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Finite element Galerkin method is applied to equations of motion arising in the Kelvin–Voigt model of
viscoelastic fluids for spatial discretization. Some new a priori bounds which reflect the exponential decay
property are obtained for the exact solution. For optimal L∞(L2) estimate in the velocity, a new auxiliary
operator which is based on a modification of the Stokes operator is introduced and analyzed. Finally, optimal
error bounds for the velocity in L∞(L2) as well as in L∞(H1

0)-norms and the pressure in L∞(L2)-norm are
derived which again preserves the exponential decay property. © 2012 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 29: 857–883, 2013
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I. INTRODUCTION

The motion of an incompressible fluid in a bounded domain � in R2 (or R3) is described by the
following system of partial differential equations:

∂u
∂t

+ u · ∇u − ∇σ + ∇p = F(x, t), x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

with appropriate initial and boundary conditions. Here, σ = (σik)1≤i,k≤2 (or σ = (σik)1≤i,k≤3)

denotes the stress tensor with tr σ = 0, u = (u1, u2) (or u = (u1, u2, u3)) represents the velocity
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vector, p is the pressure of the fluid and F is the external force. The defining relation between the
stress tensor σ and the tensor of deformation velocities

D = (Dik) = 1

2
(ui,xk

+ uk,xi
)

is called the equation of state or sometimes the rheological equation and it establishes the type
of fluids under consideration. For example, when σ = 2νD (using Newton’s law) where ν is
the kinematic coefficient of viscosity, we derive Newton’s model of incompressible viscous fluid
and the corresponding system is popularly known as the Navier–Stokes system. This has been a
basic model for describing the flow at moderate velocities of the majority of the incompressible
viscous fluids that we have encountered in practice. However, in the mid-20th century, models of
viscoelastic fluids which take into account the prehistory of the flow and are not subject to the
Newtonian flow have been proposed. One such model is called Kelvin–Voigt model [1] and its
rheological equation of state has the form:

σ = 2ν

(
1 + κν−1 ∂

∂t

)
D, κ , ν > 0, (1.1)

where ν is the kinematic coefficient of viscosity and κ is the retardation time, and is characterized
by the fact that after instantaneous removal of the stress, the velocity of the fluid does not vanish
instantaneously but dies out like exp(κ−1t), see [1]. The coefficient κ is also called the time of
relaxation of deformations. (1.1) differs from the Newtonian model in the sense that it has an
additional term κ ∂

∂t
D, that takes into account the relaxation property of the fluid. Apart from

applications of this model in organic polymer and food industry, and so forth, the mechanisms of
diffuse axonal injury that are unexplained by traumatic brain injury models proposed earlier are
now based on Kelvin–Voigt model, see, [2–4] for more detailed description. Using the rheologi-
cal relation (1.1), the equations of motion arising from the Kelvin–Voigt’s model give rise to the
following system of partial differential equations :

∂u
∂t

+ u · ∇u − κ�ut − ν�u + ∇p = f(x, t), x ∈ �, t > 0, (1.2)

and incompressibility condition

∇ · u = 0, x ∈ �, t > 0, (1.3)

with initial and boundary conditions

u(x, 0) = u0 in �, u = 0, on ∂�, t ≥ 0. (1.4)

Here, � is a bounded domain in Rd , d = 2, 3 with boundary ∂�. Throughout this article, we
assume that the right hand side function f = 0. In fact, assuming conservative force, the function
f can be absorbed in the pressure term.

Based on the analysis of Ladyzenskaya [5] for the solvability of the Navier Stokes equations,
Oskolkov [6] and [1], proved the global existence of unique “almost” classical solution in finite
time interval for the initial and boundary value problem (1.2)–(1.4). The investigations on solv-
ability were further continued, see [7] and [8]. They have discussed the existence and uniqueness
of a solution on the entire semiaxis R

+.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SEMIDISCRETE GALERKIN METHOD 859

For the earlier results on the numerical approximations to the solutions of the problem (1.2)–
(1.4), we refer to [9]. Under the condition that solution is asymptotically stable as t → ∞, the
authors of [9] have established the convergence of spectral Galerkin approximations for the semi
axis t ≥ 0. There is hardly any literature devoted to the analysis of the finite element Galerkin
methods for the problem (1.2)–(1.4), and hence, the present investigation is a step toward achiev-
ing this objective. Therefore, in this article, we address the problem of finite element Galerkin
approximations to (1.2)–(1.4). As system (1.2)–(1.3) differs from the Navier–Stokes system only
by an additional term κ ∂

∂t
D which takes care of the relaxation property of the fluid, it is more

pertinent to see “How far the results of the Navier–Stokes system [10] carry over to the present
Kelvin–Voigt model ?” More precisely, our emphasis is to bring out the role played by this
additional term. The main results of this article consist of

i. proving regularity results for the solution of (1.2)–(1.4), which are valid uniformly in time
and even for (three-dimensional) domain.

ii. establishing the exponential decay property for the exact solution.
iii. obtaining optimal error estimates for the semidiscrete Galerkin approximations to the veloc-

ity in L∞(L2)-norm as well as in L∞(H1
0)-norm and to the pressure in L∞(L2)-norm which

also reflect the exponential decay property in time.

For the proof of (i) and (ii), we have made use of exponential weights for the derivation of the
new regularity results. These weights also become crucial in establishing the results in item (iii).
To derive optimal error estimates for the velocity in L∞(L2)-norm, we first split the error using
a Galerkin approximation to a linearized Kelvin–Voigt model and then introduce a new auxiliary
operator through a modification of the Stokes operator. Now making use of estimates derived for
the auxiliary operator and the error estimates due to the linearized model, we recover the optimal-
ity of L∞(L2) error estimates for the velocity. Finally, with the help of uniform inf-sup condition
and error estimates for the velocity, we derive optimal error estimates for the pressure. Special
care has been taken to preserve the exponential decay property even for the error estimates. For
related articles in the context of Oldroyd viscoelastic model, we refer to [11–19].

The remaining part of this article is organized as follows. In Section II, we discuss the weak
formulation and state the basic assumptions. Section III is devoted to development of a priori
bounds for the exact solutions. In Section IV, we describe the semidiscrete Galerkin approxima-
tions and derive the main results required for error analysis. In Section V, we establish the optimal
error estimates for the velocity. Section VI deals with the optimal error estimates for the pressure.
In Section VII, results of numerical experiments, which validate the theoretical estimates, are
presented.

II. PRELIMINARIES AND WEAK FORMULATION

In our subsequent analysis, we denote R
d , (d = 2, 3)-valued function spaces using boldface

letters. That is,

H1
0 = (

H 1
0 (�)

)d
, L2 = (L2(�))d , and Hm = (Hm(�))d ,

where L2(�) is the space of square integrable functions defined in � with inner product
(φ, ψ) = ∫

�
φ(x)ψ(x) dx and norm ‖φ‖ = (

∫
�
|φ(x)|2 dx)1/2. Further, Hm(�) is the standard
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Hilbert Sobolev space of order m ∈ N
+ with norm ‖φ‖m = (

∑
|α|≤m

∫
�
|Dαφ|2 dx)1/2. Note that

H1
0 is equipped with a norm

‖∇v‖ =
(

d∑
i,j=1

(∂jvi , ∂jvi)

)1/2

=
(

d∑
i=1

(∇vi , ∇vi)

)1/2

.

We also introduce divergence free spaces, which are useful for our subsequent derivations:

J1 = {φ ∈ H1
0 : ∇ · φ = 0}

J = {φ ∈ L2 : ∇ · φ = 0 in �, φ · n|∂� = 0 holds weakly},
where n is the outward normal to the boundary ∂� and φ · n|∂� = 0 should be understood in the
sense of trace in H−1/2(∂�), see [20]. Let Hm/R be the quotient space consisting of equivalence
classes of elements of Hm differing by constants, with norm ‖p‖Hm/R = infc∈R ‖p + c‖m. Given
any Banach Space X, let Lp(0, T ; X) denote the space of measurable X- valued functions φ on
(0, T ) such that ∫ T

0
‖φ(t)‖p

Xdt < ∞ if 1 ≤ p < ∞,

and for p = ∞
ess sup

0<t<T

‖φ(t)‖X < ∞ ifp = ∞.

Further, let P be the orthogonal projection of L2 onto J.
Throughout this article, we make the following assumptions, which will be used in our

subsequent analysis.
(A1). For g ∈ L2, let {v ∈ J1, q ∈ L2/R} be the unique pair of solution to the steady state

Stokes problem, see [20],

−�v + ∇q = g,

∇ · v = 0 in �, v|∂� = 0

satisfying the following regularity result:

‖v‖2 + ‖q‖H1/R ≤ C‖g‖. (2.1)

Setting

−�̃ = −P� : J1 ∩ H2 ⊂ J → J

as the Stokes operator, (A1) implies

‖v‖2 ≤ C‖�̃v‖ ∀v ∈ J1 ∩ H2. (2.2)

It is easy to show that

‖v‖2 ≤ λ−1
1 ‖∇v‖2 ∀v ∈ H1

0(�), (2.3)
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where λ−1
1 is a positive constant depending on the domain �. In fact this is known as Poincaré

inequality with λ−1
1 as best possible positive constant. We again note that

‖∇v‖2 ≤ λ−1
1 ‖�̃v‖2 ∀v ∈ J1 ∩ H2. (2.4)

(A2). There exists a positive constant M , such that the initial velocity u0 satisfies

u0 ∈ H2 ∩ J1 with ‖u0‖2 ≤ M .

Before stepping into the details, let us introduce the weak formulation of (1.2)–(1.4) with f = 0.
Find a pair of functions {u(t), p(t)} ∈ H1

0 × L2/R, t > 0, such that

(ut , φ) + κ(∇ut , ∇φ) + ν(∇u, ∇φ) + (u · ∇u, φ) = (p, ∇ · φ) ∀φ ∈ H1
0,

(∇ · u, χ) = 0 ∀χ ∈ L2, (2.5)

with u(0) = u0.
Equivalently, find u(t) ∈ J1 such that

(ut , φ) + κ(∇ut , ∇φ) + ν(∇u, ∇φ) + (u · ∇u, φ) = 0 ∀φ ∈ J1, t > 0 (2.6)

with u(0) = u0.
From time to time, we make use of the following result to deal with the nonlinear term in our

problem.

Lemma 2.1. Let ∇ · v = 0 in � and φ, w ∈ H1(�). Then,

(v · ∇w, φ) + (v · ∇φ, w) =
∫

∂�

(n · v)w · φ ds.

In the remaining part of this article, we adopt the following notation: For any given function
φ, we define

φ̂ = eαtφ.

III. A PRIORI ESTIMATES FOR THE EXACT SOLUTION

In this section, we derive some a priori bounds for the problem (1.2)–(1.4) which reflect expo-
nential decay behavior in time. In the context of Oldroyd model, we refer to Pani et al. [14, 15]
for similar analysis related to exponential decay property.

First of all, we state the main theorem of this section.

Theorem 3.1. Let the assumptions (A1) and (A2) hold. Then, there exists a positive constant
K depending on M , λ1, α, κ , and ν such that for 0 ≤ α <

νλ1
2(1+λ1κ)

the following estimate holds
true:

‖u(t)‖2
2 + ‖ut (t)‖2

2 + ‖p(t)‖2
H1/R

+
∫ t

0
e2αs

(‖u(s)‖2
2 + ‖ut (s)‖2

2 + ‖p(s)‖2
H1/R

)
ds ≤ Ke−2αt , t > 0.

The proof can be established using the following series of lemmas.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Lemma 3.1. Let 0 ≤ α <
νλ1

2(1+κλ1)
, and let the assumptions (A1)–(A2) hold. Then, the solution

u of (2.6) satisfies

‖u(t)‖2 + κ‖∇u(t)‖2 + βe−2αt

∫ t

0
e2αs‖∇u(s)‖2 ds

≤ e−2αt (‖u0‖2 + κ‖∇u0‖2) = M0e
−2αt , t > 0.

where β = ν − 2α(κ + λ−1
1 ) > 0, and M0 = (1 + κ)M2.

Proof. Setting û(t) = eαtu(t) for some α ≥ 0, we rewrite (2.6) as

(ût , φ) − α(û, φ) + κ(∇ût , ∇φ) − κα(∇û, ∇φ) + ν(∇û, ∇φ) + e−αt (û · ∇û, φ) = 0 ∀φ ∈ J1.
(3.1)

Choose φ = û in (3.1). Using Lemma 2.1, (û · ∇û, û) = 0 and (2.3), we obtain

d

dt
(‖û‖2 + κ‖∇û‖2) + 2β‖∇û‖2 ≤ 0. (3.2)

Integrate (3.2) from 0 to t with respect to time and use the assumption (A2) to complete the rest
of the proof.

Lemma 3.2. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)–(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0

‖∇u(t)‖2 + κ‖�̃u(t)‖2 + βe−2αt

∫ t

0
e2αs‖�̃u(s)‖2 ds ≤ Ke−2αt

holds, where β = ν − 2α(κ + λ−1
1 ) > 0.

Proof. Using the Stokes operator �̃, we rewrite (3.1) as

(ût , φ) − α(û, φ) − κ(�̃ût , φ) + κα(�̃û, φ) − ν(�̃û, φ) = −e−αt (û · ∇û, φ) ∀φ ∈ J1. (3.3)

With φ = −�̃û in (3.3), we note that

−(ût , �̃û) = 1

2

d

dt
‖∇û‖2,

and hence (3.3) becomes

d

dt
(‖∇û‖2 + κ‖�̃û‖2) + 2ν‖�̃û‖2 − 2α(‖∇û‖2 + κ‖�̃û‖2) = 2e−αt (û · ∇û, �̃û). (3.4)

To estimate the term on the right hand side of (3.4), a use of Hölder’s inequality yields

|I | = 2|e−αt (û · ∇û, �̃û)| ≤ e−αt‖û‖L4‖∇û‖L4‖�̃û‖L2 . (3.5)

Using the Sobolev inequality for 3D, that is, when d = 3, (see [20], page no. 296) given by

‖φ‖L4(�) ≤ C‖φ‖ 1
4 ‖∇φ‖ 3

4 , φ ∈ H1
0(�). (3.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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we arrive at

|I | ≤ 2e−αt‖û‖L4‖∇û‖L4‖�̃û‖,

≤ 2e−αt
(
‖û‖ 1

4 ‖∇û‖ 3
4 ‖

) (
‖∇û‖ 1

4 ‖�̃û‖ 3
4

)
‖‖�̃û‖,

≤ Ce−αt‖û‖ 1
4 ‖∇û‖‖�̃û‖ 7

4 . (3.7)

Applying Young’s inequality ab ≤ ap

pεp/q + εbq

q
, a, b ≥ 0, ε > 0 with p = 8 and q = 8

7 , we obtain

|I | ≤ C
‖û‖2‖∇û‖8

8ε7
+ 7

8
ε‖�̃û‖2. (3.8)

Choosing ε = 4ν

7 , we find that

|I | ≤ C

(
4ν

7

)−7 ‖û‖2‖∇û‖8

8
+ ν

2
‖�̃û‖2. (3.9)

Substitute (3.9) in (3.4) to arrive at

d

dt
(‖∇û‖2 + κ‖�̃û‖2) − 2α(‖∇û‖2 + κ‖�̃û‖2) + ν‖�̃û‖2 ≤ C(ν)e−4αt‖û‖2‖∇û‖8. (3.10)

A use of (2.4) in (3.10) and integration with respect to time from 0 to t yield

‖∇û‖2 + κ‖�̃û‖2 + β

∫ t

0
‖�̃û‖2ds ≤ ‖∇u0‖2 + κ‖�̃u0‖2 + C(ν)

∫ t

0
e−4αs‖û‖2‖∇û‖8ds.

(3.11)

Using Lemma 3.1, we bound ∫ t

0
e−4αs‖û‖2‖∇û‖8ds ≤ K . (3.12)

Substitute (3.12) in (3.11) to complete the rest of the proof.

Lemma 3.3. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)–(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0,

e−2αt

∫ t

0
e2αs(‖ut (s)‖2 + κ‖∇ut (s)‖2)ds + ‖∇u(t)‖2 ≤ Ke−2αt .

Proof. Rewrite (2.6) as

(ut , φ) − κ(�̃ut , φ) − ν(�̃u, φ) + (u.∇u, φ) = 0 ∀φ ∈ J1. (3.13)

On multiplying (3.13) by eαt and substituting φ = eαtut , we arrive at

e2αt (‖ut‖2 + κ‖∇ut‖2) + νe2αt d

dt
‖∇u‖2 = −e2αt (u.∇u, ut ). (3.14)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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For the nonlinear term on the right hand side of (3.14), we use the generalized Hölder’s inequality
and Sobolev embedding theorem with (2.2) to obtain:

(u.∇u, w) ≤ C‖u‖L4 ‖∇u‖L4 ‖w‖
≤ C‖∇u‖ ‖u‖H2 ‖w‖
≤ C‖∇u‖ ‖�̃u‖ ‖w‖. (3.15)

Integration of (3.14) with respect to time from 0 to t along with use of (3.15) by replacing w by
ut and Young’s inequality yields∫ t

0
e2αs(‖ut (s)‖2 + κ‖∇ut (s)‖2)ds + νe2αt‖∇u‖2 ≤ C

(
‖∇u(0)‖2 +

∫ t

0
e2αs‖∇u(s)‖2ds

+
∫ t

0
e2αs‖∇u(s)‖2‖�̃u(s)‖2ds

)
.

Again, a use of a priori bounds for u obtained from the Lemmas 3.1 and 3.2, would provide us
the desired result.

Lemma 3.4. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)–(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0,

‖ut (t)‖2 + κ‖∇ut (t)‖2 ≤ Ke−2αt .

Proof. Substituting φ = ut in (2.6), we obtain

‖ut‖2 + κ‖∇ut‖2 = −ν(∇u, ∇ut ) − (u.∇u, ut ) = I1 + I2, say. (3.16)

To estimate |I1|, we apply Cauchy-Schwarz’s inequality and Young’s inequality to arrive at

|I1| ≤ ν

2ε
‖∇u‖2 + ε

2
‖∇ut‖2.

Choose ε = κ to yield

|I1| ≤ ν

2κ
‖∇u‖2 + κ

2
‖∇ut‖2.

For I2, apply (3.15) replacing w by ut and use Young’s inequality to obtain

|I2| ≤ C‖∇u‖2‖�̃u‖2 + 1

2
‖ut‖2.

Substitute bounds for |I1| and |I2| in (3.16) and use a priori estimates from Lemma 3.1 and 3.2 to
complete the proof.

Lemma 3.5. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)–(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0,

‖∇ut (t)‖2 + κ

2
‖�̃ut (t)‖2 ≤ Ke−2αt .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. Setting φ = −�̃ut in (3.13), we obtain

‖∇ut‖2 + κ‖�̃ut‖2 = −ν(�̃u, �̃ut ) + (u.∇u, �̃ut ). (3.17)

For the nonlinear term that is the last term on the right hand side of (3.17), we now use (3.15)
replacing w by �̃ut . Then, with the help of Cauchy–Schwarz’s inequality and Young’s inequal-
ity, we bound right hand side of (3.17) and use Lemmas 3.1 and 3.2 to complete the rest of the
proof.

Lemma 3.6. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)-(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0,

e−2αt

∫ t

0
e2αs(‖∇ut (s)‖2 + κ‖�̃ut (s)‖2)ds + ν‖�̃u(t)‖2 ≤ Ke−2αt .

Proof. Multiply (3.13) by eαt and substitute φ = −eαt �̃ut to obtain

e2αt (‖∇ut‖2 + κ‖�̃ut‖2) + νe2αt d

dt
‖�̃u‖2 = e2αt (u.∇u, �̃ut ). (3.18)

Now for the nonlinear term, that is, the term on the right hand side of (3.18), we now use (3.15)
replacing w by �̃ut . Then, integrating with respect to time from 0 to t and using Young’s inequality,
we obtain∫ t

0
e2αs(‖∇ut‖2 + κ‖�̃ut‖2)ds + νe2αt‖�̃u‖2 ≤ C(κ)

(
‖�̃u(0)‖2 +

∫ t

0
e2αs‖�̃u‖2ds

+
∫ t

0
e2αs‖∇u‖2‖�̃u‖2ds

)
.

A use of Lemma 3.2 establishes the desired estimate and this completes the rest of the proof.

Now, we derive the a priori bounds for the pressure p.

Lemma 3.7. Let 0 ≤ α <
νλ1

2(1+λ1κ)
and let the assumptions (A1)-(A2) hold. Then, there exists

a positive constant K = K(κ , ν, λ1, α, M) such that for all t > 0, the following estimate holds
true:

‖p(t)‖2
L2/R

+ ‖p(t)‖2
H1/R

+ e−2αt

∫ t

0
e2αs‖p(s)‖2

H1/R
ds ≤ Ke−2αt .

Proof. A use of Cauchy–Schwarz’s inequality and Hölder’s inequality in (2.5) yields

(p, ∇.φ) ≤ C(‖ut‖‖φ‖ + κ‖∇ut‖‖∇φ‖ + ν‖∇u‖‖∇φ‖ + ‖u‖L4‖∇u‖‖φ‖L4). (3.19)

Using Sobolev’s embedding theorem (see, [20]), the Poincaré inequality, dividing by ‖∇φ‖ and
applying continuous inf-sup condition in (3.19), we obtain

‖p‖L2/R ≤ C
|(p, ∇.φ)|

‖∇φ‖ ≤ C(‖ut‖ + κ‖∇ut‖ + ν‖∇u‖ + ‖∇u‖2). (3.20)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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An application of Lemmas 3.1 and 3.4 in (3.20) yields

‖p(t)‖L2/R ≤ K(κ , ν, λ1, α, M)e−αt . (3.21)

Using the property of space J1 (see [20] page no 19, remark 1.9) in (2.6), we obtain

(∇p, φ) = (ut − κ�̃ut − ν�̃u + u.∇u, φ) ∀φ ∈ J1. (3.22)

A use of Cauchy–Schwarz’s inequality with the generalized Hölder’s inequality in (3.22) yields

|(∇p, φ)| ≤ C(κ , ν)(‖ut‖‖φ‖ + ‖�̃ut‖‖φ‖ + ‖�̃u‖‖φ‖ + ‖u‖L4‖∇u‖L4‖φ‖). (3.23)

Applying the Sobolev embedding theorem (see [20]) in (3.23) with (2.2) and dividing by ‖φ‖,
we obtain

‖∇p‖ ≤ C(κ , ν)(‖ut‖ + κ‖�̃ut‖ + ν‖�̃u‖ + ‖∇u‖ ‖�̃u‖). (3.24)

A use of Lemmas 3.1, 3.2, 3.4 and 3.5 in (3.24) yields

‖p(t)‖H1/R ≤ Ke−αt . (3.25)

Taking square of both sides of (3.24), multiplying by e2αt and integrating from 0 to t with respect
to time, we obtain∫ t

0
e2αs‖∇p(s)‖2ds ≤ C(κ , ν)

(∫ t

0
e2αs(‖ut (s)‖2 + ‖�̃ut (s)‖2)ds

+
∫ t

0
e2αs(‖�̃u(s)‖2 + ‖∇u(s)‖2 ‖�̃u‖2)ds

)
. (3.26)

Using Lemmas 3.1, 3.2, 3.3, and 3.6, we arrive at

∫ t

0
e2αs‖∇p(s)‖2ds ≤ K . (3.27)

A use of (3.21), (3.25), and (3.27) would lead us to the desired result.

Proof of Theorem 3.1. Now the proof of Theorem 3.1 follows by combining Lemmas
3.1–3.7.

IV. THE SEMIDISCRETE PROBLEM

Let h > 0 be a discretization parameter. Further, let Hh and Lh, 0 < h < 1 be finite dimensional
subspaces of H1

0 and L2, respectively, such that, there exist operators ih and jh satisfying the
following approximation properties:

(B1). For each w ∈ J1 ∩H2 and q ∈ H 1/R, there exist approximations ihw ∈ Jh and jhq ∈ Lh

such that

‖w − ihw‖ + h‖∇(w − ihw)‖ ≤ K0h
2‖w‖2, ‖q − jhq‖L2/R ≤ K0h‖q‖H1/R.
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For defining the Galerkin approximations, for v, w, φ ∈ H1
0, set

a(v, φ) = (∇v, ∇φ)

and

b(v, w, φ) = 1

2
(v · ∇w, φ) − 1

2
(v · ∇φ, w).

When v ∈ J1, w, φ ∈ H1
0, using Lemma 2.1, we obtain

b(v, w, φ) = (v · ∇w, φ).

Note that the operator b(·, ·, ·) preserves the antisymmetric properties of the original nonlinear
term, i.e.,

b(vh, wh, wh) = 0 ∀vh, wh ∈ Hh.

The discrete analogue of the weak formulation (2.5) is as follows:
Find uh(t) ∈ Hh and ph(t) ∈ Lh such that uh(0) = u0h and for t > 0,

(uht , φh) + κa(uht , φh) + νa(uh, φh) + b(uh, uh, φh) − (ph, ∇ · φh) = 0 ∀φh ∈ Hh,

(∇ · uh, χh) = 0 ∀χh ∈ Lh, (4.1)

where u0h ∈ Hh is a suitable approximation of u0 ∈ J1.
To consider a suitable approximation of J1, we introduce the discrete incompressibility

condition in Hh and call the resulting subspace as Jh. Thus, Jh is defined as

Jh = {vh ∈ Hh : (χh, ∇ · vh) = 0 ∀χh ∈ Lh}.

Note that, the space Jh is not a subspace of J1. We now define the finite dimensional problem:
Find uh(t) ∈ Jh such that uh(0) = u0h and for t > 0,

(uht , φh) + κa(uht , φh) + νa(uh, φh) = −b(uh, uh, φh) ∀φh ∈ Jh. (4.2)

As Jh is finite dimensional, the problem (4.2) leads to a system of nonlinear partial differential
equations. A use of Picard’s theorem yields existence of a unique local solution in an interval
[0, t∗), for some t∗ > 0. For continuation of solution beyond t∗, we need to establish an L∞(L2)

bound for the approximate solution uh. Setting φh = uh in (4.2), we obtain

d

dt
(‖uh‖2 + κ‖∇uh‖2) + 2ν‖∇uh‖2 = 0.

On integration with respect to the temporal variable t , we find that

‖uh(t)‖2 + κ‖∇uh(t)‖2 ≤ (‖u0h‖2 + κ‖∇u0h‖2) ≤ C ∀t ≥ 0,

provided ‖∇u0h‖ ≤ C‖∇u0‖ . This is indeed true, which we shall see later on. This shows the
global existence of a unique Galerkin approximation uh for all t > 0.
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Once, we compute uh(t) ∈ Jh, the approximation ph(t) ∈ Lh to the pressure p(t) can be found
out by solving the following system

(ph, ∇ · φh) = (uht , φh) + κa(uht , φh) + νa(uh, φh) + b(uh, uh, φh) ∀φh ∈ Hh. (4.3)

For the solvability of the above system (4.3), we note that the right hand side defines a linear
functional � on Hh, that is, φh �→ �(φh). By construction �(φh) = 0, for all φh ∈ Jh. It is now
easy to check that this condition implies existence of ph ∈ Lh, see [21]. Uniqueness is obtained
on the quotient space Lh/Nh, where

Nh = {qh ∈ Lh : (qh, ∇ · φh) = 0, ∀φh ∈ Hh}.
The norm on Lh/Nh is given by

‖qh‖L2/Nh
= inf

χh∈Nh

‖qh + χh‖.

Furthermore, the pair (Hh, Lh/Nh) satisfies a uniform inf-sup condition:
(B2). For every qh ∈ Lh, there exist a non-trivial function φh ∈ Hh and a positive constant K1,

independent of h, such that,

|(qh, ∇ · φh)| ≥ K1‖∇φh‖‖qh‖L2/Nh
.

As a consequence of conditions (B1)–(B2), we have the following properties of the L2 projection
Ph : L2 → Jh. For φ ∈ J1, we note that, see [10, 21],

‖φ − Phφ‖ + h‖∇Phφ‖ ≤ Ch‖∇φ‖, (4.4)

and for φ ∈ J1 ∩ H2,

‖φ − Phφ‖ + h‖∇(φ − Phφ)‖ ≤ Ch2‖�̃φ‖. (4.5)

We may define the discrete operator �h : Hh → Hh through the bilinear form a(·, ·) as

a(vh, φh) = (−�hvh, φh) ∀vh, φh ∈ Hh. (4.6)

Set the discrete analogue of the Stokes operator �̃ = P� as �̃h = Ph�h. Examples of subspaces
Hh and Lh satisfying assumptions (B1) and (B2) can be found in [10] and [22]. In the context of
non conforming analysis, we would like to refer [10].

Next, we obtain some a priori bounds for the discrete solution uh which will be helpful for
our subsequent use. Using the definition of the discrete Stokes operator �̃h in (4.6), we proceed
along the lines of proof of Theorem 3.1 to derive the following bounds for uh.

Lemma 4.1. For all t > 0, the semidiscrete Galerkin approximation uh for the velocity satisfies

‖�̃huh(t)‖2 + ‖uht (t)‖2 + e−2αt

∫ t

0
e2αs‖∇uht (s)‖2 ds ≤ Ke−2αt .

Finally, we state below the main results of this article, which are related to the optimal error
estimates of the velocity and the pressure, the proofs of which are established in Sections V and
VI, respectively.
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Theorem 4.1. Let the assumptions (A1)–(A2) and (B1)–(B2) be satisfied. Further, let the dis-
crete initial velocity u0h = Phu0. Then, there exists a positive constant K which depends on κ , ν,
λ1, α, and M , such that, for all t > 0 and for 0 ≤ α <

νλ1
2(1+λ1κ)

, the following estimate holds true:

‖(u − uh)(t)‖ + h‖∇(u − uh)(t)‖ ≤ Kh2e−αt .

Theorem 4.2. Under the hypotheses of Theorem 4.1, there exists a positive constant K

depending on κ , ν, λ1, α, and M , such that, for all t > 0, the following holds true:

‖(p − ph)(t)‖L2/Nh
≤ Khe−αt .

V. ERROR ESTIMATES FOR THE VELOCITY

In this section, we derive optimal error estimates of the velocity. As Jh is not a subspace of J1,
the weak solution u satisfies

(ut , φh) + κa(ut , φh) + νa(u, φh) = −b(u, u, φh) + (p, ∇ · φh) ∀φh ∈ Jh. (5.1)

Set e = u − uh. Then, from (5.1) and (4.2), we obtain

(et , φh) + κa(et , φh) + νa(e, φh) = �(φh) + (p, ∇ · φh), (5.2)

where �(φh) = −b(u, u, φh) + b(uh, uh, φh). Below, we derive an optimal error estimate of
||∇e(t)||, for t > 0.

Lemma 5.1. Let assumptions (A1)–(A2) and (B1)–(B2) be satisfied. With u0h = Phu0, then,
there exists a positive constant K depending on λ1, κ , ν, α and M , such that, for all t > 0 and
for 0 ≤ α <

νλ1

2(1+λ1κ

) , the following estimate holds true:

‖(u − uh)(t)‖2 + κ‖∇(u − uh)(t)‖2 ≤ Kh2e−2αt .

Proof. Choose φh = eαtPhê = ê + (Phû − û) in (5.2) to rewrite it as:

(eαtet , ê) + κa(eαtet , ê) + νa(ê, ê) = eαt�(Phê) + (p̂, ∇ · Phê)

+ (eαtet , û − Phû) + κ a(eαtet , û − Phû) + νa(ê, û − Phû). (5.3)

Note that

(eαtet , ê) + κ a(eαtet , ê) = 1

2

d

dt
(‖ê‖2 + κ‖∇ ê‖2) − α(‖ê‖2 + κ‖∇ ê‖2), (5.4)

and

(eαtet , û − Phû) = (êt , û − Phû)) − α(ê, û − Phû)

= d

dt
(ê, û − Phû) − (ê, ût − Phût ) − α(ê, û − Phû). (5.5)
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Using (2.3), (5.4) and (5.5) in (5.3), we arrive at

d

dt
(‖ê‖2 + κ‖∇ ê‖2) + (2ν − 2α(κ + λ1

−1))‖∇ ê‖2 ≤ 2eαt�(Phê) + 2(p̂, ∇ · Phê)

+ 2
d

dt
((ê, û − Phû) + κ a(ê, û − Phû)) − 2((ê, ût − Phût ) + κ a(ê, ût − Phût ))

− 2α
(
(ê, û − Phû) + κ a(ê, û − Phû)

) + 2νa(ê, û − Phû). (5.6)

Using Cauchy–Schwarz’s inequality, Poincaré’s inequality and Young’s inequality, we estimate
the last two terms on the right-hand side of (5.6) by

|2α((ê, û − Phû) + κ a(ê, û − Phû)
) + 2νa(ê, û − Phû)|

≤ C(α, κ , λ1, ν, ε)‖∇(û − Phû)‖2 + ε

2
‖∇ ê‖2. (5.7)

Similarly, using Cauchy–Schwarz’s inequality, Poincaré’s inequality and Young’s inequality, we
can bound

2|(ê, ût − Phût ) + κ a(ê, ût − Phût )| ≤ C(κ , ε)‖∇(ût − Phût )‖2 + ε

2
‖∇ ê‖2. (5.8)

For the second term on the right-hand side of (5.6), we use Cauchy–Schwarz’s inequality, (4.4)
and Young’s inequality to obtain

2|(p̂, ∇ · Phê)| ≤ 2‖p̂ − jhp̂‖‖∇ · Phê‖ ≤ C‖p̂ − jhp̂‖‖∇Phê‖
≤ C(ε)‖p̂ − jhp̂‖2 + ε

2
‖∇ ê‖2. (5.9)

To estimate the first term on the right-hand side of (5.6), we rewrite it as

2eαt�(Phê) = 2e−αt (b(ê, ê, Phê) − b(ê, û, Phê) − b(û, ê, Phê)).

Using the generalized Hölder’s inequality, Agmon’s inequality (see, [23] which is valid for 3D):

‖v‖L∞ ≤ C‖∇v‖ ‖�̃v‖, v ∈ H2 ∩ J1, (5.10)

Young’s inequality, the Sobolev embedding theorem, (2.2) and (4.4), we arrive at

2e−αt (|b(û, ê, Phê)| + |b(ê, û, Phê)|) ≤ 2e−αt (‖û‖L∞‖∇ ê‖‖Phê‖ + ‖ê‖L4‖∇û‖L4‖Phê‖)
≤ 2e−αt

(
‖∇û‖ 1

2 ‖�̃û‖
1
2 ‖∇ ê‖‖Phê‖ + ‖∇ ê‖‖�̃û‖‖ê‖

)

≤ 2e−αt

(
‖∇û‖ 1

2 ‖�̃û‖
1
2 + ‖�̃û‖

)
‖ê‖‖∇ ê‖

≤ Ce−2αt (‖∇û‖‖�̃û‖ + ‖�̃û‖2)‖ê‖2 + ε

2
‖∇ ê‖2. (5.11)

Moreover, rewrite

b(ê, ê, Phê) = −b(ê, ê, û − Phû) + b(ê, ê, ê). (5.12)
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As the last term on the right hand side of (5.12) vanishes because of the antisymmetric property
of the trilinear form, we use Lemma 2.1, Hölder’s inequality, the Sobolev embedding theorem,
Young’s inequality, Lemmas 3.1 and, 4.1 in (5.12) to obtain

|b(ê, ê, Phê)| ≤ Ce−αt‖ê‖L4‖∇ ê‖‖û − Phû‖L4

≤ Ce−αt‖∇ ê‖‖∇ ê‖‖∇(û − Phû)‖
≤ C(‖∇û‖ + ‖∇ûh‖)‖∇ ê‖‖∇(û − Phû)‖
≤ C(ε)‖∇(û − Phû)‖2 + ε

2
‖∇ ê‖2. (5.13)

Integrating (5.6) with respect to time from 0 to t , use bounds (5.7)–(5.13) with ε = 2ν

5 , to arrive
at

‖ê(t)‖2 + κ‖∇ ê(t)‖2 + β

∫ t

0
‖∇ ê‖2ds ≤ C(‖e(0)‖2 + ‖∇e(0)‖2)

+ C(α, κ , ν, λ1, M)

(
‖∇(û − Phû)‖2 +

∫ t

0
(‖∇(û − Phû)‖2 + ‖∇(ût − Phût )‖2

+ ‖p̂ − jhp̂‖2)ds

)
+ C

∫ t

0
(‖∇u‖‖�̃u‖ + ‖�̃u‖2)‖ê‖2ds. (5.14)

Using (4.5) and (B1) in (5.14), we find that

‖ê(t)‖2 + κ||∇ ê(t)‖2 + β

∫ t

0
‖∇ ê‖2ds

≤ Ch2

(
‖u0‖2

2 + ‖û‖2
2 +

∫ t

0

(‖û‖2
2 + ‖ût‖2

2 + ‖p̂(t)‖2
H1/R

)
ds

)

+ C

∫ t

0
(‖∇u‖‖�̃u‖ + ‖�̃u‖2

)
(‖ê||2 + κ‖∇ ê‖2

)
ds. (5.15)

Use a priori bounds for u, ut , and p (Theorem 3.1) to bound the first term on the right-hand side
of (5.15) and then apply the Gronwall’s lemma to obtain

‖ê(t)‖2 + κ‖∇ ê(t)‖2 + β

∫ t

0
‖∇ ê‖2ds ≤ C(ν, κ , α, λ1, M)h2exp

(∫ t

0
(‖�̃u‖2 + ‖∇u‖‖�̃u‖) ds

)
.

A use of a priori bounds from Lemma 3.2 yields

∫ t

0
(‖∇u‖ ‖�̃u‖ + ‖�̃u‖2

)
ds ≤ C(M , κ , λ1, ν, α)(1 − e−2αt ) ≤ C(M , κ , λ1, ν, α) < ∞,

and hence, it completes the rest of the proof.

Note that, Theorem 5.1 provides a suboptimal error estimates for the velocity in L∞(L2)-norm.
Therefore, in the remaining part of this section we derive an optimal error estimate for the velocity
in L∞(L2)-norm. We shall achieve this by comparing our solutions with appropriate intermediate
solutions and then making use of triangle inequality.
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To dissociate the nonlinearity, we first introduce an intermediate solution vh, which is a finite
element Galerkin approximation to a linearized Kelvin–Voigt equation, satisfying

(vht , φh) + κ a(vht , φh) + νa(vh, φh) = −b(u, u, φh) ∀φh ∈ Jh, (5.16)

with vh(0) = Phu0.
Now, we split e as

e := u − uh = (u − vh) + (vh − uh) = ξ + η.

Here, ξ denotes the error due to the approximation using a linearized Kelvin–Voigt equation
(5.16), whereas η represents the error due to the nonlinearity in the equation.

Subtracting (5.16) from (5.1), the equation in ξ can be written as

(ξ t , φh) + κ a(ξ t , φh) + νa(ξ , φh) = (p, ∇ · φh) ∀φh ∈ Jh. (5.17)

For optimal error estimates of ξ in L∞(L2) and L∞(H 1)-norms, we again introduce the following
auxiliary projection Vh such that Vhu : [0, ∞) → Jh satisfying

κa(ut − Vhut , φh) + νa(u − Vhu, φh) = (p, ∇ · φh) ∀φh ∈ Jh, (5.18)

where Vhu(0) = Phu0.
With Vhu defined as above, we now split ξ as

ξ := (u − Vhu) + (Vhu − vh) = ζ + ρ.

To obtain estimates for e, first of all, we derive various estimates of ζ in Lemmas 5.2, 5.3, 5.4,
and 5.5. Then, we proceed to estimate ‖ρ‖ and ‖∇ρ‖ in Lemma 5.6. Combining these results,
we obtain estimates for ξ in L∞(L2) and L∞(H1

0)-norms in Lemma 5.7. Finally, we derive an
estimate for η to complete the proof of Theorem 4.1.

Lemma 5.2. Assume that (A1)–(A2) and (B1)–(B2) are satisfied. Then, there exists a positive
constant K = K(ν, λ1, α, κ , M) such that for 0 ≤ α <

νλ1
2(1+κλ1)

, the following estimate holds true:

‖∇(u − Vhu)(t)‖2 + e−2αt

∫ t

0
e2αs‖∇(u − Vhu)(s)‖2ds ≤ Kh2e−2αt .

Proof. On multiplying (5.18) by eαt with ζ = u − Vhu, we find that

κa(eαtζ t , φh) + νa(ζ̂ , φh) = (p̂, ∇ · φh)∀φh ∈ Jh. (5.19)

Using eαtζ t = ζ̂ t − αζ̂ and choosing φh = Phζ̂ = ζ̂ + (Phû − û) in (5.19), we arrive at

κ
d

dt
‖∇ ζ̂‖2 + 2(ν − κα)‖∇ ζ̂‖2 = 2κ

d

dt
a(ζ̂ , û − Phû) − 2κa

(
ζ̂ ,

d

dt
(û − Phû)

)

+ 2(ν − κα)a(ζ̂ , û − Phû) + 2(p̂ − jhp̂, ∇ · Phζ̂ ). (5.20)
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Integrate (5.20) with respect to time from 0 to t and apply (4.4) along with Young’s inequality to
obtain

κ‖∇ ζ̂‖2 + (ν − κα)

∫ t

0
‖∇ ζ̂‖2ds ≤ C(ν, α, κ)

(
e2αt‖∇(u − Phu)‖2 + ‖∇(u0 − Phu0)‖2

+
∫ t

0
e2αs(‖∇(ut − Phut )‖2ds + ‖∇(u − Phu)‖2 + ‖p − jhp‖2)ds

)
. (5.21)

A use of (4.5) with (B1) in (5.21) yields

κ‖∇ ζ̂‖2 + (ν − κα)

∫ t

0
‖∇ ζ̂‖2ds ≤ C(ν, α, κ)h2

(
e2αt‖�̃u‖2 + ‖�̃u0‖2 +

∫ t

0
e2αs‖∇p‖2ds

+
∫ t

0
e2αs(‖�̃ut‖2 + ‖�̃u‖2)ds

)
.

We now use a priori bounds for u and p derived in Lemmas 3.2, 3.6 and 3.7 to complete the
proof.

For the estimation of time derivative, we have the following result.

Lemma 5.3. Under the assumptions (A1)-(A2) and (B1)-(B2), there exists a positive constant
K = K(ν, λ1, α, κ , M) such that for 0 ≤ α <

νλ1
2(1+κλ1)

, the following estimate holds true:

∫ t

0
e2αs‖∇(ut (s) − Vhut (s))‖2ds ≤ Kh2.

Proof. Recall (5.19) now with φh = eαtPhζ t = eαtζ t + eαt (Phut − ut ) to find that

2κ‖eαt∇ζ t‖2 + ν
d

dt
‖∇ ζ̂‖2 = 2να‖∇ ζ̂‖2 + 2(p̂, eαt∇ · Phζ t )

+ 2κ a(eαtζ t , e
αt (ut − Phut )) + 2νa(ζ̂ , eαt (ut − Phut )). (5.22)

An application of the Cauchy–Schwarz inequality, discrete incompressibility condition and (4.4)
in (5.22) yields

2κ‖eαt∇ζ t‖2 + ν
d

dt
‖∇ ζ̂‖2 ≤ 2να‖∇ ζ̂‖2 + 2‖p̂ − jhp̂‖‖eαt∇Phζ t‖

+ 2κ‖eαt∇ζ t‖‖eαt∇(ut − Phut )‖ + 2ν‖∇ ζ̂‖‖eαt∇(ut − Phut )‖. (5.23)

Integrating (5.23) with respect to time from 0 to t , using Young’s inequality, (B1) and (4.5), Lem-
mas 3.6, 3.7, and 5.2 and proceeding exactly as in the proof Lemma 5.2, we obtain the desired
result. This completes the rest of the proof.

Below, we discuss the L2-estimate of ζ (t).
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Lemma 5.4. Under the assumptions (A1)–(A2) and (B1)–(B2), there exists a positive constant
K = K(ν, λ1, α, κ , M) such that for 0 ≤ α <

νλ1
2(1+κλ1)

, the following estimate holds true for t > 0:

‖ζ (t)‖2 + e−2αt

∫ t

0
e2αs‖ζ (s)‖2ds ≤ Kh4e−2αt .

Proof. For L2 estimate, we recall the Aubin–Nitsche duality argument. Let (w, q) be the
unique solution of the following steady state Stokes system:

−ν�w + ∇q = ζ̂ in �, (5.24)

∇ · w = 0 in �, (5.25)

w|∂� = 0. (5.26)

From assumption (A1), (w, q) satisfies the following regularity result:

‖w‖2 + ‖q‖H1/R ≤ C‖ζ̂‖. (5.27)

Forming L2-inner product between (5.24) and ζ̂ and using discrete incompressibility condition,
we obtain

‖ζ̂‖2 = ν a(w − Phw, ζ̂ ) − (q − jhq, ∇ · ζ̂ ) + ν a(Phw, ζ̂ ). (5.28)

Now, using (5.19) with φh replaced by Phw and (5.25), the last term in (5.28) can be rewritten as

ν a(Phw, ζ̂ ) = (p̂ − jhp̂, ∇ · (Phw − w)) − κ a(eαtζ t , Phw − w) − κ a(eαtζ t , w). (5.29)

Once again, form L2-inner product between (5.24) and eαtζ t , and use this in the last term of (5.29)
to obtain

κa(eαtζ t , w) = κ

ν
(ζ̂ , ζ̂ t ) − ακ

ν
‖ζ̂‖2 + κ

ν
(q − jhq, ∇ · eαtζ t ). (5.30)

Substituting (5.29) and (5.30) in (5.28), we obtain

‖ζ̂‖2 + κ

ν

d

dt
‖ζ̂‖2 = ακ

ν
‖ζ̂‖2 + νa(w − Phw, ζ̂ ) − (q − jhq, ∇ · ζ̂ ) + (p̂ − jhp̂, ∇ · (Phw − w))

− κ a(eαtζ t , Phw − w) − κ

ν
(q − jhq, eαt∇ · ζ t ). (5.31)

Integrate (5.31) with respect to time from 0 to t , use (4.4) and then apply Cauchy Schwarz’s
inequality to yield

(ν − ακ)

∫ t

0
‖ζ̂‖2ds + κ‖ζ̂‖2 ≤ C(κ , ν, α)

(
‖ζ (0)‖2 +

∫ t

0
(‖∇(w − Phw)‖‖∇ ζ̂‖

+‖q − jhq‖‖∇ ζ̂‖ + ‖p̂ − jhp̂‖‖∇(Phw − w)‖

+ ‖eαt∇ζ t‖‖∇(Phw − w)‖ + ‖q − jhq‖‖eαt∇ζ t‖)ds

)
.
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Using (B1), (4.5) and (5.27), we arrive at

(ν − ακ)

∫ t

0
‖ζ̂‖2ds + κ‖ζ̂‖2

≤ C(κ , ν, α)

(
h4‖�̃u0‖2 + h

∫ t

0
(‖∇ ζ̂‖ + h‖∇p̂‖ + ‖eαt∇ζ t‖)‖ζ̂‖ds

)
. (5.32)

As 0 ≤ α <
νλ1

2(1+κλ1)
, (ν −ακ) > 0. Then, use Young’s inequality appropriately and the estimates

from Lemmas 3.7, 5.2, and 5.3 to complete the rest of the proof.

Lemma 5.5. Under the assumptions (A1)–(A2) and (B1)–(B2), there exists a positive constant
K = K(ν, λ1, α, κ , M) such that for 0 ≤ α <

νλ1
2(1+κλ1)

, the following holds true:

∫ t

0
e2αs‖ζ t (s)‖2ds ≤ Kh4.

The above lemma can be proved in an exactly similar fashion as the proof of Lemma 5.4 with
the right hand side of (5.24) replaced by eαtζ t . but for completeness, we provide a short proof.

Proof. For obtaining the desired estimate of ζ t , once again we appeal to the Aubin-Nitche’s
duality argument. Now recall the equation (5.19)

κa(ζ t , φh) + νa(ζ , φh) = (p, ∇ · φh) ∀φh ∈ Jh.

In the dual problem (5.24), set eαtζ t in stead of ζ̂ on its right hand side and then form L2-inner
product with eαtζ t to obtain

‖eαtζ t‖2 = κa(eαtζ t , w − Phw) − (eαt∇ · ζ t , q) + κa(eαtζ t , Phw).

From (5.19) with φh = eαtPhw, it now follows in a similar manner as in the L2-estimate of ζ that

‖eαtζ t‖2 = κa(eαtζ t , w − Phw) − (q − jhq, eαt∇ · ζ t ) − νa(eαtζ , w)

+ eαt (p − jhp, ∇ · (Phw − w)) − νa(eαtζ , Phw − w). (5.33)

Using (5.24) with ζ̂ replaced by eαtζ t in the third term of (5.33) and the Cauchy–Schwarz
inequality, we obtain

‖eαtζ t‖2 ≤ C(ν, λ1, α, κ , M)[‖eαt∇ζ t‖‖∇(w − Phw)‖ + ‖q − jhq‖‖eαt∇ζ t‖ + ‖ζ̂‖‖eαtζ t‖
+‖∇ ζ̂‖‖w − Phw‖ + ‖p̂ − jhp̂‖‖∇(w − Phw)‖ + ‖q − jhq‖‖∇ ζ̂‖]. (5.34)

A use of (4.4) with (B1) yields

‖eαtζ t‖2 ≤ C(ν, λ1, α, κ , M)(h‖eαt∇ζ t‖‖�w‖ + h‖eαt∇ζ t‖‖∇q‖ + ‖ζ̂‖‖eαtζ t‖
+ h‖∇ ζ̂‖‖�w‖ + h2‖∇p̂‖‖�w‖ + h‖∇q‖‖∇ ζ̂‖). (5.35)
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Using regularity result (5.27) now with right hand side ‖eαtζ t‖, we arrive at

‖eαtζ t‖2 ≤ C(ν, λ1, α, κ , M)((h‖eαt∇ζ t‖ + h‖∇ ζ̂‖
+ h2‖∇p̂‖ + h‖∇ ζ̂‖)‖eαtζ t‖) + ‖ζ̂‖‖eαtζ t‖). (5.36)

An application of Young’s inequality yields

‖eαtζ t‖2 ≤ C(ν, λ1, α, κ , M)(h2‖eαt∇ζ t‖2 + h2‖∇ ζ̂‖2 + h4‖∇p̂‖2 + ‖ζ̂‖2). (5.37)

Integrating (5.37) with respect to time from 0 to t , we obtain∫ t

0
‖eαsζ t (s)‖2 ≤ C(ν, λ1, α, κ , M)

(∫ t

0
(h2‖eαt∇ζ t‖2 + h2‖∇ ζ̂‖2 + h4‖∇p̂‖2 + ‖ζ̂‖2)ds

)
.

(5.38)

A use of Lemmas 5.2, 5.3, 5.4, and 3.7 would lead us to∫ t

0
‖eαsζ t (s)‖2ds ≤ C(ν, λ1, α, κ , M)h4, (5.39)

and this completes the rest of the proof.

As ξ = ζ + ρ and the estimates of ζ are already known, it suffices to derive estimate of ρ to
obtain an estimate for ξ .

Lemma 5.6. Under the assumptions (A1)–(A2) and (B1)–(B2), there exists a positive constant
K = K(ν, λ1, α, κ , M) such that for 0 ≤ α < ν

2(1+κλ1)
, the following estimate holds true:

(‖ρ‖2 + κ‖∇ρ‖2) + 2βe−2αt

∫ t

0
e2αs‖∇ρ(s)‖2ds ≤ C(ν, λ1, α, κ , M)h4e−2αt .

Proof. Subtracting (5.18) from (5.17), we find that

(ρ t , φh) + κ a(ρ t , φh) + νa(ρ, φh) = −(ζ t , φh) ∀φh ∈ Jh. (5.40)

Replace φh by eαt ρ̂ in (5.40) to obtain

(eαtρ t , ρ̂) + κ a(eαtρ t , ρ̂) + ν‖∇ρ̂‖2 = −(eαtζ t , ρ̂) ∀φh ∈ Jh. (5.41)

A use of Cauchy–Schwarz’s inequality, (2.3) along with Young’s inequality in (5.41) yields

d

dt
(‖ρ̂‖2 + κ‖∇ρ̂‖2) + 2β‖∇ρ̂‖2 ≤ C(κ , α, λ1)‖eαtζ t‖2. (5.42)

Integrating (5.42) with respect to time from 0 to t , we arrive at

‖ρ̂‖2 + κ‖∇ρ̂‖2 + 2β

∫ t

0
‖∇ρ̂‖2ds ≤ C(κ , α, λ1)

∫ t

0
‖eαsζ t (s)‖2ds. (5.43)

The desired result follows after a use of Lemma 5.5 in (5.43).

We now derive an estimate of ξ in L∞(L2) and L∞(H1
0)-norms.
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Lemma 5.7. Let the assumptions (A1)–(A2) and (B1)–(B2) be satisfied. Then, there exists a
positive constant K = K(ν, λ1, α, κ , M) such that for 0 < α <

νλ1
2(1+κλ1)

, the following estimate
holds true:

‖ξ‖2 + e−2αt

∫ t

0
e2αs‖∇ξ(s)‖2ds ≤ C(ν, λ1, α, κ , M)h4e−2αt .

A use of the triangle inequality together with the Lemmas 5.4 and 5.6 would provide us the
result. Now, we derive the proof of the main Theorem 4.1.

Proof of Theorem 4.1. As e = u − uh = (u − vh) + (vh − uh) = ξ + η and the estimate
of ξ is known from Lemma 5.7, we are left only with the estimate for η. Subtracting (5.16) from
(4.2), we obtain

(ηt , φh) + κ a(ηt , φh) + νa(η, φh) = b(uh, uh, φh) − b(u, u, φh) ∀φh ∈ Jh. (5.44)

Choose φh = e2αtη and use (2.3) to find that

1

2

d

dt
(‖η̂‖2 + κ‖∇η̂‖2) +

(
ν − α

(
κ + 1

λ1

))
‖∇η̂‖2 = eαt�h(η̂), (5.45)

where

�h(φh) = b(uh, uh, φh) − b(u, u, φh).

To estimate the right hand side term of (5.45), we note that

eαt�h(η̂) = e−αt (−b(ê, ûh, η̂) + b(û, η̂, ê)).

A use of Hölder’s inequality with the Poincaré inequality, Agmon’s inequality (5.10), and the
discrete Sobolev inequality (see, Lemma 4.4 in [10] ) yields

eαt |�h(η̂)| ≤ Ce−αt (‖ê‖‖∇ûh‖L6‖η̂‖L3 + ‖û‖L∞‖∇η̂‖‖ê‖)
≤ C

(
e−αt‖�̃huh‖‖∇η̂‖‖ê‖ + ‖∇û‖ 1

2 ‖�̃û‖ 1
2 ‖∇η̂‖‖ ê‖

)
≤ C(ε)e−2αt (‖�̃hûh‖2 + ‖∇û‖‖�̃û‖‖)‖ê‖2 + ε‖∇η̂‖2.

As e = ξ + η, we obtain

eαt |�h(η̂)| ≤ C(ε)e−2αt (‖�̃hûh‖2 + ‖∇û‖‖�̃û‖)(‖ξ̂‖2 + ‖η̂‖2) + ε‖∇η̂‖2. (5.46)

Using (5.46) in (5.45), we arrive at

d

dt
(‖η̂‖2 + κ‖∇η̂‖2) + (β + ν)‖∇η̂‖2 ≤ C(ε)e−2αt ((‖ξ̂‖2 + ‖η̂‖2)‖�̃hûh‖2

+ (‖ξ̂‖2 + ‖η̂‖2)‖∇û‖‖�̃û‖) + 2ε‖∇η̂‖2. (5.47)
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With choice of ε = ν

2 , integration of (5.47) with respect to time from 0 to t yields

‖η̂‖2 + κ‖∇η̂‖2 + β

∫ t

0
‖∇η̂‖2ds ≤ C(ν)

(∫ t

0
‖ξ̂‖2(‖∇u‖‖�̃u‖ + ‖�̃huh‖2)ds

+
∫ t

0
‖η̂‖2(‖∇u‖‖�̃u‖ + ‖�̃huh‖2)ds

)
. (5.48)

Use Lemmas 3.2, 4.1, and 5.7 in the first term of the right side of (5.48) to obtain

‖η̂‖2 + κ‖∇η̂‖2 + β

∫ t

0
‖∇η̂‖2ds ≤ C(ν, λ1, α, κ , M)h4e−2αt

+
∫ t

0
‖η̂‖2(‖∇û‖‖�̃u‖ + ‖�̃huh‖2)ds. (5.49)

An application of Gronwall’s Lemma yields

‖η̂‖2 + κ‖∇η̂‖2 + β

∫ t

0
‖∇η̂(s)‖2 ds ≤ Kh4 exp

(∫ t

0
(‖∇u‖‖�̃u‖ + ‖�̃huh‖2) ds

)
. (5.50)

Once again, with the help of Lemmas 3.2 and 4.1, we obtain∫ t

0
(‖∇u‖‖�̃u‖ + ‖�̃huh‖2) ds ≤ K(κ , ν, α, λ1, M)(1 − e−2αt ) ≤ K . (5.51)

Using (5.51) in (5.50), we derive estimate for η as

‖η‖2 + κ‖∇η‖2 + 2βe−2αt

∫ t

0
e2αs‖∇η(s)‖2 ds ≤ Kh4e−2αt . (5.52)

A use of triangle inequality along with (5.52) and Lemma 5.7 completes the optimal L∞(L2)-
estimate of the velocity. For the rest part of proof of Theorem 4.1, we now appeal to Lemma 5.1
to complete the proof.

VI. ERROR ESTIMATE FOR THE PRESSURE

In this section, we derive optimal error estimates for the Galerkin approximation ph of the pressure
p. The main result Theorem 4.2 follows from Lemmas 6.1, 6.2 and the approximation property
for jh. From (B2), we note that

‖(jhp − ph)(t)‖L2/Nh
≤ C sup

φh∈Hh/{0}

{
(jhp − ph, ∇ · φh)

‖∇φh‖
}

,

≤ C sup
φh∈Hh/{0}

{
(jhp − p, ∇ · φh)

‖∇φh‖
+ (p − ph, ∇ · φh)

‖∇φh‖
}

,

≤ C

⎛
⎝‖jhp − p‖ + sup

φh∈Hh/{0}

{
(p − ph, ∇ · φh)

‖∇φh‖
}⎞
⎠ . (6.1)
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As the estimate of the first term on the right hand side of (6.1) follows from (B1), it is sufficient
to estimate the second term. Subtracting (4.3) from (5.1), we find that

(p − ph, ∇ · φh) = (et , φh) + κ a(et , φh) + νa(e, φh) − �h(φh) ∀φh ∈ Hh,

where

−�h(φh) = b(u, u, φh) − b(uh, uh, φh) = −b(e, e, φh) + b(u, e, φh) + b(e, u, φh).

Using Hölder’s inequality, Sobolev’s inequality and Lemma 5.1, we obtain

|�h(φh)| ≤ C(‖∇u‖ + ‖e‖L4)‖∇e‖‖∇φh‖ ≤ C‖∇e‖‖∇φh‖. (6.2)

Thus,

(p − ph, ∇ · φh) ≤ C(ν, κ)(‖et‖ + ‖∇et‖ + ‖∇e‖)‖∇φh‖.

The results obtained can be summarized as

Lemma 6.1. For all t > 0, the semidiscrete Galerkin approximation ph of the pressure p

satisfies

‖(p − ph)(t)‖L2/Nh
≤ C(‖et‖ + ‖∇et‖ + ‖∇e‖). (6.3)

From Theorem 5.1, the estimate ‖∇e‖ is known. We now derive bounds for ‖et‖ and ‖∇et‖.

Lemma 6.2. For all t > 0, the error e = u − uh in the velocity satisfies

‖et (t)‖2 + κ‖∇et (t)‖2 ≤ Ch2e−2αt . (6.4)

Proof. From (4.3) and (5.1), we obtain

(et , φh) + κ a(et , φh) + νa(e, φh) = �h(φh) + (p, ∇ · φh), φh ∈ Hh. (6.5)

where

�h(φh) = b(uh, uh, φh) − b(u, u, φh).

Choosing φh = Phet = et + (Phut − ut ) in (6.5), we arrive at

(et , et ) + κ a(et , et ) = −νa(e, et ) + �h(Phet ) + (p, ∇ · Phet )

+ (et , ut − Phut ) + κ a(et , ut − Phut ) + νa(e, ut − Phut ). (6.6)

To estimate (p, ∇ · Phet ), a use of the discrete incompressible condition with (4.4) yields

|(p, ∇ · Phet )| = |(p − jhp, ∇ · Phet )| ≤ ‖p − jhp‖‖∇et‖. (6.7)

Now using Cauchy–Schwarz’s inequality in (6.6), we arrive at

‖et‖2 + κ‖∇et‖2 ≤ ν‖∇e‖‖∇et‖ + |�h(Phet )| + ‖p − jhp‖‖∇.(Phet )‖
+ ‖et‖‖ut − Phut‖ + κ‖∇et‖‖∇(ut − Phut )‖ + ν‖∇e‖‖∇(ut − Phut )‖. (6.8)
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Using (6.2) and (4.4), we obtain

|�h(Phet )| ≤ C‖∇e‖‖∇et‖. (6.9)

Substitute (6.7), (6.9) in (6.8) and use Young’s inequality to arrive at

‖et‖2 + κ‖∇et‖2 ≤ C(ν, κ)(‖∇e‖2 + (‖∇(ut − Phut )‖2 + ‖p − jhp‖2 + ‖ut − Phut‖2)).

Using (4.5) and (B1), we now obtain

‖et‖2 + κ‖∇et‖2 ≤ C(ν, κ)(‖∇e‖2 + h2(‖�̃ut‖2 + ‖∇p‖2 + ‖∇ut‖2)).

An application of Lemmas 3.5, 3.7, and 5.1 would lead us to the result. This completes the rest
of the proof.

Proof of Theorem 4.2. The proof of Theorem 4.2 now follows from Lemma 6.2 and the
approximation property (B1) of jh.

VII. NUMERICAL EXPERIMENTS

We use finite element method for spatial discretization and backward Euler method for tempo-
ral discretization. The approximating spaces Hh and Lh for velocity and pressure variables are
respectively chosen as follows:

Hh = {
v ∈ (

H 1
0 (�)

)2 ∩ (C(�̄))2 : v|K ∈ (P2(K))2, K ∈ τh

}
Lh = {q ∈ L2(�) : q|K ∈ P0(K), K ∈ τh},

where τh denotes an admissible triangulation of �̄ in to closed triangles. Let 0 = t0 < t1 < · · · <

tN = T , be a uniform subdivision of the time interval (0, T ] with k = tn − tn−1 and Un be the
approximation of u(t) in Hh at t = tn = nk. Now, the completely discrete scheme based on
backward Euler method can be stated as: given Un−1, find the pair (Un, P n) satisfying:

(∂̄tUn, vh) + κa(∂̄tUn, vh) + νa(Un, vh) + b(Un, Un, vh) + (vh, ∇P n)

= (fn, vh), ∀vh ∈ Hh,

(∇ · Un, wh) = 0, ∀wh ∈ Lh, (7.1)

where ∂̄tUn = Un−Un−1

k
.

Example 1. In this example, we validate the theoretical error estimates obtained in Theorems
4.1-4.2. For verifying the convergence rates of the solution obtained numerically, we choose
the right hand side function f in such a way that the exact solution (u, p) = ((u1, u2), p) of
(1.2)–(1.4) is

u1 = 2etx2(x − 1)2y(y − 1)(2y − 1), u2 = −2ety2(y − 1)2x(x − 1)(2x − 1), p = et y.
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TABLE I. Numerical errors and convergence rates with k = h2.

Convergence Convergence Convergence
S. No. h ‖u − Un‖L2 rate ‖u − Un‖H1 rate ‖p − P n‖L2 rate

1 1/2 0.0266 0.1039 1.0443
2 1/4 0.0090 1.5653 0.0543 0.9357 0.5484 0.9291
3 1/8 0.0026 1.7790 0.0282 0.9428 0.2815 0.9618
4 1/16 0.0007 1.8938 0.0145 0.9601 0.1424 0.9827

TABLE II. Numerical errors and convergence rates with k = h2.

S. No. h ‖u − Un‖L2 Convergence rate ‖u − Un‖H1 Convergence rate

1 1/2 0.797874 ×10−3 0.012952
2 1/4 0.203886 ×10−3 1.9683 0.006767 0.9366
3 1/8 0.051241 ×10−3 1.9923 0.003418 0.9850
4 1/16 0.012817 ×10−3 1.9992 0.001713 0.9964

We assume the viscosity of the fluid as ν = 1 and retardation as κ = 1 with � = (0, 1) × (0, 1)

and time interval (0, T ] with T = 1. Here, � is subdivided into triangles with mesh size h. The
theoretical analysis provides a convergence rate O(h2) for the velocity in the L2 norm and O(h)

for the pressure. Table I gives the numerical errors and convergence rates obtained on succes-
sively refined meshes with time step size k = h2. These results agree with the optimal theoretical
convergence rates obtained in Theorems 4.1 and 4.2.

Example 2. In this example, we demonstrate the exponential decay property of the discrete
solution. We choose ν = 1, κ = 1 and f = 0 with u0 = (2x2(x −1)2y(y −1)(2y −1), −2y2(y −
1)2x(x − 1)(2x − 1), y) in (1.2)–(1.4). In this case, we replace exact solution u by finite element
solution obtained in a refined mesh. The order of convergence is shown in Table II. In Fig. 1, for
different values of time t , we plot ‖Un‖ versus time and observe the exponential decay property
for velocity.

FIG. 1. Exponential decay property of the approximate solution ‖Un‖. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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