Análise em \mathbb{R}^n

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 5: Integração

Exercício 1 Sejam $A \subset \mathbb{R}^n$ um retângulo (ou J-mensurável). Mostre que se $f : A \to \mathbb{R}$ é contínua, então f é integrável. (Tente fazer pela definição.)

Exercício 2 Sejam $f, g: A \subset \mathbb{R}^n \to \mathbb{R}$ funções integráveis sobre retângulo A.

1. Mostre que cf + g é integrável e vale

$$\int_{A} (cf + g)(x)dx = c \int_{A} f(x)dx + \int_{A} g(x)dx,$$

sendo $c \in \mathbb{R}$.

2. Se $f(x) \ge 0$, para cada $X \in A$, então

$$\int_{A} f(x)dx \geqslant 0.$$

Em particular, se $f(x) \leq g(x)$, para cada $X \in A$, então

$$\int_{A} f(x)dx \leqslant \int_{A} g(x)dx.$$

3. A função $x \mapsto |f(x)|$ é integrável e vale

$$\left| \int_{A} f(x) dx \right| \leqslant \int_{A} |f(x)| dx.$$

Em particular,

$$\left| \int_{A} f(x) dx \right| \leqslant M \cdot vol(A).$$

4. Se f é contínua, então exite $c \in A$ tal que

$$\int_{A} f(x)dx = f(c) \cdot vol(A).$$

Exercício 3 Suponha que $X \subset \mathbb{R}^n$ tem medida nula e $f: X \to \mathbb{R}$ localmente Lipschitziana. Mostre que f(X) tem medida nula.

Exercício 4 Suponha $f: U \to \mathbb{R}^n$ um difeomorfismo de classe C^1 sobre o aberto $U \subset \mathbb{R}^n$. Mostre que se $X \subset U$ tem medida nula, então f(X) tem medida nula.

Exercício 5 Mostre que na definição de conjunto J-mensurável, digamos X, tem-se independência da escolha do retângulo que contém X. Em particular, vol(X) está bem definido.

Exercício 6 Sejam $X,Y \subset \mathbb{R}^n$ dois conjuntos limitados. Mostre que

1.
$$\xi_{X \cup Y} = \xi_X + \xi_Y - \xi_{X \cap Y}$$
;

2.
$$\xi_{X \cap Y} = \xi_X \cdot \xi_Y$$
.

Exercício 7 Sejam $A \subset B$ retângulos em \mathbb{R}^n . Se $f : B \to \mathbb{R}$ é integrável, então a restrição $f|_A$ é integrável em A.

Exercício 8 Considere $f: A \subset \mathbb{R}^n \to \mathbb{R}^n$ integrável no retângulo A. Mostre que o gráfico de f é um subconjunto de \mathbb{R}^{n+1} de medida nula.

Exercício 9 Mostre que se X é J-mensurável e $int(X) = \emptyset$, então vol(X) = 0.

Exercício 10 Sejam $X, Y \subset \mathbb{R}^n$ dois conjuntos J-mensuráveis. Mostre que uma função $f: X \cup Y \to \mathbb{R}$ é integrável se, e somente se, as restrições $f|_X$ e $f|_Y$ são integráveis. Neste caso, vale

$$\int_{X \cup Y} f(x)dx = \int_X f(x)dx + \int_Y f(x)dx - \int_{X \cap Y} f(x)dx.$$

Além disso, se $int(X \cap Y) = \emptyset$, então

$$\int_{X \cup Y} f(x)dx = \int_{X} f(x)dx + \int_{Y} f(x)dx.$$

Exercício 11 Repita o exercício (2) no caso em que A é um conjunto J-mensurável. (No item (4) é preciso supor A conexo.)

Exercício 12 Seja $f: X \to \mathbb{R}$ integrável no conjunto J-mensurável X. Se $Y \subset X$ é J-mensurável e X/Y tem interior vazio, então

$$\int_X f(x)dx = \int_Y f(x)dx.$$

Em particular, se U = int(X), então

$$\int_X f(x)dx = \int_U f(x)dx.$$

Exercício 13 Seja $X \subset \mathbb{R}^n$ um conjunto J-mensurável. Se $T : \mathbb{R}^n \to \mathbb{R}^n$ é linear e invertível, então $vol(T(X)) = |\det(T)| \cdot vol(X)$.

Exercício 14 Seja $f: U \to \mathbb{R}$ de classe C^1 no aberto $U \subset \mathbb{R}^n$. Se f'(a) é inversível, prove que

$$\lim_{r \to 0} \frac{vol(f(B(a,r)))}{vol(B(a,r))} = |\det f'(a)|.$$

Exercício 15 Demonstre o Tereoma de Sard:

Teorema 1 Seja $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação de calsse C^1 sobre o aberto U e

$$A = \{x \in U; \det f'(x) = 0\}.$$

Nestas condições, f(A) tem medida nula. (O conjuto A é o conjuntos dos pontos nos quais f' não é um isomorfismo!)

Exercício 16 Sejam $\varphi : [a,b] \to \mathbb{R}$ e $\psi : [c,d] \to \mathbb{R}$ duas funções integráveis. Mostre que a função $f(x,y) = \varphi(x)\psi(y)$ é integrável em $A = [a,b] \times [c,d]$ e vale

$$\int_{A} f(x,y)dxdy = \left(\int_{a}^{b} \varphi(x)dx\right) \left(\int_{c}^{d} \psi(y)dy\right).$$