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ABSTRACT

This paper deals with the vectorization of regions in the bidimensional space, defined by the image plane.
The problem to be solved is the extraction of the contours after the segmentation of the pixels. Since not
every region within an image can be handled as an homogeneous region, where all pixels have the same
label (greyvalue), the paper concentrates on the spatial analysis of speckled pixels to group them into
semantically meaningful regions. For this purpose, three approaches are used and their results are analysed
and compared. The first aproach is based on the analysis of the co-occurrence of labels at neighbouring
pixels. The second one performs pixel grouping based on a Delaunay triangulation and the last one resumes
the regions using the watershed approach. The methods are used to segment digital images of an urban
scene. The inclusion of contextual information proves to be apropriate for the segmentation of hatched
regions and to resume spreaded elements. The results are compared and discussed, showing the positive
and negative aspects of each approach.

1 INTRODUCTION

Graphic recognition has developed for computer
assisted analysis of digital images. Segmentation
and vectorization are a special track in this field,
because they enable a representation on which
image  understanding algorithms operate
(Doermann, 1998).These basic operations are
currently applied to a much larger domain than was
originally intended, since they are used as an
intermediate step in the process of converting
original data to a more expressive representation
(Kunz et al., 1997). For the documentation of
architecture and cultural heritage in cities, the
availability of digital photography has proved a great
potential. In urban scenes, most of the elements,
like walls, can be segmented according to their
spectral properties, since they are more or less plain
surfaces with an homogeneous colour.
Nevertheless, walls also contain other significant
architectural or artistical elements, which can not be
identified considering the wall as an homogeneous
surface. Therefore, approaches which allow the
identification and the grouping of these elements are
needed. A pure spectral analysis is not sufficient to
perform this task. In the following sections, we
discuss three alternatives for including spatial
information in the analysis.

2 SPATIAL FEATURES

In a very simple image, all regions would appear
homogeneous and easily separable from the
neighbourhood. This is not very common in urban scenes,
since many portions of digital images present a speckle
effect or some small elements appear spreaded over the
scene. The set of spreaded elements may form a
bidimensional region, which is characterized by its
structure. The task of low-level image processing is to
separate this regions from the rest of the image and
estimate the corresponding contours.

As Pratt states (Pratt, 1974), textured regions can
be classified as being artificial or natural. Artificial
textures are produced by the arrangment of symbols
placed against a neutral background. The symbols
may be line segments, dots, characters or small
figures. An example is shown in fig. 1 , where the
repetition of small figures on a wall characterizes a
region in a bidimensional space. Natural textures
occur at natural scenes and consist of a semi-
repetitive arrangement of pixels. It is produced when
the objects in the scene are smaller than the image
spatial resolution. Examples are brick walls or sand
in photographs.

In natural scenes of buildings, facades may also
present a textured pattern, since different materials
are used for its construction. The structure of the
regions, in terms of spatial distribution of the gray



levels, may give a significant amount of information
for the interpretation of the material that was used
and therefore for the characterization of the objects
in the scene. Repetition of architectural or artistical
elements may also characterize a region and, in this
case, it becomes important to identify and group
these elements. This can be seen at panels, like the
one showed in figure 1 , where the artist used the
repetition of small graphical elements to cover parts
of the wall.

Figure 1 Digital image of a panel in Curitiba

The work showed in figure 1 belongs to Potí, a
brasilian artist who painted various panels on the
streets of the city of Curitiba. His panels give the city
a special characteristic and identity, since they
display scenes of the life in this city and its
surrounding region.

3 PRE-PROCESSING

The aim of our analysis is to identify and group the
different elements present on the panels like the one
displayed on figure 1. For this purpose, we divide
data processing in two steps: colour segmentation,
which we call pre-processing, and spatial analysis.

Known colour properties of the elements allow to
perform spectral segmentation  of the image. The
set of pixels of a colour class can be displayed as a
binary image. Binarization can be performed by a
multispectral classification of the image (Weindorf,
1994) or an image segmentation. Depending on the
segmentation method, some pixels which should
belong to a region of the same semantics may not
be included and some background pixels may be
labeled as false positives. This can be seen on
figure 2, where some of the small elements are not
complete and the wall behind the panel appears as
a speckled region.

The result of this spectral image analysis are the
separated colour layers. Figure 2 displays the layer
of the white pixels of the image displayed on
figure 1. We will use this in the discussion that
follows.

Figure 2: Binary image after the segmentation of the white
pixels.

Figure 3: Small groups of pixels

After the extraction of the larger figures, the smaller
figures, together with some noise, remain and can
be stored in a new binary layer (figure 3). This step
of the process is the starting point for the spatial
analysis.

4 SPATIAL ANALYSIS

We base the analysis on a definition of textured
regions presented by Hawkins (Hawkins, 1970). The
textured regions we consider are regions where a
local 'order' is repeated.This order consists in an
arrangement of elementary parts, which are in turn
roughly uniform entitites having approximately the
same dimensions everywhere within the region
(Hawkins, 1970). This definition is very broad and
since the borders of such regions are not explicitily
defined, it doesn't lead to a simple measure for the
quantitative definition of edges (Pratt, 1974).
Nevertheless, it helps us to consider two important
components for this kind of regions: the labeled
pixels, which may form symbols, and the inner
spaces between them, which allow to perceive the
spatial arrangement of the elements.

We focus our attention on the inner spaces. Despite
errors, the background spaces inbetween the



labeled pixels can be considered as inner regions,
since they are surrounded by labeled pixels.

Here we understand an inner region as a region that
is located within the bi-dimensional space defined
by at least three labeled pixels. Considering three
non-collinear labeled pixels pixels qa, qb and qc, their
inner common space is defined by the set of points x
that satisfy:
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The identification of the inner spaces of a region and
its classification in terms of their geometry (area or
radius) leads to the segmentation of the image in
terms of texture. For instance, an homogeneous
region would not show inner spaces. On the other
hand, a textured region, as the one displayed on
figure 3, is characterized by regular inner spaces.
Therefore, the task consists in identifying this
spaces and their adjacent labeled pixels, and
grouping them to form larger regions.

4.1 Coocurrence matrix

One valid appproach to segment textured regions is
to compute a measure of coarseness or homogenity
within the neighbourhood of each pixel in the image.
The spatial correlation between pixels has been
suggested as the base of a texture measure (Pratt,
1974). The neighbourhood of each pixel is analysed
and a representative value is stored for each point
of the image. In this manner, a second image is
generated from the original one. Its pixels store an
estimated value of the variation of the grey levels
within the specified neighbourhood.

A set of texture features is described in in (Haralick
and Shapiro, 1997). This approach defines a matrix
of relative frequencies describing the appearance of
two grey levels separated by a predefined distance
and  angle. From this co-occurrence matrix, features
as local homogenity, contrast, correlation and
entropy can be computed for each pixel.

Figure 4: Local homogenity

Figure 4 provides an example of an image produced
by computing the local homogenity of the image
showed on figure 3. Dark pixels of figure 4 are
associated to low values of local homogenity. This
image can be binarized by choosing a maximum
value, separating pixels with lower local homogenity.
Since they are located close to the original labeled
pixels, they give an idea of the inner spaces
between labeled pixels.

4.2 Triangulation

In order to combine structured image regions into
semantically homogeneous clusters, it is necessary
to use mid-level image processing procedures going
beyond grayvalue based methods.

In the presented approach the analysis is based on
the relational properties of the segmented features
represented internally in a feature graph structure
based on the delaunay triangulation. In this graph
the nodes are represented by the Delaunay
triangles and the edges are represented by the
neighbourhood of the triangles.

The segmentation process based on the
triangulation uses Delaunay triangles as basic
primitives instead of the spectral information of the
pixels. This means after the image is segmented by
low-level image analysis a Delaunay triangulation
(Delaunay tesselation) has to be built up to serve as
input of the following interpretation process.
Tesselations of space reflect the spatial relationship
between points, since they are composed of line
segments joining neighbouring elements. For the
purpose of the present study we refer to the
Delaunay triangulation computed from the labeled
pixels in the bidimensional space of the image.A
triangulation is a subdivision of an area  into
triangles. The Delaunay triangulation, a special case
of triangulation, has the property that the
circumcircles of every triangle are empty
circumcircles (Okabe et  al., 1992).

Given a set of points P in a subdomain Ω2 of the
bidimensional space of the image (R2), two points pi

and pj are connected by an edge of the triangulation
if and only if there is another point pk ∈ Ω2 that is
equidistant to pi and pj and closer to pi and pj than to
any other point px ∈ Ω2.

edge(pi, pj) exists ↔ ∃ k  k ∈ Ω2 ∧ (3)

d(pi, pk) = d(pk, pj) ∧

d(pk, pi) < d(pk, px)

∀x ≠ i, j

where d(pi, pi) stands for the distance between two
points pi and pj.



A Delaunay triangle ∆(pi, pj, pk) exists if and only if
the three edges  exist and the triangle is a Delaunay
triangle if and only if there is no other point inside its
circumcircle. If c is the centre of the circumcircle of
the triangle ∆(pi, pj, pk) and r its radius:

∆(pi, pj, pk) exists ↔ ∃ c  c ∈ Ω2 ∧ (4)

r = d(c, pi) = d(c, pj) = d(c, pk) ∧

r < d(c, px)  ∀x ≠ i, j, k

Figure 5: Delaunay triangle

As a model for the proximity (the degree of
neighbourhood or the extent of the inner spaces) of
three labeled pixels in the segmented image,
several measures can be applied:

• Triangle perimeter p (absolute measure)
• Triangle area a (absolute measure)
• Shapefactor sf = p2/a (relative measure)

Applying thresholds for this parameters the
elements of the initial Delaunay triangulation
(Triangles) are labeled as valid or invalid resulting in
a set of clustered triangles forming the regions (see
fig. 6). The basic idea is to eliminate those triangles
with larger perimeter, associated to distanced pixels,
and to group the remaining triangles into significant
regions of neighbouring pixels. Different values of
the perimeter threshold allow the separation of
regions with different densities (Weindorf, 1994),
because the perimeter of the triangles is
proportional to the distance of the points. In fact, an
extremly low threshold value groups just adjacent
pixels. On the other hand, larger values allow pixels
that are not necessarily adjacent to be grouped.

To avoid the formation of islands, groups of triangles
marked as invalid can be reactivated by applying an
area criterion. To identify this enclosed islands, a
depth-first search in the graph is used, starting at a
triangle marked as invalid. In the end valid and
adjacent triangles are melted together and form
closed polygons in vector format. The result is a set
of polygons describing the regions of the image with
unique structure.

Figure 6: Triangle clusters

4.3 Watershed approach

An approach similar to the one used to delineate
watersheds from digital elevation models, as
described by (Jenson and Domingue, 1988); (Mark,
1983), can be used to identify the inner spaces.The
main idea of such algorithms consists of simulating
flow over a surface, the elevation matrix, and
defining preferential flow paths based on the local
gradient. When dealing with raster DTMs, the flow
can occur from a pixel to one of its adjacent
neighbours. At each pixel within the DTM, the local
gradient defines the preferential flow direction  and
the set of directions over the matrix defines  flow
paths, which have the constraint that they have to
point only downhill. If  h(x) is the altitude at pixel x, a
flow direction e(x,v) towards the neighbouring pixel v
associated with a larger local gradient (g(x,v)) is
assigned to x.
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Since a DTM may have depressions where an uphill
flow would be necessary, it is practical to identify
and fill them before estimating the flow paths. This
task is performed iteratively, marking pixels with
undefined flow direction and filling their watershed
up to a value of h(x) that satisfies the imposed
restrictions.

Although this algorithm was originally developed to
delineate watersheds in DTM's, it has also been
extended to digital image processing. Examples of
the application of the watershed segmentation to
digital images can be found in (Vincent and Soile,
1991) and (Silva Centeno, 1999).

In a binary image  there is no smooth variation of
the pixel value similar to the elevation in a DEM,
however it is possible to generate one as a function
of the distance to the labeled pixels. Being dxy, the
distance between a background pixel x and a
labeled pixel y:



h(x) = max(fxy) (7)

fxy = 255 – d(x,y)   if    dxy

fxy = 0   if   dxy > dm

Since the inner spaces between labeled pixels are
relatively small, larger flowpaths can be discarded
by the selection of an appropriate value for dm.
Those pixels that constitute part of a flow path that
ends at a pixel with null elevation are discarded. The
remaining regions are the catchments of the inner
spaces that form depressions, or valleys with no
outlet. This particular situation occurs at inner
spaces between labeled pixels, because of the
method used to generate the DTM.

The value of dm controls the form of the DTM and
also the size of the depressions, which are used to
identify the inner spaces. It plays the role of a
segmentation parameter, which describes a special
geometrical feature of the regions, since it  is
responsible for the occurrence of valleys. If dm is too
small then only thin regions form depressions and
small inner spaces are identified. The segmented
inner regions, together with the adjacent labeled
pixels form a solid region characterized by the
spatial dimension of the inner spaces.

5 EXPERIMENTS

The three approaches were used to segment natural
scenes. An example is shown on figure 1. This
image was taken using a KODAK DC40 digital
camera, that provides 756 x 504 pixel resolution,
and captures 24-bit color pictures.

The image was segmented based only on its
spectral properties and binary layers were obtained.
The elements of interest within the wall were
segmented, classified according to their size. The
smaller figures and other small concentrations of
pixels were stored in a binary image, as displayed
on figure 3. This image was used to perform the
spatial analysis using the three approaches.

The results were compared in order to evaluate the
ability of each method to group the small figures and
produce polygons enclosing them. Three sets of
polygons were obtained, one obtained using a
threshold for the local homogenity (figure 7), another
using the watershed approach (figure 8) and the last
one was derived from the Delaunay triangulation
(figure 9).

The contours of the regions are directly available
using the Delaunay triangulation, since the analysis
is performed based on the triangles (resp. their
edges) of the triangulation, which are already in
vector format. Since the other two methods process
data in raster format, contour tracing (Niemann,

1974). is necessary to obtain the edges. The
polygons displayed in figure 7 were estimated from
the binary image that was obtained thresholding the
local homogenity.

Figure 7: Segmentation using the local homogenity.

Figure 8: Segmentation using the watershed approach.

Figure 9: Segmentation using the Delaunay triangulation.

The concept of inner valleys used in the watershed
approach has the drawback that it is not able to
include the open spaces between labeled pixels at
the borders of the region. Although the result is
correct, from the point of view of inner regions, it is
not satisfying because it underestimates the area
covered by the ensemble (grey pixels on figure 8).
Better results can be achieved by computing the hull
of the polygon obtained joining the identified inner
regions and the adjacent labeled pixels, as
displayed on figure 10.



Figure 10: Example of the hull of a segmented region.
Labeled pixels appear in black, inner regions in grey.

6 DISCUSSION

Figures 7, 8 and 9 will be used to illustrate a
comparison of the results obtained using each
approach. The set of polygons  obtained computing
the local homogenity over the image, overestimate
the total area. The choice of the size of the window
and the geometry between neighbours (distance
and angle) used to compute the coocurrence matrix,
play an important role  in the computation of such
texture features and the final results. Small values
produce holes within the region and larger values
overestimate the area. In order to represent the
texture of areas depicted using the repetition of
patterns, the distance parameter has to be large
enough to include two neighbouring symbols. Since
lower values of the local homogenity are not
restricted to the pixels within the common inner
region and also occur outside its border (as seen on
figure 4), it is difficult to obtain a balance that leads
to a satisfying contourline. Therefore, the distance
parameters influence the value of the texture
features not only within the textured regions, but
also at their imediate neighbourhood. The
consequence is the overestimation of the area,
specially for regions with large distance between
symbols.

The estimation of the inner spaces using the
watershed approach does not have the same
problem. On the other hand, it underestimates the
area, because it is based on a very hard  concept of
inner space, which fails especially on the borders of
the region. This fact can be explained by the form of
the watersheds obtained based on the pixels near
the borders. Since these basins do not form
depressions, that means that the simulated flow
finds an outlet in the background, they are not
marked. This drawback is  partially compensated by
computing the hull of the resulting polygon, but
since some pixels and small groups of pixels are
lost in the segmentation, the resulting region may be
incomplete. That happens especially when the
regions form peaks, as seen on figure 8.
Nevertheless, this method has the advantage of
performing the analysis raster based. This method
does not depend on the previous definition of the
direction in which the neighbours are to be
searched, as the texture parameters and the only
parameter to be chosen is the distance used to
simulate a DTM. It also does not depend on the

form of the neighbourhood, since the distance used
to generate the DTM is computed in all directions.

The best result is obtained using the triangulation.
This approach does not depend on a  previous
definition of the neighbourhood and processes data
in vector format. The  use of the triangle perimeters
of the Delaunay triangulation as a measure of the
distance between pixels shows good results. In our
example regions represented by the small figures on
the panel are easy to separate using this distance
criterion.

The computation of the triangulation is a very
complex process and demands more computational
effort than the other methods. Nevertheles, once
computed, it can be used to produce results using
different perimeter parameters. For example, the
textured wall located behind  the panel on figure 3
was eliminated using a very low value of the
perimeter, which allowed only very close pixels to be
grouped. A larger value was used to group more
distant elements, like the small set in the middle of
the image (figure 9). This method also has the
advantage off avoiding the estimation of the
contours at the  end of the process. Further, the
resulting contour describes the objects of the
original segmentation very precisely.

Problems occur if there are a lot of pixels labeled
with the same grayvalue as the wanted objects but
which do not belong it. This points are included in
the triangulation process and lead to triangles which
are hard to eliminate by spatial criteria. Therefore
the preprocessing has to take care and extract only
pixels of one kind of structured object.

In the three approaches, the extraction of regions
characterized by the repetition of symbols does not
require the symbols to be complete for including
them into the regions, as would be necessary using
template matching, for instance. All methods were
not able to separate regions covered with different
figures, since they only analyse the distance
between pixels and not the meaning of each figure
or symbol.

Figure 11: Segmented image



Figure 11 shows the segmented regions using the
triangulation approach. Some errors produced in the
color segmentation step could be eliminated, but the
presence of such errors near the borders of the
regions have great influence on the quality of the
contours. Improvements could be achieved by
improving the quality of the colour segmentation,
which would reduce such errors. Nevertheless, the
problem of having other figures or symbols  close to
the textured regions remains a potential source of
disturbances.

7 CONCLUSIONS

The inclusion of spatial information into image
analysis to extract spreaded elements in a digital
image was discussed. Three approaches were
compared, the first based on the co-occurrence
matrix, another based on the watershed algorithm
and the last one using a Delaunay triangulation. The
results are different, because of the different
principles these methods are based on.

A comparison of the contours of the regions that
group spreaded pixels into larger regions reveals
that the triangulation based method produces the
best results. The computation of the triangulation is
more expensive, this could be a disadvantage when
dealing with large images. Nevertheless, the
estimated contours describe best the regions
formed by spreaded pixels or figures. The quality of
the colour segmentation plays a decisive role in the
quality of the results, since it is responsible for the
occurrence of noise or the elimination of valid
information prior to the spatial analysis.
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