CMM222 - Análise III S1 - 2023

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

13 DE ABRIL

Aula de hoje: Funções contínuas e topologia.

2/9

FUNÇÕES CONTÍNUAS

DEFINIÇÃO

Uma função $f:X\to\mathbb{R}^n$ é dita contínua num ponto $a\in X\subset\mathbb{R}^m$ se vale: para todo $\epsilon>0$, existe $\delta>0$ tal que

$$x \in X$$
, $||x - a|| < \delta \implies ||f(x) - f(a)|| < \epsilon$,

ou equivalentemente,

$$f(B(a,\delta)\cap X)\subset B(f(a),\epsilon).$$

TEOREMA 1

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é contínua e $K \subset X$ é um compacto, então f(K) é compacto.

TEOREMA 1

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é contínua e $K \subset X$ é um compacto, então f(K) é compacto.

COROLÁRIO (WEIERSTRASS)

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}$ é contínua e $K \subset X$ é um compacto, então existem $x_0, x_1 \in K$ tais que

$$f(x_0) \le f(x) \le f(x_1), \ \forall x \in K.$$

TEOREMA 1

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é contínua e $K \subset X$ é um compacto, então f(K) é compacto.

COROLÁRIO (WEIERSTRASS)

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}$ é contínua e $K \subset X$ é um compacto, então existem $x_0, x_1 \in K$ tais que

$$f(x_0) \le f(x) \le f(x_1), \ \forall x \in K.$$

TEOREMA 2

Seja $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ uma função. Temos que f é contínua em X se, e somente se, para todo aberto $A \subset \mathbb{R}^n$ tivermos que $f^{-1}(A)$ é um aberto de X.

TEOREMA 1

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é contínua e $K \subset X$ é um compacto, então f(K) é compacto.

COROLÁRIO (WEIERSTRASS)

Se $f: X \subset \mathbb{R}^m \to \mathbb{R}$ é contínua e $K \subset X$ é um compacto, então existem $x_0, x_1 \in K$ tais que

$$f(x_0) \le f(x) \le f(x_1), \ \forall x \in K.$$

TEOREMA 2

Seja $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ uma função. Temos que f é contínua em X se, e somente se, para todo aberto $A \subset \mathbb{R}^n$ tivermos que $f^{-1}(A)$ é um aberto de X.

TEOREMA 3

Seja $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ uma função. Temos que f é contínua em X se, e somente se, para todo fechado $A \subset \mathbb{R}^n$ tivermos que $f^{-1}(A)$ é um fechado de X.

EXERCÍCIOS

- ① Seja $f: X \to \mathbb{R}^n$ uma função definida no aberto $X \subset \mathbb{R}^m$. Mostre que f é contínua se, e somente se, para todo aberto $A \subset \mathbb{R}^n$ tivermos que $f^{-1}(A)$ é um aberto de \mathbb{R}^m .
- Repita o item anterior trocando aberto por fechado.
- Sejam $f, g: X \subset \mathbb{R}^m \to \mathbb{R}$ duas funções contínuas e considere os conjuntos

$$A = \{x \in X; f(x) < g(x)\},\$$

$$B = \{x \in X; f(x) \le g(x)\},\$$

$$C = \{x \in X; f(x) = g(x)\}.$$

- (a) Mostre que A é aberto de X, enquanto que B, C são fechados de X.
- (b) Interprete o item anterior no caso g constante.

CONTINUIDADE UNIFORME

DEFINIÇÃO

Uma função $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é dita uniformemente contínua em X se, para cada $\epsilon > 0$, existe $\delta > 0$ tal que

$$||x - y|| < \delta \Longrightarrow ||f(x) - f(y)|| < \epsilon, \ \forall x, y \in X.$$

CONTINUIDADE UNIFORME

DEFINIÇÃO

Uma função $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é dita uniformemente contínua em X se, para cada $\epsilon > 0$, existe $\delta > 0$ tal que

$$||x-y||<\delta \Longrightarrow ||f(x)-f(y)||<\epsilon, \ \forall x,y\in X.$$

TEOREMA 4

Uma função $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é dita uniformemente contínua em X se, e somente se,

CONTINUIDADE UNIFORME

DEFINIÇÃO

Uma função $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é dita uniformemente contínua em X se, para cada $\epsilon > 0$, existe $\delta > 0$ tal que

$$||x - y|| < \delta \Longrightarrow ||f(x) - f(y)|| < \epsilon, \ \forall x, y \in X.$$

TEOREMA 4

Uma função $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ é dita uniformemente contínua em X se, e somente se,

EXERCÍCIO

- 1 Toda função Lipschitz é uniformemente contínua
- ② Se $f: K \to \mathbb{R}^n$ é contínua e K é compacto, então f é uniformemente contínua em K.

FUNÇÃO DISTÂNCIA

FUNÇÃO DISTÂNCIA

DEFINIÇÃO

Dados $a \in \mathbb{R}^n$ e um conjunto $X \subset \mathbb{R}^n$ definimos

$$d(a, X) = \inf\{||x - a||, \ \forall x \in X\}$$

FUNÇÃO DISTÂNCIA

DEFINIÇÃO

Dados $a \in \mathbb{R}^n$ e um conjunto $X \subset \mathbb{R}^n$ definimos

$$d(a, X) = \inf\{\|x - a\|, \ \forall x \in X\}$$

EXERCÍCIO

1 Seja $F \subset \mathbb{R}^n$ um conjunto fechado. Dado $a \in \mathbb{R}^n$, mostre que existe $x_0 \in F$ tal que

$$||x - x_0|| \le ||x - a||, \ \forall x \in F.$$

2 Dado $A \subset \mathbb{R}^n$ não vazio, considere $f : \mathbb{R}^n \to \mathbb{R}$ dada por

$$f(x) = d(x, A).$$

Mostre que f é função Lipschitz com k = 1

CONTINUIDADE E CONEXIDADE

CONTINUIDADE E CONEXIDADE

TEOREMA 5

Se $X \subset \mathbb{R}^m$ é conexo e $f: X \to \mathbb{R}^n$ é contínua, então f(X) é conexo.

CONTINUIDADE E CONEXIDADE

TEOREMA 5

Se $X \subset \mathbb{R}^m$ é conexo e $f: X \to \mathbb{R}^n$ é contínua, então f(X) é conexo.

COROLÁRIO

- (a) O produto cartesiano $X \times Y \times \subset \mathbb{R}^m \times \mathbb{R}^n$ é conexo se, e somente se, X e Y são conexos.
- (b) Se $X \subset \mathbb{R}^n$ é conexo e $f: X \to \mathbb{R}$ é contínua, então f(X) é um intervalo.

OBSERVAÇÃO

O item (b) acima é o Teorema do Valor intermediário: Sejam $X \subset \mathbb{R}^n$ conexo e $f: X \to \mathbb{R}$ contínua. Se $a,b \in X$ são tais que f(a) < f(b), então dado f(a) < d < f(b), existe $c \in X$ tal que f(c) = d.

TEOREMA DA ALFÂNDEGA

Seja $X \subset \mathbb{R}^n$ um conjunto. Se um conexo $C \subset \mathbb{R}^n$ contém um ponto $a \in X$ e um ponto $b \in X^c$, então C contém um ponto $c \in \partial X$, em que

$$\partial X = \{ x \in \mathbb{R}^n ; B(x, \epsilon) \cap X \neq \emptyset \text{ e } B(x, \epsilon) \cap X^c \neq \emptyset, \ \forall \epsilon > 0 \}.$$

HOMEOMORFISMO

DEFINIÇÃO

Dois conjuntos $X \subset \mathbb{R}^m$ e $Y \subset \mathbb{R}^n$ são ditos homeomorfos se existe bijeção contínua $f: X \to Y$ cuja inversa também é contínua.

Exercício

Mostre que, em \mathbb{R}^n , a relação $X \sim Y \doteq X$ é homeomorfo a Y é uma relação de equivalência.

EXEMPLOS

- A aplicação $f:[0,2\pi)\to\mathbb{S}^1$, dada por $f(t)=(\cos(t),\sin(t))$ não é um homeomorfismo.
- B(0,1) é homeomorfa a \mathbb{R}^n .
- Considere \mathbb{S}^n e $N = (0, \dots, 0, 1)$. A **projeção estereográfica** $\xi : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ é um homeomorfismo, em que $\xi(x)$ é o ponto no qual a semi-reta \overrightarrow{Nx} corta o hiperplano $x_{n+1} = 0$.

