CMM202 - CMI 062 Análise I

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 2 (Sim, são os exercícios da prova 2): Entregar até dia 8 de fevereiro

Exercício 1 Sejam $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ sequências de números reais. Mostre que:

- (a) se $x_n \to a$ e $a \neq 0$, então existe $N \in \mathbb{N}$ tal que $x_n \neq 0$, para todo $n \geq N$.
- (b) se $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ são convergentes, com $x_n\leqslant y_n$, para todo $n\in\mathbb{N}$, então

$$\lim(x_n) \leqslant \lim(y_n);$$

(c) mostre que se as séries $\sum x_n$ e $\sum y_n$ são convergentes, então $\sum (x_n + y_n)$ é convergente.

Exercício 2 Uma função $f : \mathbb{R} \to \mathbb{R}$ é dita contínua num ponto $p \in \mathbb{R}$ se satisfaz a seguinte propriedade:

• Para todo $\epsilon > 0$, existe $\delta > 0$ tal que

$$|f(x) - f(p)| < \epsilon, \forall x \in \mathbb{R}; |x - a| \le \delta.$$

- (a) Mostre que se f é contínua em p e $x_n \to p$, então a sequência $\{f(x_n)\}$ converge para f(p).
- (b) Mostre que se para toda sequência $\{x_n\}$ convergente para p tivermos que $\{f(x_n)\}$ converge para f(p), então f é contínua em p.

Exercício 3 Mostre que um conjunto $K \subset \mathbb{R}$ é compacto se, e somente se, toda sequência $\{x_n\} \subset K$ possui uma subsequência que converge para algum ponto de K.