CMM222 - Análise III S1 - 2023

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

6 DE ABRIL

Aula de hoje: Conjuntos conexos.

- Topologia relativa (ou induzida)
- Conjunto conexos

ABERTOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $A \subset X$ é um **aberto de X** se existe um aberto B de \mathbb{R}^n tal que $A = X \cap B$.

ABERTOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $A \subset X$ é um **aberto de X** se existe um aberto B de \mathbb{R}^n tal que $A = X \cap B$.

OBSERVAÇÃO

- $A \subset X$ é um aberto de X se, e somente se, para cada $p \in A$ existe uma bola aberta $B(p, \epsilon)$ tal que $B(p, \epsilon) \cap X \subset A$.
- Se $X \subset \mathbb{R}^n$ é um aberto, então os abertos de X também são abertos de \mathbb{R}^n

ABERTOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $A \subset X$ é um **aberto de X** se existe um aberto B de \mathbb{R}^n tal que $A = X \cap B$.

OBSERVAÇÃO

- $A \subset X$ é um aberto de X se, e somente se, para cada $p \in A$ existe uma bola aberta $B(p, \epsilon)$ tal que $B(p, \epsilon) \cap X \subset A$.
- Se $X \subset \mathbb{R}^n$ é um aberto, então os abertos de X também são abertos de \mathbb{R}^n

TEOREMA

- (a) Se A_1 e A_2 abertos de X, então $A_1 \cap A_2$ também o é.
- (b) Se $\{A_{\lambda}\}_{{\lambda}\in L}$ é uma coleção de abertos de X, então $A=\bigcup_{{\lambda}\in L}A_{\lambda}$ é um aberto de X.

FECHADOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $F \subset X$ é um **fechado de X** se existe um fechado B de \mathbb{R}^n tal que $F = X \cap B$.

FECHADOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $F \subset X$ é um **fechado de X** se existe um fechado B de \mathbb{R}^n tal que $F = X \cap B$.

OBSERVAÇÃO

- Note que $F \subset X$ é um fechado de X se, e somente se, o conjunto $X \setminus F$ é um aberto de X.
- Se $X \subset \mathbb{R}^n$ é um fechado, então os fechados de X também são fechados de \mathbb{R}^n

FECHADOS RELATIVOS

DEFINIÇÃO

Seja $X \subset \mathbb{R}^n$ um conjunto qualquer. Dizemos que $F \subset X$ é um **fechado de X** se existe um fechado B de \mathbb{R}^n tal que $F = X \cap B$.

OBSERVAÇÃO

- Note que $F \subset X$ é um fechado de X se, e somente se, o conjunto $X \setminus F$ é um aberto de X.
- Se $X \subset \mathbb{R}^n$ é um fechado, então os fechados de X também são fechados de \mathbb{R}^n

TEOREMA

- (a) Se F_1 e F_2 são conjuntos fechados de X, então $F_1 \cup F_2$ também o é.
- (b) Se $\{F_{\lambda}\}_{{\lambda}\in L}$ é uma coleção de fechados de X, então $F=\bigcap_{{\lambda}\in L}A_{\lambda}$ fechado de X.

DEFINIÇÃO

Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição $X = A \cup B$ tal que:

- $\bullet \ A \cap B = \emptyset.$
- A e B são abertos de X.

DEFINIÇÃO

Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição $X = A \cup B$ tal que:

- $\bullet \ A \cap B = \emptyset.$
- A e B são abertos de X.

OBSERVAÇÃO

Todo conjunto $X \subset \mathbb{R}^n$ admite, pelo menos, a **cisão trivial**: A = X e $B = \emptyset$.

DEFINIÇÃO

Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição $X = A \cup B$ tal que:

- $\bullet \ A \cap B = \emptyset.$
- A e B são abertos de X.

OBSERVAÇÃO

Todo conjunto $X \subset \mathbb{R}^n$ admite, pelo menos, a **cisão trivial**: A = X e $B = \emptyset$.

DEFINIÇÃO

Um conjunto $X \subset \mathbb{R}^n$ é dito conexo quando não admite outra cisão além da trivial.

DEFINIÇÃO

Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição $X = A \cup B$ tal que:

- $\bullet \ A \cap B = \emptyset.$
- A e B são abertos de X.

OBSERVAÇÃO

Todo conjunto $X \subset \mathbb{R}^n$ admite, pelo menos, a **cisão trivial**: A = X e $B = \emptyset$.

DEFINIÇÃO

Um conjunto $X \subset \mathbb{R}^n$ é dito conexo quando não admite outra cisão além da trivial.

OBSERVAÇÃO

A definição de cisão pode ser dada, de modo equivalente, por meio de conjuntos fechados.

EXEMPLOS

- O conjunto vazio é conexo.
- Todo conjunto $\{x\}$ é conexo.
- Todo intervalo da reta é conexo (em particular, \mathbb{R}).
- O conjunto $\mathbb{R} \setminus \{0\}$ é desconexo.
- Todo subconjunto discreto $X \subset \mathbb{R}^n$, com mais de um ponto, é desconexo.

TEOREMA

A reunião de uma família de conexos com um ponto em comum é um conjunto conexo.

TEOREMA

A reunião de uma família de conexos com um ponto em comum é um conjunto conexo.

COROLÁRIO

Afim de que $X \subset \mathbb{R}^n$ seja conexo é necessário e suficiente uqe, para quaisquer $a, b \in X$, exista um conexo $C_{a,b}$ tal que $a, b \in C_{ab} \subset X$.

TEOREMA

A reunião de uma família de conexos com um ponto em comum é um conjunto conexo.

COROLÁRIO

Afim de que $X \subset \mathbb{R}^n$ seja conexo é necessário e suficiente uqe, para quaisquer $a, b \in X$, exista um conexo $C_{a,b}$ tal que $a,b \in C_{ab} \subset X$.

TEOREMA

A interseção $K = \bigcap_{\ell=1}^{\infty} K_{\ell}$ de uma sequência decrescente $K_1 \supset K_2 \supset K_3 \supset \dots K_{\ell} \supset \dots$ de compactos conexos é compacta e conexa.

TEOREMA

A reunião de uma família de conexos com um ponto em comum é um conjunto conexo.

COROLÁRIO

Afim de que $X \subset \mathbb{R}^n$ seja conexo é necessário e suficiente uqe, para quaisquer $a, b \in X$, exista um conexo $C_{a,b}$ tal que $a,b \in C_{ab} \subset X$.

TEOREMA

A interseção $K = \bigcap_{\ell=1}^{\infty} K_{\ell}$ de uma sequência decrescente $K_1 \supset K_2 \supset K_3 \supset \dots K_{\ell} \supset \dots$ de compactos conexos é compacta e conexa.

TEOREMA

Sejam $X \subset Y \subset \overline{X} \subset \mathbb{R}^n$. Se X é conexo, então Y também é conexo.

TEOREMA

A reunião de uma família de conexos com um ponto em comum é um conjunto conexo.

COROLÁRIO

Afim de que $X \subset \mathbb{R}^n$ seja conexo é necessário e suficiente uqe, para quaisquer $a, b \in X$, exista um conexo $C_{a,b}$ tal que $a, b \in C_{ab} \subset X$.

TEOREMA

A interseção $K = \bigcap_{\ell=1}^{\infty} K_{\ell}$ de uma sequência decrescente $K_1 \supset K_2 \supset K_3 \supset \dots K_{\ell} \supset \dots$ de compactos conexos é compacta e conexa.

TEOREMA

Sejam $X \subset Y \subset \overline{X} \subset \mathbb{R}^n$. Se X é conexo, então Y também é conexo.

COROLÁRIO

O fecho de um conexo é conexo.