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Abstract. The three-dimensional incompressible Navier-Stokes equations are
considered along with its weak global attractor, which is the smallest weakly
compact set which attracts all bounded sets in the weak topology of the phase
space of the system (the space of square-integrable vector fields with divergence
zero and appropriate periodic or no-slip boundary conditions). A number of
topological properties are obtained for certain regular parts of the weak global
attractor. Essentially two regular parts are considered, namely one made of

points such that all weak solutions passing through it at a given initial time
are strong solutions on a neighborhood of that initial time, and one made
of points such that at least one weak solution passing through it at a given
initial time is a strong solution on a neighborhood of that initial time. Similar
topological results are obtained for the family of all trajectories in the weak
global attractor.

1. Introduction. One of the current major open problems in mathematics is the
well-posedness of the three-dimensional Navier-Stokes equations. The existence of
weak solutions for all positive times as well as the existence and uniqueness of
local strong solutions are well established but it is not known whether there exists
a unique solution defined for all positive times starting from an arbitrary initial
condition in a suitable function space.

For other equations where the well-posedness is well established, an important
problem is the understanding of the dynamics and the asymptotic behavior of their
solutions. This is the realm of the dynamical systems theory, be it finite or infinite
dimensional, depending on the equation underlying the system. In the study of the
asymptotic behavior, an important object is the so-called global attractor, which can

2000 Mathematics Subject Classification. 35Q30, 35B40.
Key words and phrases. Navier-Stokes equations, weak global attractor.
This work was partly supported by the National Science Foundation under the grants NSF-

DMS-0604235 and NSF-DMS-0906440, by the Research Fund of Indiana University, and by CNPq,
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usually be characterized as the smallest compact set attracting all bounded sets in
the phase space of the system.

Despite the lack of a well-posedness result for the three-dimensional Navier-
Stokes equations, it is still a natural question to ask what the dynamics and the
asymptotic behaviors of their weak solutions are, despite the possibility that they
are not unique with respect to the initial condition. In particular, it is natural to
ask whether there exists some sort of global attractor in this case. Due to the lack
of a well-defined semigroup associated with the solutions of the system, the classical
theory of dynamical system does not apply directly. Nevertheless, it is still possible
to adapt a number of results from the classical theory to this situation.

One of the first and main results in this direction was given in [12], in which an
object called the weak global attractor was defined. It is the smallest compact set
in the weak topology of the phase space which attracts all global weak solutions in
the weak topology.

Later on, a number of results were developed with a different perspective, in
which a well-defined semigroup exists in a trajectory space. A “point” in this
trajectory space is a weak solution defined for all nonnegative times, and the semi-
group is just the time-translation operator; see for instance [23, 2, 24]. The global
attractor obtained in this way is sometimes called the trajectory attractor. The two
approaches are connected, and the weak global attractor given in [12] is in fact the
projection, at any given time, of the trajectory attractor. See Section 3.1 for more
comments on this.

In [12] the weak global attractor was shown to possess a weakly open and dense
subset made of points such that any weak solution passing through that point at a
given initial time is a strong solution in a neighborhood of the initial time. It was
called the “regular part” of the weak global attractor. The proof of this result was
only sketched in [12] and we take the opportunity here to include the full details
of the proof. We also introduce other such regular sets and study their topological
properties, such as density and their Borel structure. Similar results are given in
the trajectory space, for the family of all trajectories in the weak global attractor.

An important open question is whether the weak global attractor coincides with
its regular part, i.e. whether at least within the global attractor all solutions are
global strong (and unique) solutions. This would be a kind of asymptotic regularity
question, and it is one of the major reasons we investigate here the nature of the
regular parts of the weak global attractor.

A related asymptotic regularity problem is whether the stationary statistical
solutions are carried by the regular part of the weak global attractor (see [17]).
We recall here that stationary statistical solutions are suitable generalizations of
the notion of invariant measures (see [5, 6, 14, 28, 29, 13]), and therefore are a
natural object related to the asymptotic behavior of the system. A partial answer
to this problem follows from one of the results given here and will be presented in
the forthcoming work [10] dedicated to stationary statistical solutions (see [8] for a
summary of the main results in [10], and also [9, 7] for time-dependent statistical
solutions).
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2. Preliminaries.

2.1. The Navier-Stokes equations and their mathematical setting. In this
section we recall some fundamental results about individual solutions of the Navier-
Stokes equations in space dimension three, for which the reader is referred to the
works [3, 13, 15, 25, 26, 27].

The three-dimensional incompressible Navier-Stokes equations in Eulerian for-
mulation are written in vectorial form as

∂u

∂t
− ν∆u + (u · ∇)u + ∇p = f , ∇ · u = 0. (1)

The variable u = (u1, u2, u3) denotes the velocity vector field; the term f represents
the mass density of volume forces applied to the fluid and is assumed to be time-
independent; the parameter ν > 0 is the kinematic viscosity; and p is the kinematic
pressure. We denote the space variable by x = (x1, x2, x3) and the time variable by
t.

We allow two kinds of boundary conditions: periodic and no-slip. In the periodic
case we assume the flow is periodic with period Li in each spatial direction 0xi,
i = 1, 2, 3, and we set Ω = Π3

i=1(0, Li); we also assume that the averages of the flow
and of the forcing term over Ω vanish, i.e.

∫

Ω

u(x, t) dx = 0,

∫

Ω

f(x) dx = 0.

In the no-slip case, we consider the flow on a bounded domain Ω ⊂ R
3, with

a sufficiently smooth boundary ∂Ω, and it is assumed that u = 0 on ∂Ω. Other
boundary conditions such as those for periodic channel flows can be treated similarly.

In either the periodic or no-slip case one obtains, in appropriate function spaces,
a functional equation formulation for the time-dependent velocity field u = u(t)
corresponding to the function x ∈ Ω 7→ u(x, t) at each time t.

For the precise definition of the function spaces, we first consider the space of
test functions, which in the periodic case is given by

Vper =

{

u = w|Ω;
w ∈ C∞(R3)3, ∇ ·w = 0,

∫

Ω w(x) dx = 0, w(x) is periodic
with period Li in each direction 0xi

}

,

while, in the no-slip case, it is given by

V0 =
{

u ∈ C∞
c (Ω)3; ∇ · u = 0

}

,

where C∞
c (Ω) denotes the space of infinitely-differentiable real-valued functions with

compact support in Ω. We let V stand for either Vper or V0 depending on the case
under consideration.

In each case the space H is defined as the completion of V under the L2(Ω)3

norm. The space V is the completion of V under the H1(Ω)3 norm. We identify
H with its dual and consider the dual space V ′, so that V ⊆ H ⊆ V ′, with the
injections being continuous, and each space dense in the following one.

We denote the inner products in H and V respectively by

(u,v)L2 =

∫

Ω

u(x) · v(x) dx, ((u,v))H1 =

∫

Ω

∑

i=1,2,3

∂u

∂xi
· ∂v

∂xi
dx,

and the associated norms by |u|L2 = (u,u)
1/2
L2 , ‖u‖H1 = ((u,u))

1/2
H1 .

We denote by PLH the (Leray-Helmhotz) orthogonal projector in L2(Ω)3 onto
the subspace H . The operator A below in (3) is the Stokes operator given by
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Au = −PLH∆u, for u ∈ D(A), and with domain D(A) defined as the closure of V
in the space H2(Ω)3 in the periodic case, and D(A) = V ∩ H2(Ω)3 in the Dirichlet
case.

The Stokes operator is a positive self-adjoint operator on H ; we denote its first
eigenvalue by λ1, and the following Poincaré inequality holds:

λ1|u|2L2 ≤ ‖u‖2
H1 , (2)

for all u ∈ V .
We define the bilinear term B(u,v) = PLH((u ·∇)v) associated with the inertial

term. Taking the inner product in H of the bilinear term with a third vector field
w yields the trilinear form

b(u,v,w) = (B(u,v),w)L2 =

∫

Ω

[(u · ∇)v] ·w dx,

which is defined for u,v,w in V .
The functional equation reads then

du

dt
+ νAu + B(u,u) = f . (3)

The forcing term f is assumed to belong to H , otherwise the term in the right
hand side of (3) would be the Leray-Hopf projection of the term f in (1).

The weak topology in H plays a crucial role due to the condition (iii) below in
the Definition 2.1 of weak solutions. With that in mind, given a subset X of H , we
denote by Xw this subset endowed with the weak topology of H . In particular, Hw

denotes the space H endowed with its weak topology. The closed ball of radius R
in H is denoted by BH(R). Since H is a separable Hilbert space, its weak topology
is metrizable on bounded sets, and thus e.g. BH(R)w is metrizable for any R < ∞.

Given a subset X of H , we denote by X
w

the closure of X in the weak topology of
H .

We then have the following definition of weak solutions.

Definition 2.1. A (Leray-Hopf) weak solution on a time interval I ⊂ R is defined
as a function u = u(t) on I with values in H and satisfying the following properties:

i. u ∈ L∞
loc(I; H)

⋂

L2
loc(I; V );

ii. ∂u/∂t ∈ L
4/3
loc (I; V ′);

iii. u ∈ C(I; Hw), i.e. u is weakly continuous in H , which means that for every
v ∈ H , the function t 7→ (u(t),v)L2 is continuous from I into R;

iv. u satisfies the functional equation (3) in the distribution sense on I, with
values in V ′;

v. For almost all t′ in I, u satisfies the following energy inequality:

1

2
|u(t)|2L2 + ν

∫ t

t′
‖u(s)‖2

H1 ds ≤ 1

2
|u(t′)|2L2 +

∫ t

t′
(f ,u(s))L2 ds, (4)

for all t in I with t > t′. The allowed times t′ are characterized as the points of
strong continuity from the right, in H , for u, and their set is of total measure
and denoted by I ′(u).

vi. If I is closed and bounded on the left, with its left end point denoted by t0,
then the solution is continuous in H at t0 from the right, i.e. u(t) → u(t0) in
H as t → t+0 .

From now on, for notational simplicity, a weak solution will always mean a Leray-
Hopf weak solution.
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Remark 1. The following remarks are in order.

a. It is well known that given any initial time t0 ∈ R and any initial condition
u0 ∈ H , there exists at least one weak solution on [t0,∞) satisfying u(t0) = u0.

b. Conditions (ii) and (iii) are actually consequences of (i) and (iv).
c. Assuming (i), condition (iv) is equivalent to

(u(t),v)L2 = (u(s),v)L2 +

∫ t

s

{(f ,v)L2 − ν((u(τ),v))H1 − b(u(τ),u(τ),v)} dτ,

for every t, s in I and all v in V ; see e.g. [25, Ch. 3, Section 1].
d. The allowed times t′ ∈ I ′(u) in condition (v), which are the points of strong

continuity for u in H from the right, can also be characterized as the Lebesgue
points of the function t 7→ |u(t)|2L2 , in the sense that

lim
τ→0+

1

τ

∫ t′+τ

t′
|u(t)|2L2 dt = |u(t′)|2L2 . (5)

Since t 7→ |u(t)|2L2 is locally integrable, these Lebesgue points I ′(u) form a
set of full measure. In the case of a weak solution on an interval of the form
[t0, t1), since by condition (vi) the point t0 is a point of strong continuity from
the right, the estimate (9) is also valid for the initial time t′ = t0.

e. The energy inequality in integral form (4) in condition (v) can be interchanged
with the assumption that u satisfies the following energy inequality in the
distribution sense on I:

1

2

d

dt
|u(t)|2L2 + ν‖u(t)‖2

H1 ≤ (f ,u(t))L2 . (6)

Assume e.g. that I is an interval of the form (t0, t1). It is elementary to see
that (4) implies (6). Indeed, setting t = t′ +h in (4), we multiply (4) by ϕ(t′),
where ϕ ∈ D(I), ϕ ≥ 0, integrate in t′ from t0 to t1 − h, and pass to the limit
as h → 0 using the Beppo-Levi theorem, with ϕ fixed; we find, since |u(·)|2L2

and ‖u(·)‖2
H1 are integrable functions and (4) holds for almost every t′, that

∫ t1

t0

{

−1

2
|u(t)|2L2ϕ′(t) +

[

ν‖u(t)‖2
H1 − (f ,u(t))L2

]

ϕ(t)

}

dt ≤ 0,

for all ϕ ∈ D(I), ϕ ≥ 0, which is exactly (6).
In order to show that (6) implies (4), let

Φ(t) =
1

2
|u(t)|2L2 +

∫ t

t0

[

ν‖u(s)‖2
H1 − (f ,u(s))L2

]

ds.

Then (6) implies that dΦ/dt ≤ 0 in the distribution sense, i.e. dΦ/dt is a
negative distribution. According to a result of Schwartz [21, 22], dΦ/dt = µ
is a negative measure. By a theorem of Riesz (see [18, Section 54, page 118]),
if Ψ(t) is the µ-measure of the interval (t0, t), then Ψ is a decreasing function
continuous on the right, and for every θ ∈ D(I), 〈µ, θ〉 can be represented by
a Stieltjes integral with respect to Ψ:

〈µ, θ〉 =

∫ t1

t0

θ dΨ.

Integration by parts being legitimate [18], and θ(t0) = θ(t1) = 0, we have

−
∫ t1

t0

Φθ′ dt = −〈Φ, θ′〉 = 〈Φ′, θ〉 = 〈µ, θ〉 =

∫ t1

t0

θ dΨ = −
∫ t1

t0

Ψθ′ dt.
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The last equation being valid for every θ ∈ D(I) shows that the difference
Φ−Ψ is almost everywhere equal to a constant which we can take to be zero
since Ψ is defined up to an additive constant. Denoting by Iu the set of total
measure where Φ = Ψ, then for every t, t′ ∈ Iu, t′ ≤ t, since Ψ is a decreasing
function, we have

Ψ(t) = Φ(t) ≤ Φ(t′) = Ψ(t′), (7)

which is (4) for such t and t′. Finally, if t > t′ is any number larger than t′

in I and not necessarily in Iu, we approximate t by a sequence of increasing
numbers tj ∈ Iu, so that Φ(tj) ≤ Φ(t′). At the limit we obtain Φ(t) ≤ Φ(t′),
which is exactly (4), after observing that Φ is left lower-semicontinuous, like
|u(·)|2L2 , as

|u(t)|2L2 ≤ lim inf
tj→t

|u(tj)|2L2 .

See also [13, Section II.7, Appendix II.A.2, and Appendix II.B.1] for dis-
cussions about this and a direct proof that (6) implies (4), without using the
result of Schwartz.

f. Since u belongs to L2
loc(I; V ), condition (v) implies, upon use of the Cauchy-

Schwarz and Poincaré inequalities,

|u(t)|2L2 + ν

∫ t

t′
‖u(s)‖2

H1 ds ≤ |u(t′)|2L2 +
1

νλ1
|f |2L2(t − t′), (8)

for t′ and t as in (v).
g. By using an appropriate sequence of test functions in the inequality (6) (see

[13, Appendix II.B.1] for the details or [1, Proposition 7.3] for a different
proof), one deduces that a weak solution on an arbitrary interval I also satisfies

|u(t)|2L2 ≤ |u(t′)|2L2e−νλ1(t−t′) +
1

ν2λ2
1

|f |2L2

(

1 − e−νλ1(t−t′)
)

, (9)

for almost all t′ in I and all t in I with t′ < t. The allowed times t′ are again
the points I ′(u) in condition (v).

h. An important nondimensional parameter associated with the strength of the
forcing term is the Grashof number

G =
|f |L2

ν2λ
3/4
1

. (10)

Define

R0 =
|f |L2

νλ1
=

νG

λ
1/4
1

. (11)

Note that from (9) it follows that any weak solution defined on an interval
unbounded on the right satisfies

lim sup
t→∞

|u(t)|L2 ≤ R0. (12)

i. A weak solution defined on I = R is called here a global weak solution. If u is
a global weak solution which is uniformly bounded in H , then it follows from
the energy estimate (9), by letting t′ → −∞, that

|u(t)|L2 ≤ R0, ∀t ∈ R. (13)
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j. Note that another concept of weak solutions (sometimes also called Leray-
Hopf weak solutions) is one in which condition (vi) in the Definition 2.1 is not
required. In this formulation, the initial condition still makes sense since the
solution is still weakly continuous in H at the initial time. See [9] for details
comparing these two particular formulations, and see Remark 4 for related
discussions on this issue.

We turn now to the definition and a few properties of strong solutions.

Definition 2.2. A (Leray-Hopf) weak solution on an arbitrary interval I is called
regular or a strong solution if it satisfies furthermore

vii. u ∈ C(I; V ).

Remark 2. The following remarks concerning strong solutions are in order.

a. It is well known that if u0 belongs to V , then there exists a local strong
solution with u(t0) = u0, defined on some interval [t0, t1), with t0 < t1 ≤ ∞.
Such a strong solution is unique among the class of all weak solutions v on
[t0, t1) with v(t0) = u0.

b. A strong solution on an interval I satisfies the energy equation

1

2

d

dt
|u(t)|2L2 + ν‖u(t)‖2

H1 = (f ,u(t))L2 , (14)

as well as the enstrophy equation

1

2

d

dt
‖u(t)‖2

H1 + ν|Au|2L2 + b(u,u, Au) = (f , Au(t))L2 , (15)

in the classical sense over the interval I. An estimate for the existence time
t1 = t1(u0) can be obtained by properly estimating the nonlinear term. In
fact, using Hölder’s inequality with L6, L3, and L2, respectively, followed by
Sobolev’s, interpolation and Young’s inequalities we find that

|b(u,u, Au)| ≤ ν

4
|Au|2L2 +

c1

ν3
‖u‖6

H1 , (16)

for a suitable universal constant c1. Using this estimate in the enstrophy
equation, and applying the Cauchy-Scharwz to the forcing term we obtain the
inequality

1

2

d

dt
‖u(t)‖2

H1 +
ν

2
|Au|2L2 ≤ 1

ν
|f |2L2 +

c1

ν3
‖u‖6

H1 . (17)

Let then

y = ν2/3|f |2/3
L2 + ‖u‖2

H1 , (18)

to find from the enstrophy equation that

y′ ≤ 2c2
0

ν3
y3, (19)

where c0 = max{1, c
3/2
1 } is still a universal constant. As long as y is defined,

we integrate the inequality above to find that

− 1

y(t)2
+

1

y(s)2
≤ 4c2

0

ν3
(t − s). (20)

Now, taking s = t0, y0 = y(t0), and

T (y0) =
3ν3

16c2
0y

2
0

, (21)
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then we find that y(t) ≤ 2y0, for all t0 ≤ t ≤ t0 + T (y0), which yields that
a strong solution starting in u0 ∈ V at time t0 exists at least up to the time
T1(y0) = t0 + T (y0). If the solution blows-up in V at a time t∗1, then we let
t → t∗1 and use that y(t) → ∞ to deduce from (20) that t∗1 ≥ t0 + ν3/(4c2

0y
2
0).

c. A strong solution on an open interval (t1, t2), −∞ ≤ t1 < t2 ≤ ∞ is analytic
in time as a function from (t1, t2) into D(A). In particular, if two strong
solutions coincide at a given time, then they are equal on their interval of
definition.

Concerning the regularity points of a weak solution we make the following defi-
nition.

Definition 2.3. Let u be a weak solution defined on an interval I ⊂ R. Then a
point t ∈ I is called singular if u(t) ∈ H \ V and is called regular if u(t) ∈ V .
Morever, a regular point t ∈ I is called a point of interior regularity if there exists
a δ > 0 such that (t − δ, t + δ) is included in I and u restricted to (t − δ, t + δ) is a
strong solution.

2.2. Properties of weak solutions. Most of what follows in this section is due
to and meant to overcome the difficulties of a possible lack of uniqueness of weak
solutions. First, we will need to paste solutions together, according to the following
result.

Lemma 2.4 (Pasting Lemma). Let u(1) be a weak solution on an interval (t1, t2]
and u(2) be a weak solution on an interval [t2, t3), with −∞ ≤ t1 < t2 < t3 ≤ ∞
and u(1)(t2) = u(2)(t2). Then the function

ũ(t) =

{

u(1)(t), t1 < t < t2,

u(2)(t), t2 ≤ t < t3,
(22)

is a weak solution on (t1, t3).

Proof. The assumption that u(2) is strongly continuous from the right at t2 guar-
antees that the energy inequality holds for u(2) starting at t2, so that the energy
inequalities for u(1) and u(2) can also be concatenated, and condition (v) of the
Definition 2.1 holds for u. The other conditions are easy to check.

Remark 3. In this result, it is important that u(2) is strongly continuous from
the right at t2. If u(2) ∈ C([t2, t3); Hw) and is a (Leray-Hopf) weak solution only
on (t2, t3), then the energy inequality (4) may not be valid for u(2) at t2, and the
concatenated solution ũ may not be a Leray-Hopf weak solution on [t1, t3) but only
a weak solution in some broader sense (not specified here).

This simple remark leads us to the following significant connection between the
uniqueness of (Leray-Hopf) weak solutions and the existence of points t′ at which
the energy inequality (4) does not hold for t > t′.

Proposition 1 (A sufficient condition for non-uniqueness of weak solutions). As-
sume that u is a (Leray-Hopf) weak solution of the Navier-Stokes equations on
[0, T ) and that there exists t′ ∈ (0, T ) at which u is not strongly continuous from
the right1, in H. Then there exists another (Leray-Hopf) weak solution ũ on [0, T )
with ũ(0) = u(0), and ũ 6= u.

1Or, equivalently, (4) does not hold for this t′.
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Proof. We define a new solution ũ 6= u by using the concatenation procedure (22)
above. We consider t1 = 0, t2 = t′, t3 = T , and u(1) = u on [0, t′). We then take
u(2) to be a Leray-Hopf weak solution on [t′, T ) with initial data u(2)(t′) = u(t′).
By definition u(2) is strongly continuous from the right at t′, and hence so is ũ.
Therefore, u 6= ũ and both are (Leray-Hopf) weak solutions on [0, T ) with the same
initial data u(0).

As a consequence of Proposition 1, we have the following remarkable result.

Proposition 2. Let u0 ∈ H and T > 0, and suppose u is the only (Leray-Hopf)
weak solution on [0, T ) with u(0) = u0. Then u is strongly continuous from the
right in H everywhere on [0, T ), and, in particular, the energy inequality (4) holds
for every t and t′ in [0, T ), with t ≥ t′.

The following lemma will also be useful.

Lemma 2.5 (Compactness Lemma). Let {uj}j∈N be a sequence of weak solutions
on some interval I = (t1, t2), −∞ ≤ t1 < t2 ≤ ∞, and suppose that this sequence
is uniformly bounded in H. Then, there exists a subsequence {uj′}j′ and a weak
solution u(·) on I such that uj′ converges to u in Hw uniformly on any compact
interval in I. Moreover, if u is regular on J = (t3, t4) ⊂ I, then uj′ converges to u

in V , uniformly on any compact interval in J .

The proof of this lemma can be found in [4, Chapter 1].
Concerning the interior regularity points of a weak solution, as given in Definition

2.3, we have the following basic result.

Lemma 2.6. Let u be a weak solution on an interval I and let t0 belong to the
interior of I. Then, the following statements are equivalent:

i. t0 is a point of interior regularity for u;
ii. ∃ limt→t−

0

‖u(t)‖H1 < ∞;

iii. lim supt→t−
0

‖u(t)‖H1 < ∞;

iv. lim inft→t−
0

‖u(t)‖H1 < ∞.

Proof. Implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial. We only need to prove that
(iv) implies (i).

Suppose (iv) holds. Then, there exists tn → t−0 such that ‖u(tn)‖H1 is bounded
uniformly in n. Thus, the local existence and uniqueness result of strong solutions
assures the existence of δ > 0 such that u is regular on [tn, tn + δ), for all n (the
estimate (21) for the interval of local existence depends on ‖u(tn)‖H1 , which is
uniformly bounded, so that we can take a δ > 0 independent of n). Then, for n
sufficiently large, tn < t0 < tn + δ, which means that u is regular on the interval
(tn, tn + δ) containing t0. This implies that t0 is a point of interior regularity for u,
which proves (i).

2.3. Regular and singular points. Here we recall a few results concerning the
structure of the regular and singular points of a weak solution, as given in Definition
2.3. For simplicity, we consider only global weak solutions u = u(t), i.e. weak
solutions defined for all t ∈ R, but the results below can be extended to weak
solutions defined on any interval I ⊂ R as explained at the end of this section.

An interval J ⊂ R is called an interval of regularity for u if u is regular on J ,
i.e. u|J ∈ C(J, V ). An interval J ⊂ R is called a maximal interval of regularity for
u if there is no interval of regularity strictly containing J . It follows from Lemma
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2.6 that if J is a maximal interval of regularity, with end points α and β, α < β,
then it is necessarily open on the right, with

lim inf
t→β−

‖u(t)‖H1 = ∞. (23)

A maximal interval of regularity can be either open or closed on the left. In any
case,

lim inf
t→α−

‖u(t)‖H1 = ∞. (24)

But the lower limit of ‖u(t)‖H1 as t → α+ may be either finite or infinite; and u(α)
may or may not belong to V . We have, in fact, the characterization

u(α) /∈ V if and only if lim inf
s→α+

‖u(s)‖H1 = ∞. (25)

Depending on whether u(α) belongs to V or not, the maximal interval of regularity
is either [α, β) or (α, β).

Using inequality (20) obtained from the enstrophy equation, we find that if J is
a maximal interval of regularity with end points α and β, then y(t) given in (18) is
such that y(t) → ∞ as t → β− and

1

y(s)2
≤ 4c2

0

ν3
(β − s),

for α < s < β. This can be written as

ν3/2

(β − s)1/2
≤ 2c0

(

ν2/3|f |2/3
L2 + ‖u‖2

H1

)

, (26)

for α < s < β. Integrate (26) in s from α to β to find

ν3/2(β − α)1/2 ≤ c0

(

ν2/3|f |2/3
L2 (β − α) +

∫ β

α

‖u(t)‖2
H1 dt

)

. (27)

The interval of definition of u, which in this case is R, can be classified according
to the following:

R = {t ∈ R; u(t) ∈ V },
Rc = {t ∈ R; u(t) /∈ V },
O = {t ∈ R; ∃ε > 0, u ∈ C((t − ε, t + ε), V )}.

(28)

According to Definition 2.3, the points in Rc are the singular points, those in R are
the regular points, and those in O ⊂ R are the interior regularity points.

Since the solution belongs to V almost everywhere, the set R is of full Lebesgue
measure (i.e. R \ R is a null set) and dense in R. The set O is open and can be
written as a countable union of disjoint open intervals, say O =

⋃

k(αk, βk).
By the local existence of regular solutions it follows that R ⊂ ⋃

k[αk, βk), with
R \ O ⊂ {αk}k at most countable2. In particular, it follows that O is also of full
measure and dense in R. Note that each αk may or may not belong to R, i.e. each
u(αk) may or may not belong to V , according to (25). Depending on that, we have
that either [αk, βk) or (αk, βk) is a maximal interval of regularity.

2In [13], it has been stated that R and R\O are equal to
⋃

k
[αk , βk) and {αk}k , respectively,

but the correct results are with the inclusions, as stated above.
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If now I ⊂ R is a bounded interval, with length denoted |I|, and NI = {k ∈
N; (αk, βk) ⊂ I}, then the estimate (27) implies

ν3/2
∑

k∈NI

(βk − αk)1/2 ≤ c0

(

ν2/3|f |2/3
L2 |I| +

∫

I

‖u(t)‖2
H1 dt

)

, (29)

It can be showed that (27) and (29) imply that the 1/2-Hausdorf measure of the
singular set I \O is zero [16, 20, 11]. In fact, it can be showed that I \O has fractal
dimension less than or equal to 1/2; see [19].

The above estimates will be used here only for global weak solutions, but we
remark that the facts presented in this section can be adapted to weak solutions de-
fined on an arbitrary interval I ⊂ R, taking care of the cases in which the endpoints
of I coincide or not with the endpoints of a maximal interval of regularity.

2.4. Trajectory spaces. We define some basic “time-dependent” function spaces.
First, we consider the spaces C(R, Hw) and C(R, BH(R)w), with R > 0, endowed
with the topology of uniform weak convergence on compact intervals in R. With
this topology, the space C(R, Hw) is a separable Hausdorff locally convex topolog-
ical vector space, and C(R, BH(R)w) is a Polish space (a separable and complete
metrizable space).

For each t0 ∈ R, we define the projection operators

Πt0 : C(R, Hw) → Hw

u 7→ Πt0u = u(t0),
(30)

which are continuous, open, and surjective.
A space that plays a crucial role in the study of the asymptotic behavior of the

solutions is that of the global weak solutions uniformly bounded in H :

W =

{

u ∈ C(R, Hw); u is a weak solution on R with sup
t∈R

|u(t)|L2 < ∞
}

, (31)

endowed with the topology inherited from C(R, Hw).

Proposition 3. The space W is a compact metric space and is included in the
space C(R, BH(R0)w), where R0 is given in (11).

Proof. From the uniform boundedness in H of an element u in W it follows from
(13) that

|u(t)|L2 ≤ R0, ∀t ∈ R, ∀u ∈ W . (32)

Thus W is a subset of C(R, BH(R0)w) and, hence, it is metrizable, and it suffices
to prove sequential compactness. From the a priori estimate (8), we also have

ν

∫ t1

t0

‖u(t)‖2
H1 dt ≤ 1

ν2λ2
1

|f |2L2 +
1

νλ1
|f |2L2(t1 − t0), ∀t0, t1 ∈ R, t0 < t1, ∀u ∈ W .

(33)
From equation (3), and using Hölder’s and Ladyzhenskaya’s inequalities on the
bilinear term, one finds, for a suitable universal constant c2, that

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

V ′

≤ 1

λ
1/2
1

|f |L2 + ν‖u‖H1 + c2
2|u|1/2

L2 ‖u‖3/2
H1 , (34)

for every u ∈ W .
From (32), (33), and (34) it follows that W is equicontinuous in C(R, V ′). Since

V is separable and dense in H this implies that W is equicontinuous in the space
C(R, BH(R)w), and, moreover, {u(t)}u∈W ⊂ BH(R)w is relatively compact for each



1622 CIPRIAN FOIAS, RICARDO ROSA AND ROGER TEMAM

t ∈ R. Then, from the Arzela-Ascoli Theorem (and using a diagonalization process),
it follows that W is relatively compact in C(R, BH(R)w). From Lemma 2.5, W is
also closed, thus W is a compact metric space.

Now, taking into account that translations in time of global weak solutions are
also global weak solutions, we have that

ΠtW is independent of t ∈ R. (35)

3. The weak global attractor and its regular parts.

3.1. The weak global attractor. Let us consider the weak global attractor in-
troduced in [12]. It is denoted by Aw and is defined as the set of all points in H
which belong to a global weak solution uniformly bounded in H on R. By definition
this set is directly related to the set W defined in the previous section and can be
written as

Aw = {u0 ∈ H ; ∃u ∈ W , u(0) = u0} = Π0W .

Thanks to (35), we can also write

Aw = Πt0W , ∀t0 ∈ R. (36)

Since W is compact in C(R, Hw) and the projection operators are continuous it is
clear that Aw is compact in Hw. It is in fact included and compact in BH(R0)w.

By definition, the weak global attractor Aw is also invariant in the sense that if
u0 ∈ Aw and u is a global weak solution uniformly bounded in H with u(0) = u0,
then u(t) ∈ Aw for all t ∈ R. Thanks to the Pasting Lemma 2.4, Aw is also
positively invariant in a stronger sense, namely, if u0 ∈ Aw and u is any weak
solution on an interval [t0, t1] with u(t0) = u0, then u(t) ∈ Aw for all t ∈ [t0, t1].

As proved in [12], Aw has the property of attracting, in the weak topology, as
t → ∞, all solutions defined on an interval of the form [t0,∞). In fact, it can be
showed (see [13]) that this attraction is uniform with respect to initial conditions
bounded in H . The proof of those results are based on Lemma 2.5.

It is not difficult to see that in fact Aw is the smallest weakly compact set which
attracts all bounded sets in the weak topology.

Remark 4. The set W itself can somehow be viewed as an attractor in trajectory
space. More precisely, the restriction of the functions in W to a time interval of
the form [t0,∞), with t0 ∈ R, is the global attractor for the translation semigroup
{στ}τ≥0, where for each τ ≥ 0, (στu)(t) = u(t+ τ), for t ≥ t0, with the phase space
taken e.g. as the subspace of C([t0,∞), Hw) made of weak solutions on the interval
(t0,∞) (these are weak solutions on [0,∞) which do not satisfy condition (vi) in the
Definition 2.1). For more details on this point of view, see the works [23, 24, 2], in
which this problem is formulated in slightly different ways; in their work, Leray-Hopf
weak solutions are in fact defined differently, avoiding in particular the condition
(vi) in the Definition 2.1, and the topologies for the phase spaces of trajectories are
also different.

3.2. Regular parts of the weak global attractor. Two important “regular”
subsets of Aw to consider are Areg and A′

reg, defined by

Areg =

{

u0 ∈ H ;
∀u ∈ W with u(0) = u0, ∃δu > 0 such that u

is regular on (−δu, δu)

}

. (37)
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and

A′
reg =

{

u0 ∈ H ;
∃u ∈ W with u(0) = u0 and ∃δu > 0 such that
u is regular on (−δu, δu)

}

. (38)

Remark 5. The difference between Areg and A′
reg is the following. If A′

reg \ Areg

is not empty, then a point u0 in this set is a point such that there exists a global
weak solution u on R with u(0) = u0 which is a strong solution on some interval
(−δu, δu), with δu > 0, and, furthermore, there exists another global weak solution
v on R with v(0) = u0 which is a strong solution on [0, δ), with δ = δu at least
(and then u = v on [0, δ)), but v is not a strong solution on any interval (α, 0] with
α < 0 (and necessarily lim inft→0− ‖v(t)‖H1 = ∞).

The definition (37) of Areg is not the original definition given in [12]; the original
definition is the one in (39) below. The advantage of the definition (37) is that it
makes the relation between Areg and A′

reg transparent. The following characteriza-
tion result shows that both definitions are in fact equivalent.

Proposition 4. Areg can be characterized by

Areg =











u0 ∈ H ;

∃δ > 0 and ∃u ∈ W with u(0) = u0, such that u is
regular on (−δ, δ) and is unique on (−δ, δ) among all
the global weak solutions in Aw with value u0 at time
t = 0











. (39)

Moreover, each solution passing through u0 at time t0 = 0 has a maximal interval
of regularity containing t0 = 0 such that only the largest of such intervals is allowed
to be (but not necessarily is) open on the left.

Proof. Denote the set in the right hand side of (39) by Ãreg. It follows from the
definition that

Ãreg ⊂ Areg.

Hence, it suffices to show that Areg ⊂ Ãreg. Let then u0 ∈ Areg. By definition,
for any u ∈ W with u(0) = u0, there exists αu < 0 < βu such that u is regular
on a maximal interval of regularity Iu with end points αu and βu. Due to the
local existence and uniqueness of strong solutions forward in time, we must have
βu = β independent of u ∈ W ∩ Π−1

0 {u0}, and Iu is open on the right end point.
On the other end, let α = inf{αu, u ∈ W ∩ Π−1

0 {u0}}. If u ∈ W ∩ Π−1
0 {u0} is

such that α < αu, then we must have Iu = [αu, β) closed on the left. In fact, if
v ∈ W ∩Π−1

0 {u0} is another solution with maximal interval of regularity Iv stricly
larger than Iu, which exists since α < αu, then v is regular on the interval [αu, β).
By the time-analyticity of strong solutions, u and v must coincide on (αu, β). Since
u and v are weakly continuous in H on R, we must have u(αu) = v(αv) as well.
Therefore, u must be strongly continuous on [αu, β). Thus, Iu = [αu, β). Hence,
only the “largest” maximal interval of regularity is allowed to be (but not necessarily
is) open on the left.

Let us suppose that α′ = sup{αu; u ∈ W ∩ Π−1
0 {u0}} = 0. Hence, for every

n ∈ N, there exists un ∈ W ∩ Π−1
0 {u0} with α/n < αun

. From the compactness
of W , there exists a convergent subsequence un′ → u to some u in W . Since
un(0) = u0 for all n, then u(0) = u0. Since u0 ∈ Ãreg, then there exist α′′ < 0 < β′′

such that u is regular on (α′′, β′′). Due to Lemma 2.5, un′ converges strongly to u

on (α′′, β′′). This means in particular that, for sufficiently large n′, un′ is regular
on (α′′/2, β′/2′). This implies that αun′

≤ α′′/2, which contradicts the fact that
αun′

→ 0.
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Hence, we must have α′ < 0. In that case, all solutions in W ∩ Π−1
0 {u0} are

regular on (α′, β) ∋ 0, and, due to the analyticity of these solutions on (α′, β), and
the uniqueness of analytic solutions, they must all coincide on (α′, β). This implies

that u0 ∈ Ãreg, and the proof is complete.

In view of (37) and (38) and the Lemma 2.6 we also have the following charac-
terizations.

Lemma 3.1.

Areg =

{

u0 ∈ H ; ∀u ∈ W such that u(0) = u0, we have lim inf
t→0−

‖u(t)‖H1 < ∞
}

;

A′
reg =

{

u0 ∈ H ; ∃u ∈ W such that u(0) = u0 and lim inf
t→0−

‖u(t)‖H1 < ∞
}

.

Lemma 3.1 implies that the complements of A′
reg and Areg in Aw are related to

solutions which blow-up in V . An estimate on how they blow up can be obtained
with the inequality (26). Indeed, we have the following result.

Lemma 3.2. Let

Γ(t) =
ν3/2

2c0|t|1/2
− ν2/3|f |2/3

L2 , t < 0, (40)

where c0 is as in (26). Then u ∈ W is such that

lim inf
t→0−

‖u(t)‖H1 = ∞ (41)

if and only if
‖u(t)‖2

H1 ≥ Γ(t), ∀t < 0. (42)

Proof. Clearly (42) implies (41) so we only need to show one implication. Let then
u ∈ W such that (41) holds. Then, it follows from Lemma 2.6 (see also (23)) that
t = 0 is the right end point of a maximal interval of regularity for u. Denoting by
αu < 0 the left end point of this interval of regularity, we obtain from (26) and (25)
that

‖u(t)‖2
H1 ≥ Γ(t), ∀t ∈ [αu, 0).

(If αu does not belong to the interval of regularity then the left-hand side above is
infinite and the inequality also holds.)

Now consider t < αu. If ‖u(t)‖2
H1 = ∞, then it is clearly larger than Γ(t). On

the other hand, if ‖u(t)‖2
H1 < ∞, then t belongs to some other maximal interval

of regularity of the form [α′, β′) or (α′, β′), hence the estimate applies with β′ < 0
and, clearly,

‖u(t)‖2
H1 ≥ Γ(β′ − t) ≥ Γ(t).

Hence, (42) holds for all t < 0, which completes the proof.

The following is a consequence of Lemmas 3.1 and 3.2.

Corollary 1. For Γ(t) as in (40), we have the following characterizations

Aw \ Areg =
{

u0 ∈ H ; ∃u ∈ W ∩ Π−1
0 {u0} such that ‖u(t)‖2

H1 ≥ Γ(t), ∀t < 0
}

,
(43)

Aw \ A′
reg =

{

u0 ∈ H ; ∀u ∈ W ∩ Π−1
0 {u0}, we have ‖u(t)‖2

H1 ≥ Γ(t), ∀t < 0
}

.
(44)

Concerning the complement of Areg in Aw, we also have the following remark.
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Remark 6. Suppose u0 ∈ Aw \ Areg and let −∞ ≤ t1 < t2 < ∞. Then, one can
show that there exists a global weak solution v in Aw with v(t2) = u0 and which
is not regular on (t1, t2]. Moreover, if u ∈ W is a weak solution with u(t2) = u0,
then v can be chosen so that v(t) = u(t), for all t ≥ t2. The proof follows easily by
contradiction.

We now prove the following result concerning the regularity of Aw, a result which
was misstated in [12].

Theorem 3.3. The following statements are equivalent:

i. All solutions in Aw are global strong solutions;
ii. Aw = Areg.
iii. Aw is bounded in V ;

Proof. From the definition (37) it is straightforward to see that (i) implies (ii). Let
us prove that (ii) implies (iii). Assume then that Aw = Areg and suppose that Aw is
not bounded in V . Then there exists a sequence u0n ∈ Aw such that ‖u0n‖H1 → ∞.
Let un ∈ W be a sequence of global weak solutions with un(0) = u0n. Since W
is compact in C(R, Hw), there exists a subsequence unk

which converges to some
u ∈ W in the topology of W . Consequently, u0nk

= Π0unk
= unk

(0) → u(0)
weakly in H . Since u(0) ∈ Aw = Areg, then u is a strong solution on an interval
(−δ, δ), for some δ > 0. Then, by Lemma 2.5, unk

(t) must converge to u(t) in V for
t in (−δ, δ). In particular, u0nk

= unk
(0) converges in V to u(0), which contradicts

the fact that ‖u0nk
‖H1 → ∞. Therefore, Aw must be bounded in V .

In order to prove that (iii) implies (i), let us now suppose that Aw is bounded in
V . Let u be a global weak solution in Aw. If u were not a global strong solution,
then there would exist a time t0 ∈ R which is not a point of interior regularity
for u. Then, by Lemma 2.6, there exists a sequence tn → t0, tn < t0 such that
‖u(tn)‖H1 → ∞. But since each u(tn) ∈ Aw, this contradicts the assumption
that Aw is bounded in V . Therefore all solutions in Aw must be global strong
solutions.

3.3. Topological properties of the regular parts of the weak global at-

tractor. By definition, Areg ⊂ A′
reg ⊂ Aw ∩ V . It was stated in [12], with a sketch

of the proof, that Areg is relatively open and dense in Aw in the weak topology
of H . Here, we give the complete proof of these results as well as supplementary
properties.

The set A′
reg is also weakly dense in Aw since it contains Areg, and Areg is dense,

but the proof of this result can be given independently of this fact and is presented
below. We also show that A′

reg is a σ-compact set in Hw. We first address these
two properties of A′

reg and then address the structure of Areg.

Theorem 3.4. A′
reg is dense in Aw in the weak topology of H.

Proof. Given any u0 ∈ Aw, there exists a solution u ∈ W such that u(0) = u0 and,
moreover, the set of interior regularity points of u is dense in R, so that there exists
a sequence of interior regularity points tn ∈ R of u such that tn → 0. By definition,
each u(tn) belongs to A′

reg and, by the weak continuity of u, we have that u(tn)
converges weakly to u0 in H . This shows that A′

reg is weakly dense in Aw.

Theorem 3.5. A′
reg is a σ-compact set in Hw.
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Proof. By definition, for any u0 ∈ A′
reg, there exists u ∈ W with u(0) = u0 and

which is strongly continuous in V on some neighborhood of t = 0. Hence, there
exists δ, R > 0 such that u restricted to (−δ, δ) belongs to C((−δ, δ), BV (R)), where
BV (R) is the closed ball in V of radius R and centered at the origin. Therefore, for
any pair of sequences of positive numbers δn → 0, Rm → ∞, we can write

A′
reg =

⋃

n,m∈N

A′
reg(δn, Rm), (45)

where, for any δ, R > 0,

A′
reg(δ, R) =

{

u0 ∈ A′
reg; ∃u ∈ W , u(0) = u0,u|(−δ,δ) ∈ C((−δ, δ); BV (R))

}

. (46)

Since W is compact in C(R, Hw) and C((−δ, δ), BV (R)) is closed in C((−δ, δ), Hw),
it follows that each A′

reg(δ, R) is compact in Hw. Hence A′
reg is a countable union

of compact sets, that is A′
reg is a σ-compact set in Hw.

Next, we show that Areg is relatively weakly open in Aw. In order to do that,
we need the following lemma.

Lemma 3.6. Given u0 in Aw \ Areg
w

there exists a sequence {u0n}n∈N such that

u0n ∈ Aw ∩ V, u0n → u0 weakly in H, ‖u0n‖H1 → ∞, as n → ∞. (47)

Proof. For u0 ∈ Aw \ Areg the result follows directly from the characterization of
this set in (43). Now, by a diagonalization process one can extend this property
(of existence of the sequence satisfying (47)) to the closure of Aw \ Areg. We use
the fact that the weak topology is metrizable on Aw, and denote by dAw

(·, ·) a

metric consistent with this topology. Then, given u0 in Aw \ Areg
w
, we take a

sequence {v0n}n∈N in Aw \ Areg converging weakly to u0 in H . For each n ∈ N,
since v0n ∈ Aw \ Areg, we use the previous step to find u0n such that

u0n ∈ Aw ∩ V, dAw
(u0n,v0n) ≤ 1

n
, ‖u0n‖H1 ≥ n.

Thus, {u0n}n satisfies (47).

We now prove that Areg is relatively weakly open in Aw.

Theorem 3.7. Areg is relatively open in Aw in the weak topology of H.

Proof. Recall that Aw is weakly closed so that in order to show that Areg is relatively
weakly open in Aw it suffices to show that Aw \ Areg is weakly closed. Let then

u0 ∈ Aw \ Areg
w
. Since Aw is weakly closed it follows that u0 ∈ Aw, and we only

need to show that u0 does not belong to Areg.

Since u0 ∈ Aw \ Areg
w

it follows from Lemma 3.6 that there exists a sequence
{u0n}n∈N with

u0n ∈ Aw, u0n ⇀ u0 weakly in H, ‖u0n‖H1 → ∞, as n → ∞.

Since u0n and u0 belong to Aw, there exist global weak solutions un = un(t), t ∈ R,
and u = u(t), t ∈ R, such that un(0) = u0n and u(0) = u0. Now, if u0 belonged to
Areg, then u would be regular on some interval (−δ, δ), δ > 0, and hence, by Lemma
2.5, a subsequence of un would converge to u in V uniformly on any subinterval of
(−δ, δ). In particular, a subsequence of un(0) = u0n would converge to u(0) = u0 in
V . But this contradicts the fact that ‖u0n‖H1 → ∞. Therefore, u0 cannot belong
to Areg and it must belong to Aw \Areg. This completes the proof that Areg is open
in Aw.
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From the facts that Areg is relatively open in Aw and that Aw is relatively
compact in Hw it is straigthforward to deduce the following result.

Corollary 2. Areg is a Borel set in H.

Let us now prove the density of Areg in Aw. First, we need the following lemma.

Lemma 3.8. Let u0 ∈ Aw and δ > 0. Then, there exists u ∈ W with u(0) = u0

and t ∈ [−δ, 0] such that u(t) ∈ Areg.

Proof. Let u0 ∈ Areg and δ > 0 be given. Assume by contradiction that there is
no solution u as claimed, i.e. any u ∈ W with u(0) = u0 satisfies u(t) /∈ Areg

for all t ∈ [−δ, 0]. In that case, given n ∈ N, we will first construct a solution
u ∈ W with u(0) = u0 and such that there exists n + 1 times s0 < s1 < . . . < sn

which are not points of interior regularity for u and such that sn = 0 and sj ∈
[−(n − j)δ/n,−(n − j − 1)δ/n), for j = 0, . . . , n − 1. The construction is done in
n + 1 steps, starting from sn and down to s0.

First, let u(n) ∈ W be such that u(n)(0) = u0 and t = 0 is not a point of interior
regularity for u(n), which exists since u0 does not belong to Areg. Now, take any

sn−1 ∈ [−δ/n, 0) which is a point of strong continuity from the right in H for u(n).
Since by hypothesis u(n)(sn−1) does not belong to Areg, there exists a solution

v ∈ W with v(sn−1) = u(n)(sn−1) such that sn−1 is not an interior regularity point
for v. This means that v(t) is not bounded in V as t → s−n−1. Since sn−1 is a point

of strong continuity from the right in H for u(n), we are allowed to patch v before
sn−1 with u(n) after sn−1 to obtain a weak solution u(n−1) ∈ W with the properties
that u(n−1)(0) = u0, and sn and sn−1 are not points of interior regularity for u(n−1).
Proceeding by induction, we obtain for j = 0, . . . , n − 1, solutions u(j) ∈ W and
times sj ∈ [−(n − j)δ/n,−(n − j − 1)δ, n) with the properties that u(j)(0) = u0,

and each sk with k = j, . . . , n is not a point of interior regularity for u(j).
At the last step, we obtain a weak solution u = u(0) ∈ W with the property that

u(0) = u0, sj is not a point of interior regularity for u for any j = 0, . . . , n, and
sj ∈ [−(n − j)δ/n,−(n − j − 1)δ, n) for all j = 0, . . . , n − 1. This implies that any
interval of regularity of u in the interval [−δ, 0] has to be of length less than 2δ/n.
Let {(αk, βk)}k be the connected components of the regular part of u on [−δ, 0].
Thus we have βk − αk ≤ 2δ/n. Then, using the estimates (29) and (33), we find
that

∑

k

(βk − αk) ≤
√

2δ

n

∑

k

(βk − αk)1/2

≤ c0

ν3/2

√

2δ

n

(

ν2/3|f |2/3
L2 δ +

1

ν3λ2
1

|f |2L2 +
1

ν2λ1
|f |2δ

)

.

On the other hand, since the regular part of u is of full measure on [−δ, 0), we would
have

∑

k

(βk − αk) = δ.

Therefore,

√
n ≤ c0

ν3/2

√

2

δ

(

ν2/3|f |2/3
L2 δ +

1

ν3λ2
1

|f |2L2 +
1

ν2λ1
|f |2δ

)

.

Since n is arbitrary this is a contradiction. This proves the result.
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As a consequence of Lemma 3.8 we have the following density result.

Theorem 3.9. Areg is dense in Aw in the weak topology of H.

Proof. Let u0 ∈ Aw. Since BH(R)w is metrizable, consider a metric dBH (R)w(·, ·)
which is consistent with the topology of BH(R)w. According to Proposition 3 the
space W is equicontinuous in C(R, BH(R)w), hence given ε > 0, there exists δ > 0
such that dBH(R)w(u(t),u0) < ε, for all u ∈ W ∩ Π−1

0 {u0} and any |t| ≤ δ.

Now, according to Lemma 3.8, there exists u ∈ W ∩ Π−1
0 {u0} and t ∈ [−δ, 0]

such that u(t) ∈ Areg. Since |t| ≤ δ, we also have that dBH (R)w(u(t),u0) < ε. Since
this holds for any ε > 0, we conclude that Areg is weakly dense in Aw.

3.4. On the structure of the set W. For each t ∈ R, consider the sets

W ′
reg(t) = {u ∈ W ; ∃δ = δu > 0, such that u|(t−δ,t+δ) ∈ C((t − δ, t + δ), V )},

and

E ′(t) = W \W ′
reg(t).

Notice that W ′
reg(t) is not necessarily equal to W∩Π−1

t A′
reg. However, we have the

following inclusions:

W ∩ Π−1
t Areg ⊂ W ′

reg(t) ⊂ W ∩ Π−1
t A′

reg. (48)

Our aim in this section is to address the structure of the set W . We show below
that it can be written as a finite union of sets of the form W ′

reg(sj), for appropriately
chosen sets of times s0 < s1 < . . . < sj . . . < sn. The key condition is that we need
elements in

⋂n
j=0 E ′(sj) to be weak solutions such that sj is not an interior regularity

point for any j. This condition is obtained using the following lemma concerning
weak solutions and which is essentially due to Leray [16].

Lemma 3.10. Let u be a weak solution on R and consider the set O of interior
regularity points of u defined in (28). Suppose s0 < s1 < . . . < sn are such that
sj /∈ O for j = 1, . . . , n − 1. Then,

ν3/2
n
∑

j=1

(sj − sj−1)
1/2 ≤ c0

(

ν2/3|f |2/3
L2 (sn − s0) +

∫ sn

s0

‖u(t)‖2
H1 dt

)

, (49)

where c0 is a nondimensional constant depending only on the shape of Ω (given
according to (27)).

Proof. Let {(αk, βk)}k be the connected components of the open set O ∩ (s0, sn).
By summing up the estimates (27) over k we find

ν3/2
∑

k

(βk − αk)1/2 ≤ c0

(

ν2/3|f |2/3
L2 (sn − s0) +

∫ sn

s0

‖u(t)‖2
H1 dt

)

. (50)

Since each sj , j = 0, . . . , n, does not belong to any interval of regularity (αk, βk),
if (sj−1, sj)

⋂

(αk, βk) 6= ∅, then (αk, βk) ⊂ (sj−1, sj). Therefore, the summation
∑

k(βk − αk)1/2 can be written as

∑

k

(βk − αk)1/2 =

n
∑

j=1

∑

k∈Kj

(βk − αk)1/2,

where

Kj = {k; (αk, βk) ⊂ (sj−1, sj)}.
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Note also that (sj−1, sj) \
(

⋃

k∈Kj
(αk, βk)

)

has Lebesgue measure zero. Therefore,

∑

k∈Kj

(βk − αk) = sj − sj−1.

Thus,
∑

k∈Kj

(βk − αk)1/2 ≥ (sj − sj−1)
1/2.

Then, we find

∑

k

(βk − αk)1/2 =

n
∑

j=1

∑

k∈Kj

(βk − αk)1/2 ≥
n
∑

j=1

(sj − sj−1)
1/2.

Inserting this inequality into (50) proves (49).

Based on Lemma 3.10, we have the following result.

Theorem 3.11. Let −∞ < s0 < s1 < . . . < sn < ∞ be such that

ν3/2
n
∑

j=1

(sj − sj−1)
1/2 > c0

(

ν2/3|f |2/3
L2 (sn − s0) +

|f |2L2

ν2λ1
(sn − s0) +

|f |2L2

ν3λ2
1

)

. (51)

Then,
n
⋂

j=0

E ′(sj) = ∅ and W =

n
⋃

j=0

W ′
reg(sj).

Proof. If
⋂n

j=0 E ′(sj) were not empty, there would exist a global weak solution u

for which sj is not an interior regularity point for any j. Then, we apply Lemma
3.10 and the estimate

∫ sn

s0

‖u(t)‖2
H1 dt ≤ 1

ν3λ2
1

|f |2L2 +
1

ν2λ1
|f |2L2(sn − s0),

which follows from (33), to arrive at a contradiction. Moreover, W =
⋃n

j=0 W ′
reg(sj)

follows directly from
⋂n

j=0 E ′(sj) = ∅.
Remark 7. By taking τ > 0 arbitrary and sj − sj−1 = τ/n it is not difficult to

see that condition (51) holds for n sufficiently large, of the order of G2((νλ1τ)1/2 +
(νλ1τ)−1/2). By taking in particular τ ∼ (νλ1)

−1, then n is of order G2.

Remark 8. Since the set of interior regularity points of a weak solution u ∈ W is
dense in R, there exists tn → t such that each tn is a point of interior regularity
for u. Then, for each n, the translation u(n)(s) = u(s − t + tn), s ∈ R, belongs to
W ′

reg(t), and the sequence u(n) converges to u in W , which proves that W ′
reg(t) is

dense in W , for any t ∈ R.

Remark 9. Thanks to (36) we can regard Πt restricted to W as a continuous map

Πt|W : W → Aw and write W ∩ Π−1
t Areg = (Πt|W)

−1 Areg. Then, using that Areg

is open in Aw (Theorem 3.7), we find that (Πt|W)
−1 Areg is open in W .

Remark 10. We have not obtained a result for W similar to the one saying that
Areg is open and dense in Aw. Remarks 8 and 9 say that W ′

reg(t) is dense in W and

W ∩ Π−1
t Areg is open, but it is not known whether W ∩ Π−1

t Areg is also dense in
W . Another interesting regular set to consider is Z = {u ∈ W ; Ireg(u) is open and
dense in R}, where Ireg(u) = {t ∈ R;u(t) ∈ Areg}; the set Z is a Gδ set in W and it
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would be interesting to find out whether Z is dense in W . Ultimately, it would be
important to know whether W is made of global strong solutions, which is exactly
condition (i) in Theorem 3.3.
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