CMM202 - CMI 062 Análise I S2 - 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

16 DE NOVEMBRO

Aula de hoje: Supremo e ínfimo em $\mathbb R$

Referências:

• Notas de aula do Prof. Higidio.

DEFINIÇÃO

Um corpo é um conjunto $\mathbb K$ no qual existem duas operações

$$+: \mathbb{K} \times \mathbb{K} \to \mathbb{K} \ e \ \cdot: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$$

chamadas de adição e multiplicação, respectivamente, tais que:

- (A1) x + y = y + x, para todo $x, y \in \mathbb{K}$;
- (A2) (x + y) + z = x + (y + z), para todo $x, y, z \in \mathbb{K}$;
- (A3) existe um elemento $0 \in \mathbb{K}$ tal que x + 0 = x, para todo $x \in \mathbb{K}$;
- (A4) para cada $x \in \mathbb{K}$ existe um elemento $y \in \mathbb{K}$ tal que x + y = 0.
- (P1) $x \cdot y = y \cdot x$, para todo $x, y \in \mathbb{K}$;
- (P2) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, para todo $x, y, z \in \mathbb{K}$;
- (P3) existe um elemento $1 \in \mathbb{K}$ tal que $x \cdot 1 = x$, para todo $x \in \mathbb{K}$;
- (P4) para cada $x \in \mathbb{K} \setminus \{0\}$ existe um elemento $y \in \mathbb{K}$ tal que $x \cdot y = 1$.
- (D) $x \cdot (y + z) = x \cdot y + x \cdot z$, para todo $x, y, z \in \mathbb{K}$.
 - $\bullet\;$ Utiliza-se a notação $(\mathbb{K},+,\cdot)$ para indicar que o corpo \mathbb{K} está munido das operações + e

DEFINIÇÃO

Dizemos que um corpo \mathbb{K} é ordenado se contem um subconjunto P, chamado de subconjunto dos elementos positivos de \mathbb{K} , satisfazendo as seguintes propriedades:

(a) Se $a, b \in P$, então

$$a+b \in P$$
 e $a \cdot b \in P$

(b) Se $x \in \mathbb{K}$, então apenas uma das seguintes possibilidades ocorre:

$$x \in P, -x \in P, \text{ ou } x = 0$$

DEFINIÇÃO

Seja $\mathbb K$ um corpo ordenado e P o conjunto dos elementos positivos. Dados $a,b\in\mathbb K$ defini-se

$$a < b \doteq b - a \in P$$
.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

(a) Dizemos que E é limitado superiormente se existe $\beta \in \mathbb{K}$ tal que

$$x \le \beta, \ \forall x \in E.$$
 (1)

Qualquer $\beta \in \mathbb{K}$ que satisfaz a designaldade (1) é dito **cota superior** de E.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

(a) Dizemos que E é limitado superiormente se existe $\beta \in \mathbb{K}$ tal que

$$x \le \beta, \ \forall x \in E.$$
 (1)

Qualquer $\beta \in \mathbb{K}$ que satisfaz a designaldade (1) é dito **cota superior** de E.

(b) Dizemos que E é limitado inferiormente se existe $\alpha \in \mathbb{K}$ tal que

$$\alpha \le x, \ \forall x \in E.$$
 (2)

Qualquer $\alpha \in \mathbb{K}$ que satisfaz a desigualdade (2) é dito **cota inferior** de E.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

(a) Dizemos que E é limitado superiormente se existe $\beta \in \mathbb{K}$ tal que

$$x \le \beta, \ \forall x \in E.$$
 (1)

Qualquer $\beta \in \mathbb{K}$ que satisfaz a designaldade (1) é dito **cota superior** de E.

(b) Dizemos que E é limitado inferiormente se existe $\alpha \in \mathbb{K}$ tal que

$$\alpha \le x, \ \forall x \in E.$$
 (2)

Qualquer $\alpha \in \mathbb{K}$ que satisfaz a desigualdade (2) é dito **cota inferior** de E.

(c) Dizemos que E é limitado se o for superiormente e inferiormente. Neste caso, existem $\alpha, \beta \in S$ tais que

$$\alpha \le x \le \beta, \ \forall x \in E. \tag{3}$$

OBSERVAÇÕES

• É muito importante observar que em nenhuma das definições acima estamos supondo $\alpha \in E$ ou $\beta \in E$.

OBSERVAÇÕES

- É muito importante observar que em nenhuma das definições acima estamos supondo $\alpha \in E$ ou $\beta \in E$.
- Quando existe m ∈ E tal que m ≤ x, para todo x ∈ E, então dizemos que m é o menor elemento de E. Neste caso, utilizamos a notação

$$m = \min E$$
.

• Quando existe $M \in E$ tal que $x \le M$, para todo $x \in E$, então dizemos que M é o maior elemento de E. Neste caso, utilizamos a notação

$$M = \max E$$
.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

- (a) Um elemento $\beta \in \mathbb{K}$ é dito supremo de E, se satisfaz as seguintes condições:
- (i) β é uma cota superior de E;
- (ii) se $\gamma < \beta$, então γ não é uma cota superior de E.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

- (a) Um elemento $\beta \in \mathbb{K}$ é dito supremo de E, se satisfaz as seguintes condições:
- (i) β é uma cota superior de E;
- (ii) se $\gamma < \beta$, então γ não é uma cota superior de E.
- (b) Um elemento $\alpha \in \mathbb{K}$ é dito ínfimo de E, se satisfaz as seguintes condições:
- (i) α é uma cota inferior de E;
- (ii) se $\alpha < \gamma$, então γ não é uma cota inferior de E.

O supremo de E, quando existe, será denotado por sup E.

DEFINIÇÃO

Sejam \mathbb{K} um corpo ordenado e $E \subset \mathbb{K}$ um subconjunto.

- (a) Um elemento $\beta \in \mathbb{K}$ é dito supremo de E, se satisfaz as seguintes condições:
- (i) β é uma cota superior de E;
- (ii) se $\gamma < \beta$, então γ não é uma cota superior de E.
- (b) Um elemento $\alpha \in \mathbb{K}$ é dito ínfimo de E, se satisfaz as seguintes condições:
- (i) α é uma cota inferior de E;
- (ii) se $\alpha < \gamma$, então γ não é uma cota inferior de E.

O supremo de E, quando existe, será denotado por sup E.

- Note que sup E, quando existe, é a menor das cotas superiores!
- Note que inf *E*, quando existe, é a **maior das cotas inferiores**!

• Considere em $\mathbb Q$ o conjunto $E=\{x\in\mathbb Q;\ 0\leq x<1\}.$ Neste caso,

$$\inf E = 0 \ \text{e} \ \sup E = 1$$

• Considere em \mathbb{Q} o conjunto $E = \{x \in \mathbb{Q}; \ 0 \le x < 1\}$. Neste caso,

$$\inf E = 0 \text{ e } \sup E = 1$$

• Se E possui um elemento máximo M, então $M = \sup E$. Por outro lado, se E possui um elemento mínimo m, então $m = \inf E$.

• Considere em \mathbb{Q} o conjunto $E = \{x \in \mathbb{Q}; \ 0 \le x < 1\}$. Neste caso,

$$\inf E = 0 \text{ e } \sup E = 1$$

- Se E possui um elemento máximo M, então $M = \sup E$. Por outro lado, se E possui um elemento mínimo m, então $m = \inf E$.
- Considere E_1 o conjunto dos racionais r > 0 e E_2 os dos racionais $s \le 0$. Note que

$$\inf E_1 = \sup E_2 = 0, \text{ mas } 0 \notin E_1.$$

• Considere em \mathbb{Q} o conjunto $E = \{x \in \mathbb{Q}; \ 0 \le x < 1\}$. Neste caso,

$$\inf E = 0 \text{ e } \sup E = 1$$

- Se E possui um elemento máximo M, então $M = \sup E$. Por outro lado, se E possui um elemento mínimo m, então $m = \inf E$.
- Considere E_1 o conjunto dos racionais r > 0 e E_2 os dos racionais $s \le 0$. Note que

$$\inf E_1 = \sup E_2 = 0, \text{ mas } 0 \notin E_1.$$

• Considere $E = \{1/n; n \in \mathbb{N}\} \subset \mathbb{Q}$. Temos $\inf E = 0 \notin E$ e $\sup E = 1 \in E$.

• Considere em \mathbb{Q} o conjunto $E = \{x \in \mathbb{Q}; \ 0 \le x < 1\}$. Neste caso,

$$\inf E = 0 \text{ e } \sup E = 1$$

- Se E possui um elemento máximo M, então $M = \sup E$. Por outro lado, se E possui um elemento mínimo m, então $m = \inf E$.
- Considere E_1 o conjunto dos racionais r > 0 e E_2 os dos racionais $s \le 0$. Note que

$$\inf E_1 = \sup E_2 = 0, \text{ mas } 0 \notin E_1.$$

- Considere $E = \{1/n; n \in \mathbb{N}\} \subset \mathbb{Q}$. Temos inf $E = 0 \notin E$ e sup $E = 1 \in E$.
- Considere os seguintes subconjuntos de Q:

$$A = \{ p \in \mathbb{Q}; \ p \ge 0 \ \text{e} \ p^2 < 2 \} \ \text{e} \ B = \{ p \in \mathbb{Q}; \ p \ge 0 \ \text{e} \ 2 < p^2 \}.$$

Neste caso, A é limitado superiormente e B é limitado inferiormente. Porém, A não possui supremo e B não possui ínfimo.

DEFINIÇÃO

Sejam $\mathbb K$ um corpo ordenado. Dizemos que $\mathbb K$ satisfaz a propriedade do:

- (a) **ínfimo**, se todo subconjunto limitado inferiormente possui ínfimo.
- (b) **supremo**, se todo subconjunto limitado superiormente possui supremo.

DEFINIÇÃO

Sejam $\mathbb K$ um corpo ordenado. Dizemos que $\mathbb K$ satisfaz a propriedade do:

- (a) **ínfimo**, se todo subconjunto limitado inferiormente possui ínfimo.
- (b) **supremo**, se todo subconjunto limitado superiormente possui supremo.

OBSERVAÇÃO

Um corpo ordenado \mathbb{K} satisfaz a propriedade do ínfimo se, e somente se, satisfaz a propriedade do supremo. Em particular, dizemos que um **corpo é completo** se satisfaz uma dessas propriedades.

DEFINIÇÃO

Sejam $\mathbb K$ um corpo ordenado. Dizemos que $\mathbb K$ satisfaz a propriedade do:

- (a) **ínfimo**, se todo subconjunto limitado inferiormente possui ínfimo.
- (b) **supremo**, se todo subconjunto limitado superiormente possui supremo.

OBSERVAÇÃO

Um corpo ordenado $\mathbb K$ satisfaz a propriedade do ínfimo se, e somente se, satisfaz a propriedade do supremo. Em particular, dizemos que um **corpo é completo** se satisfaz uma dessas propriedades.

TEOREMA (DEDEKIND)

Existe um corpo ordenado completo, denotado por $\mathbb R$ e chamado de corpo dos números reais, que contém $\mathbb Q$ como subcorpo (ordenado).

DEFINIÇÃO

Sejam $\mathbb K$ um corpo ordenado. Dizemos que $\mathbb K$ satisfaz a propriedade do:

- (a) **ínfimo**, se todo subconjunto limitado inferiormente possui ínfimo.
- (b) **supremo**, se todo subconjunto limitado superiormente possui supremo.

OBSERVAÇÃO

Um corpo ordenado $\mathbb K$ satisfaz a propriedade do ínfimo se, e somente se, satisfaz a propriedade do supremo. Em particular, dizemos que um **corpo é completo** se satisfaz uma dessas propriedades.

TEOREMA (DEDEKIND)

Existe um corpo ordenado completo, denotado por $\mathbb R$ e chamado de corpo dos números reais, que contém $\mathbb Q$ como subcorpo (ordenado).

A afirmação Q como subcorpo (ordenado) diz que Q ⊂ R e que as operações de adição e
multiplicação de R, quando aplicadas em Q, coincidem com as operações de Q. Além
disso, os racionais positivos também são positivos em R.

\mathbb{R} É ARQUIMEDIANO

Dado $x \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que x < n.

\mathbb{R} É ARQUIMEDIANO

Dado $x \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que x < n.

\mathbb{Q} é denso em \mathbb{R}

Dados $a, b \in \mathbb{R}$, com a < b, existe $x \in \mathbb{Q}$ tal que a < x < b.

\mathbb{R} É ARQUIMEDIANO

Dado $x \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que x < n.

\mathbb{Q} é denso em \mathbb{R}

Dados $a, b \in \mathbb{R}$, com a < b, existe $x \in \mathbb{Q}$ tal que a < x < b.

TEOREMA

Dado $b \in \mathbb{R}$, b > 0, existe único $x \in \mathbb{R}$, positivo, tal que $x^2 = b$.

OBS

Dados $s, t \in \mathbb{R}$, com 0 < s < t, vale

$$s^2 - t^2 < 2s(s - t)$$

10/10