7§u7§w§>
< Anutlloléutllo + Co(l|Anunllo + [[Aullo) [VEullolutllo
1
<l + C3 (| Anunlly + [ Aull§) I VELG + §H€ut|!0-

Kicking the last term, using Lemma 2.5 and integrating with respect to time from
0 to t, one finds

t t t
VIVEDI2 + / Eur(3)|2ds < ][ VELO)[2 + 2 / 7at(s) 12ds + C / IVEa(s) 3ds.
0 0 0

By Lemma 2.1 and inequality a® + b* < (a + b)? (a,b > 0), we obtain the desired
result (3.7). q

3.2. A posteriori error estimates for Burgers reconstruction

In this subsection, we derive a posteriori error estimates for Burgers equation in
semidiscrete formulation (2.6). To achieve this aim, we need the following a poste-
riori estimates about 7, and V7, related to Burgers reconstruction (3.4).

Lemma 3.4. Assume that €2 is a bounded polygonal domain with a sufficiently
smooth boundary. Let uw and up, be the solutions of (3.4) and (2.6), respectively.
Then, there exists a constant C' such that

1/2
Inallo < C( 32 Wicllune = vAun + ¥ -un = fIR+ 3 WEIPVulliz) (312)

K€7~h EeSh
1/2
I9mallo < C(0 3 Bkllune — vAun +w¥V wn = fl3 i+ Y holloVulliz) (313)
KeTy, Ec&y,

Proof.  Firstly, consider that ® € D(A) N X is the solution of the elliptic
problem

a(®,v) + b(u, v, ®) + b(v, up, ) = (g,v), (3.14)

where u and wuy, are the solution of (1.1) and (2.6) respectively. According to the
Lax-Milgram Theorem, we know that system (3.14) is well-posed and has a unique
solution ® satisfying (see [9, 10])

[]l2 < Cllgllo- (3.15)
Choosing v = u — up, in (3.14) and using (2.4), one arrives at
(Muy9) = v(VO,Vu) —v(VP, Vuy) + b(u, t — up, ®) + b(u — up, up, P)
= v(V®,Vu) — v(VRy, Vup) + b(u,t — up, ) + b(u — up, up, )
= v(V(® — Rp), V) + b(u, & — up, ® — Rp) + b(t — up, up, © — Rp)
+v(VRy, V(u —up)) + b(u,w — up, Ry) + b(a — up, up, Ry).  (3.16)



From the definition of (3.4), we know that
V(VRy, V(u—up)) + b(u, @ — up, Rp) + b(w — up,up, Rp) = —r(Ry).
According to (3.2) with v = Ry, € X}, equation (3.16) can be rewritten as
(Mu,9) =v(V(® — Rp), V) + b(u,w — up, ® — Rp,) + b(w — up, up, ® — Ry).
Using (2.4) again and noting (3.4), we deduce that

(u9) = v(V(® = Ry), V) + b(u, & — up, ® — Rp) + b(u — up, up, ® — Ry,)
= v(V(®— Ry),V(u—up)) +b(u,u — up, ® — Rp) + b(u — up, up, ® — Rp)

By (2.5), (3.2) and Green’s formula, one finds

(N> 9)
= (uht —vAup +upV-up — f, 0 — Rh Z / I/Vuh (‘1> Rh)d (3.18)
EeE),
< Y lune — vAup + upV - up — fllo.x| Ho.z(|® — Rpllo,z
KeT, Ee&y,
1 1
< O(CX Hhellune = vAu +w ¥V - w, = fI3 )F + (3 Bl pVwlp)?) - 12]
KeTy, Ee&;,

Using elliptic regularity (3.15) in (3.18), we deduce that

< C(( hillune = vAun +unV -un = FIR )% + (Y BEIWVunllB £)?). (3.19)

KeTy, Ee&y,

(1w, 9) _
lgllo —

Taking the supermum over g, we obtain the desired result (3.12).
By differentiating (3.18) with respect to time, using (3.2) and (3.4), following
the proofs of (3.12), we can obtain that

Iacllo < C<( > hicllunt — vAUR + upeV - up +unV - ung — fill§ )Y
KeT,

(Y BRI VunlI3)?), (3.20)

Eeéy

In order to obtain the estimate (3.13), we make the following assumption:

20 202 [V || Aul|2d
2060 4 ep2 Do 1A ) (194,

v

o+ 2 [ sias)] - 21

10



Taking v = n,, in (3.4), and using the fact that r1(I;n,) = 0, by Green formula and
assumption (3.21), we obtain that

VIVaull§ = —=r(u) = b(u, wn, 1) — b(w, 1, 1)

= (M — Innu) = O(Mus Uns M) — O(U; My M)
—r(nu — Inma) + N(I[Vunllo + | Vallo) [Vl
(une — vAup +upV - up — fnu — Ipnu)

+> /E[Vvuh] - (= Innu)ds + N(|[Vanlo + [|Valo) V75
Ee&y

IA N

By (2.8) and (3.21), we finish the rest of proof (3.12). q
As a consequence, combining Lemmas 3.3 and 3.4, we obtain the main theorem
of a posteriori error estimates for Burgers equation in semidiscrete formulation.

Theorem 3.5. Let Q be a bounded polygonal domain with a sufficiently smooth
boundary, u and uy the solutions of (2.3) and (2.6), respectively. Then, for all
t € (0,T] there exists a constant C' such that

t
lun =y < C(1lun(0) = woll3 + Imu () + Imall3 + /0 Imut(s) 3

t
IV =l < CIV (0 — )l + V00 + 19005 + [ Inalas)

where the estimates of ||nullo, ||Viullo and ||nutllo are given by (3.12), (3.13) and
(3.20), respectively.

4. A posteriori estimates for fully discrete scheme

In this section, we consider a posteriori estimates of fully discrete approximation
for Burgers equation (1.1) based on backward Euler scheme.

Set 0=tg <ty <--- <ty =T, I, = (ty_1,t,] and denote k, = t, — t,—1. For
V' n € [0, N], let T, be a refinement of macrotriangulation which is a triangulation of
the domain €2 that satisfies the same conformity and shape regularity assumptions
made on its refinements (see [9] for details). Set

hp(z) = diam(K), where K € 7, and = € K.

Given two compatible triangulations 7,_1 and 7,, namely, they are refinements of
the same macrotriangulation, let 7, be the finest common coarsening of 7, and
Tn_1, whose mesh size is given by by = max(hyp, hp—1). For more information, we
can refer to Appendix A of reference [20].

Denote

06" = (6" = 6", = f (),

11



We set X}' as the finite element subspace of X defined over the triangulations 7.
Given U® = IJ'ug, find {U"} with U™ € X' at t = t,,. For Vv € X' asn =0
v(VU°, Vo) +b(U°, U° v) = (f°,v), (4.1)
and for n € [1: N]

ki(U" — U ) + (VU™ Vo) +b(U™, U, v) = (™, v). (4.2)

For the existence, uniqueness and convergence of U™ of problem (4.2), following
the guidelines provided in [13, 14], we have the following results.

Theorem 4.1. Assume that Q is a bounded polygonal domain with Lipschitz con-
tinuous boundary, under the assumption of (Al). Then, there exists a constant C
such that

T
V|V — U™ + / V|V (u— U™)|2dt < CR2,
0
t
1AL + o] VU™ |3 + / 1AL (s) 3ds < C.

Using a sequence of discrete values {U"},n =0,1,2,..., N, we define a contin-
uous piecewise linear function U(t) for V ¢ € [0,T] by

t—th—1
kn

Note that the time derivative of U restricted to I,, is

U, thq<t<ty, n=12_.. N (43)

Ut’In = 8tU" forVtel,. (44)

To motivate the use of Burgers reconstruction, we denote e,(t) = U(t) — u(t).
For V v € X}', e, satisfies

(eut,v) + v(Vey, Vo) + b(U,U,v) — b(u,u,v)
1 1
= v(V(U-U"),Vo)+ (f" = f,v) + k*(fﬁU"_l —U" o) + U= U™t v)
+u(VU™, Vv) — (f*,v) + b(U,U,v) + b(U",U",v) = b(U", U™, v). (4.5)
Define the residual " forn =1,2,..., N as
1
r(v) = (U - MU w) 4 v(VU™, Vo) + b(U", U™, v) — (f",v). (4.6)

n

Definition 4.2 (Burgers reconstruction). For given U" (n =0,1,...,N), find
u" € X forV ve X such that

V(V(@" — U™), Vo) + b(@ — U™, U,v) + b(w, 0" — U™, v) = —r"(v).  (4.7)

12



Combining (4.6) with (4.2) and Lemma 2.6, we know that
™ (vp) =0 forV v, € Xj.

Note that U™ is Burgers reconstruction of u" at t = t,. Using a sequence

of discrete values {a"} (n = 0,1,...,N),for V ¢t € [0,T], we define a continuous
function of time as the continuous piecewise linear interpolation w(t):
~ t—tn—1\~ t—th 1~
at) = (1— —2=hyar ' - b <t <tp, n=1,2,...,N. (4.8)
kn ky,

Furthermore, for V v € X and V¢ € [0, T, u satisfies

v(V(au—-U),Vv)+bu—UU,v)+ blu,u —U,v) = —r(v), (4.9)

N

where r(v) is piecewise linear interpolation of {r"},_;. In order to use (4.7), we

split the error of e, into two parts
ew = (@—u)— (@-U) 2 & — . (4.10)
Thanks to (4.7), equations (4.5) can be rewritten as for Vv € X
(&ut, v) +v(VEy, VU) + b(&y, U, v) + b(u, £y, v)
= (o) + (V@ — T, V) + (" — F,0) + —([PU L — U )

kn,
+o(U" —u,U = U",v) + b(u —u",U,v) + b(u,u —u",v). (4.11)
Note that
~_~n th =t g ~n
U— Ut = (u" —u""") = —(t, — t)0u", (4.12)
tn,—1 _
U-U"=-—=—(O"-u" Y= —(t, —t)ou™. (4.13)

From equation (4.7), we deduce that

v(Va", Vo) +b(u",U,v) + b(u,u",v)
= v(VU",Vv) —r"(v) +bU",U,v) + b(u,U",v). (4.14)

As a consequence, one finds

V(V@@" — @Y, Vo) + b@" — a1, U, v) + b(u, @ — 7", v)

= (VU =U"1), Vo) = (r"(v) — " () + b(U" = U1, U, v) + b(u, U™ — U™ 1, v).

Substituting (4.13) and (4.15) into (4.11), we obtain that
(guta U) + V(v§ua V’U) + b(€U7 U7 U) + b(ua €’LL7 U)
1 tn - n n—
= (o) RO = U 0) 4 (7 = foo) 2 (07 0) = )

—u(V(U™ = U™ Y, Vo) = b(U" = UL U, v) = b(U™, U™ — U"—l,v)>(4.16)
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Next, we present some estimates about the errors between Burgers reconstruction
(4.7) and the exact solution of (2.3) in various norms. In order to simplify the
expressions, we introduce some notations as follows. Let

tn
Z / 1f7— fl2ds, & Z " ma(s)l3ds,

tn—1

= an!\kilhn(f — LU 5,

n=1

& =k (Ihad? 1 + V00" I3+ (AU + [ AT IB)II0U™ )
n=1

m | — m J—
&5 = [l (1, )(]~C U’) ||2+Zk2||h O(ly = 1)(-U DI + 1 (1 DU ol
n=2 n m

Theorem 4.3. Assume that € is a convex polygonal domain. Let u and U be the so-
lutions of (2.3) and (4.2), respectively. Then, for m € [1, N] there exists a constant
C' such that

tim 4
a1+ [ VIVEL)Eds < CIeu O + @)1 + >8], (417
=1

t; 5
v Vel + /0 I€utllBds < Clleu(O)IF + Ima (O3 + Y- 67| (4.18)
i=1
Proof. Choosing v = &, in equation (4.16), and using Lemma 2.6, obtain that

el + vIvel?

— () + (7 = )+ (RO = U 60) = W, Ua) = blusune)
(b — 1) (8t7“"(§u) — U(VOU™, VE,) — b(BU™, U, €,) — b(U™, 8,U™, gu))

= () + (7 = )+ (RO = U = ) = W Usa) = blusune)
F(tn — 1) (atr”(gu) — (VU™ VE,) — b(8:U™, U, &) — b(U™,8,U", fu))

£ TP+ T+ Ty + Ty + T8 + T (4.19)

Now, we estimate the right-hand side terms of (4.19) separately. For T}* and T3,
with Cauchy inequality, it is easy to see that

|(uts &) | + [(F" = f,€n)] [utlloll€ullo + 15" = Flloll€ullo
1 1
5 Uallg + 11£™ = £115) + 5 [1€ll5-

IN

IN
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For T3, by Cauchy inequality and Lemma 2.6, we find that
TP <k HRU = U™ Holléu — Thulo
S ol T~ YU+ 2 VE
For T} and T}, by (2.2) and Theorem 4.1, we arrive at

T3 + (75|

IN

Co([[AnUllo + [ Aullo) [ VEullollEullo

3C?2 v
=, (IARUIG + [[Aulg)€ulls + S IV €S-

IN

For TJ, using the fact that r7(v,) = 0 for V vj, € Xp, we have (r? — 777 1)(vp,) = 0
for all v, € X" N X", Let I} be the L2-projection relative to the finest common
coarsening 7, of T, and T,,_1. ForV t € (tn—1,tn), we deduce that

3 n n 7 n n v
< 22 (CBUAMIE + 1A 1001 + lndir 15 + v VOU"13) + L Vel

Combining above inequalities with (4.19), integrating it with respect to time from
0 to t,, with m € [1 : N], and using Lemma 2.1, we complete the proof of (4.17).
Next, we choose v = &, in (4.16) and obtain

d
LGN + b6 Uy ur) + bl )
1

= (nut7 gut) + (fn - f') gut) + F(IgUn_l - Un_17 gut) + (tn - t) (atrn(gut)

~U(VOU™, Véu) = b(OU™, U, &ut) = b(U", OU™ ur))

= (nutagut) + (fn - f7§ut) + ki

F(ty — 1) (atr"(gut) — (VU™ Vw) — b(OU™, U, Ew) — bU, 9,U™, gm)>
£ TP+ 1§+ T) + Ty (4.20)

”gut”g +

(RU"™ = U = T3ur)

Integrating (4.20) with respect to time from 0 to ¢,, with m € [1 : N, one gets
2 fm 2 m
IVEEIE+2 | alds +2 [ (b6 U ) + bl o)) s

m tn
= V| VE(0)]2 + 2 Z/ (T + T3 + T + T7)ds. (4.21)
n=1

tn—1

Set

T2(+.\ — 2 b 2 . .
FAt) = max (vIVEt)IF+ [ €ulids), forvie[oim].  (422)
0

0<ti<tm

15



By Cauchy inequality and integration by parts, it is straight forward to deduce that

ITF| + T3] + 175
< [lmallo 115" = Fllo + (ta = &) (110" llo + 120U o
+Co(lAnU o + AT IV O™ o) | utlo-

By using Cauchy inequality again, we get

tn
22/ (T} + T3 + Ty)ds

tn—1

1/
{[Z & (CRADIE + 14U IDIVaU™ 3 + 1003 + 1 aa0m )]

([ i) (3 [ v i) - (i)

tn—1

For T3, using integration for £, from ¢,,_1 to ¢,, and then applying summation by
parts, we arrive at

m

n

tn 1
/ — (Ut U € ds
n=1 tn—1 kj
1

k (I}rZLUnfl o Unfljézz _ nfl)

u

[
Ms

- (Ih -DG-Um ) - (@ - DU
+Zk (at - (k UL, 3—1).
From (2.2), we derive that

tm
2 / (b(fua U7 fut) + b(U, fu, £ut))d3
0

tm
< 200/0 (AU o + l[Aullo)[[VEullollutllods

IN

tm 1 tm
o [T UAIE + IauBIVeldas)” - ([ eulias
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By Lemma 2.6 and (4.22), one deduces that
tn

Z Ih Ul — U™t gu)ds

tnl

- (u;f - I><,7um—1>,§:7 - ) - (k= D00, € - 18)

Sk DG e i)

IN

m ]' m— m
C(IIMU& —I)(HUO)||0\|V€3\|0+ (I = 1) (;—U Dol Ve o

m R 1 - .
£ 2 Fall @1 = DU ol € )
n=2

IN

1 - 7 n 1 n—
O(Iha (2} = DU o+ D kallndi (I = 1)Ul
n=2 "

Hilhol I = DU o) - (0.

Combining above inequalities with (4.21), Theorem 4.1 and replacing t,, by t;, we
complete the proof of (4.18).9

Since (4.9) is quite similar in form to (3.4), we can prove the error estimates
similar to Lemma 3.4 by following closely to the proof of Lemma 3.4. Here, we omit
the proof.

Using required estimates of 7, and 7, in Theorem 4.1, we obtain the final
theorem of this section. Now, we firstly introduce some notations to be used in
what follows. Set

Z hp|[VU°) HOE+ Z hi H"”1H0Ka

Eeg&y, KeTh
iellrt® Ho K>
Eeg&y, KeTn
m
:2%( > BEIONUR e+ D il TR k)
n=1 Eeg&y, KeTy,
= Y hall[V Rl 18 -
Eeg&), KeTy,

Theorem 4.4. Under the assumptions of Theorem 4.3 and (A1), set u and U be
the solution of (2.3) and (4.2), respectively. Then, for m € [1, N], the following

17



estimates hold

8
[0 = ultm) 13 < Cllea(O)IF + & + &5 + 6] + D &,
1=6

tm 6
IV =)l + [ 10 = wlids < C w1 + 67+ S 6+ &+ 7],
=3

5. Numerical experiment

In this section, we provide some numerical results to verify the performance of
the established posteriori error estimators. For the computed quantities like errors
and indicators, we denote ||e,||1 = ||u — upl/1, the error indicator 7 and the number
of triangulares in 7, (NT) which are output of the adaptive algorithm for a given
tolerance €. The experimental convergence rates are given by

o = 2xloglleu(er)llo/lleu(z2) o] o = 2xlogln(er)/n(e2)]
cu log[NT(g1)/NT(e1)] T log[NT(1)/NT(e1)]

The effectiveness index is defined as ration of a posteriori error bound and an
approximate norm of the actual error, i.e., ||e,||1/n. For a good estimator, this
quantity should be a constant, independent of the mesh sizes and the time steps.
Although our theoretical findings do not include a proof of efficiency, numerical
experiments provide evidences of the efficiency of the estimators.

For the space-time algorithm, we follow the guideline provided in [22]. In order
to keep the completeness of our work, we present the outline as follows.

Algorithm. Let ’76 be a regular triangulation and ¢ the given tolerance.

(i). Compute on the shape-regular partition ’76 with tg = 0.

(ii). Set an initial time step kg, using U° to compute |lu—UP||; and n on 7.

(iii). Begin the time loop with obtained T;,_1, 7,, and U1

(1) Set the time step tnA— mm&tn_l + kn, 1),
(2) Use ky, to compute U™ on 7y, and then compute 1",
(3) Set t, = min(t,—1 + (?n —tn—1)e/N", T), and obtain that k, = t, —t,_1,
(4) Use ﬁ, un—t ‘and ky, to compute U™ and 7",
(5) Adapt mesh 7, to obtain 7;,. Use U™~ ! and k, to compute U",
(6) For the next iteration, denote 7;L+1—7;, and kn+1 =k,.
(iv) End the time loop and finish the computation.

Remark 5.1. For simplifying the computation, we adopt Oseen iteration to treat
the nonlinear term, and set all the constants C involved in indicator and v equal to
1. For the time steps, as the strateqy used in [24], we choose a maximum over the
time step instead of summing up over different time steps.
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Consider the nonlinear parabolic problem

u—Au+uV-u=f inQx(0,1]
u=g on 0N x (0,1]
u(0) =0 on  x {0},

with Q = [0,2]? and T = 1. Choose f and g with the exact solution

o) = ggsinC e { =20 (2 = 50— 5) = § (eos o)) [}
where ||(z,y)| = (2% + y*)'/2. We adopt the linear polynomial to seek the exact
solution by backward Euler scheme in time. Table 1 presents the errors and conver-
gence order with different tolerances €. As expected, we can see that as € becomes
small, the errors go down while the numbers of triangulares increase quickly. The
effectiveness index approaches 0.06, which is a constant independent of NT and
time steps. Next, fixed the tolerance ¢ = 0.04, the meshes, the profiles of u; and
numerical solutions uy, are described in Figures 1-4 at different times. From these
Figures, we can see that more meshes are concentrated on the critical region where
the solution vary sharply. Figure 5 expresses the variation of time step as time in-
creases with different tolerances €. Generally speaking, the smaller of €, the smaller
of time step. Furthermore, as the time increases, the time step becomes smaller and
smaller. Finally, we compare the profiles of solutions, including the exact solution
and numerical solution with different ¢ in Figure 6. From these figures we can see
that as the tolerance e decreases, we can simulate the exact solution more precisely.

Table 1: Results obtained using space-time algorithm with linear polynomial.
€ NT  leulls n leallt/n e, o
0.08 1418 0.01707 0.3026 0.0564
0.06 2175 0.01361 0.2385 0.0571 1.0590 1.1129
0.05 2634 0.01252 0.2156 0.0581 0.8719 1.0544
0.04 5164 0.009135 0.1501 0.0609 0.9365 1.0758
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