MATE-7007 - Análise Funcional - Verão 2022 Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 5

Exercício 1 Seja \mathbb{X} um espaço de Banach. Mostre que \mathbb{X} é reflexivo se, e somente se, \mathbb{X}^* é reflexivo. Seja \mathbb{Z} um subespaço fechado do espaço normado \mathbb{X} e $x_0 \in \mathbb{X} \setminus \mathbb{Z}$. Mostre que existe $f \in \mathbb{X}^*$ tal que

$$||f|| = \frac{1}{d(x_0, Z)}, \quad f|_Z \equiv 0, \quad f(x_0) = 1.$$

Exercício 2 Seja M um subconjunto do espaço normado X. Mostre que

- (a) $x_0 \in \overline{Ger(M)}$ se, e somente se, $f(x_0) = 0$ para todo $f \in \mathbb{X}^*$ tal que $f|_M \equiv 0$.
- $(b)\ \ \textit{Mostre que M \'e total se, e somente se, para todo $f \in \mathbb{X}^*$ tal que $f\big|_M \equiv 0$ tem-se que $f \equiv 0$.}$

Exercício 3 Sejam X e Y espaços normados isometricamente isomorfos. Mostre que, se X é reflexivo então Y é reflexivo.

Exercício 4 Seja \mathbb{X} um espaço normado e $M \subseteq \mathbb{X}$, $N \subseteq \mathbb{X}^*$, considere os conjuntos anuladores:

$$M^a = \{ f \in \mathbb{X}^* : f(x) = 0, \quad \forall x \in M \}, \quad {}^aN = \{ x \in \mathbb{X} : f(x) = 0, \quad \forall f \in N \}.$$

- $(a)\ \ Mostre\ que\ (\overline{Ger(M)})^a=M^a\ e\ ^a\!\!\left(\overline{Ger(N)}\right)={}^a\!N.$
- (b) Sejam \mathbb{X} , \mathbb{Y} espaços normados e $T \in B(\mathbb{X}; \mathbb{Y})$. Mostre que $Im(T)^a = Nu(T')$ e $Im(T) \subseteq {}^aNu(T')$.

Exercício 5 Um subconjunto U do espaço normado \mathbb{X} é dito aberto fraco sequencial se tem a seguinte propriedade: Se $x \in U$ e $\{x_n\}$ é uma sequencia em \mathbb{X} tal que $x_n \stackrel{w}{\longrightarrow} x$ então existe n_0 tal que $x_n \in U$ para todo $n \geq n_0$. Mostre que todo subconjunto aberto fraco sequencial é um conjunto aberto.

Exercício 6 Seja \mathbb{X} m espaço de Banach considere $\{T_n\}$, T, $\{S_n\}$ e S elementos de $B(\mathbb{X};\mathbb{X})$. Mostre que

- (a) Se $T_n \to T$ forte e $S_n \to S$ fraco então $S_n T_n \to ST$ fraco.
- (b) Se $T_n toT$ fraco e $S_n \to S$ forte então $S_n T_n \to ST$ fraco.

Exercício 7 Sejam \mathbb{X} , \mathbb{Y} espaços normados. Se $T: \mathbb{X} \to \mathbb{Y}$ é um operador linear que leva sequências fortemente convergentes para 0 em sequências fracamente convergentes para 0, mostre que T é contínuo.

Exercício 8 Se $\phi_n \xrightarrow{w} \phi$ em C[a,b], mostre que $\phi_n(t) \to \phi(t)$ para cada $t \in [a,b]$.

Exercício 9 Sejam \mathbb{X} , \mathbb{Y} espaços métricos e $h: \mathbb{X} \to \mathbb{Y}$ uma função bijetiva. Mostre que h é uma aplicação aberta se, e somente se, h^{-1} é contínua.

Exercício 10 Considere $\mathbb X$ o subespaço de ℓ^∞ cujos elementos são as sequências que tem no máximo um numero finito de entradas não nulas. Mostre que o operador linear $T: \mathbb X \to \mathbb X$ dado por

$$T(x_1, x_2, x_3, \ldots) = (x_1, 2x_2, 3x_3, \ldots),$$

 \acute{e} uma aplicação aberta. T^{-1} \acute{e} uma aplicação aberta?

Exercício 11 Seja $T: \mathbb{X} \to \mathbb{Y}$ um operador linear limitado onde \mathbb{X} , \mathbb{Y} são espaços de Banach. Se T é bijetivo, mostre que existem constantes positivas c_1 , c_2 tal que

$$c_1||x|| \le ||Tx|| \le c_2||x||, \quad \forall x \in \mathbb{X}.$$

Exercício 12 Sejam \mathbb{X} , \mathbb{Y} espaços normados. Mostre que a projeção $P: \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$, P(x,y) = x é uma aplicação aberta.

Exercício 13 Consideremos o espaço vetorial $C^1[0,1]$ com a norma $||f||_{C^1} := ||f||_{\infty} + ||f'||_{\infty}$. Mostre que o operador diferenciação $T: C^1[0,1] \to C[0,1]$ dada por Tf = f' é uma aplicação aberta.

Exercício 14 Sejam \mathbb{X} , \mathbb{Y} espaços de Banach e $T: \mathbb{X} \to \mathbb{Y}$ um operador linear limitado e injetivo. Mostre que sua inversa: $T^{-1}: Im(T) \subseteq \mathbb{Y} \to \mathbb{X}$ é um operador linear limitado, se e somente se, Im(T) é fechado.

Exercício 15 Sejam \mathbb{X} , \mathbb{Y} espaços normados e $T: \mathbb{X} \to \mathbb{Y}$ um operador linear fechado. Mostre que

- (a) Se $A \subseteq \mathbb{X}$ é compacto, então T(A) é fechado.
- (b) Se $B \subseteq \mathbb{Y}$ é compacto, então $T^{-1}(B) := \{x \in \mathbb{X} : Tx \in B\}$ é fechado.

Exercício 16 Sejam \mathbb{X} , \mathbb{Y} espaços normados e $T:D(T)\subseteq\mathbb{X}\to\mathbb{Y}$ é um operador linear fechado injetivo. Mostre que

- 1. T^{-1} é um operador fechado.
- 2. Se T^{-1} é limitado e \mathbb{X} é completo, então Im(T) é fechado.
- 3. Se Im(T) é fechado e \mathbb{X} , \mathbb{Y} são completos, então T^{-1} é limitado.

Exercício 17 Considere o operador $T: \ell^2 \to \ell^2$ dado por

$$T(x_1, x_2, x_3, \ldots) = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \ldots\right)$$

Mostre que

- (a) T é limitado e calcule sua norma.
- (b) Im(T) não é fechado.
- (c) T é injetiva, porém $T^{-1}: \operatorname{Im}(T) \subseteq \ell^2 \to \ell^2$ não é limitado.
- (d) Se trocamos ℓ^2 por ℓ^p com $1 \le p \le \infty$ valem os resultados anteriores?

Exercício 18

Exercício 19 Uma sequência $\{x_n\} \subset \mathcal{N}$ é dita fracamente de Cauchy se paraq todo $f \in \mathcal{N}^*$ a sequência $\{f(x_n)\}$ é de Cauchy.

- (i) Mostre que uma sequência fracamente de Cauchy é limitada.
- (ii) Considere $A \subset \mathcal{N}$ tal que todo subconjutno de A possui uma sequência fracamente de Cauchy. Mostre que A é limitado.

Exercício 20 Mostre que a aplicação $T: \mathbb{R}^2 \to \mathbb{R}$ dada por T(x,y) = x é aberta.

Exercício 21 Sejam X e Y dois espaços de Banach e $T: X \to Y$ linear, contínuo e injetivo. Mostre que $T^{-1}: T(X) \to X$ é limitado se, e somente se, T(X) éf echado em Y.

Exercício 22 Considere \mathcal{H} um espaço de Hilbert e $\{e_j\}_{j\in\mathbb{N}}$ uma base ortonormal. Considere o operador $P_n:\mathcal{H}\to\mathcal{H}$ dado por

$$P_n(x) = \sum_{j=1}^n \langle e_j, x \rangle e_j.$$

Mostre que $P_n \stackrel{s}{\longrightarrow} I$.

Exercício 23 Sejam \mathcal{N}_1 e \mathcal{N}_2 dois espaços normados e $T: \mathcal{N}_1 \to \mathcal{N}_2$ linear e fechado.

- (i) Se T^{-1} existe, então é fechado.
- (ii) Se $S \in \mathcal{B}(\mathcal{N}_1, \mathcal{N}_2)$, então T + S é fechado.
- (iii) Se $\mathcal{N}_1 = \mathcal{N}_2 = \mathcal{N}$, então para cada $\lambda \in \mathbb{K}$ temos que $Ker(T \lambda I)$ é fechado.