On Local Solvability of Linear Partial Differential Equations - Part II

Fernando de Ávila Silva

рі ін. ' (р / р

The main goal:

To present sufficient conditions for the local solvabillity of equation

$$Pu = f. \tag{1}$$

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

(UFPR-BRAZIL)

Remark

We recall that equation (1) is said to be locally solvable, at a point $x_0 \in \mathbb{R}^n$, if there is a neighborhood V of x_0 such that for every function $f \in C_c^{\infty}(V)$ there is a distribution u in V satisfying (1)

Remark

Here, *P* is a linear partial differential operator of order *m*, with **smooth** coefficients. The leading symbol $p(x, \xi)$ is a homogeneous polynomial in $\xi = (\xi_1, \ldots, \xi_n)$ of degree *m*, where $x = (x_1, \ldots, x_n)$.

Remark

Also, we are assuming that:

(a) P is a principal type operator, namely,

$$p(x_0, \xi_0) = 0$$
, and $\xi_0 \neq 0 \implies \nabla_{\xi} p(x_0, \xi_0) \neq 0$;

(b) the real and imaginary parts of p are real analytic.

Condition ¶

Definition

If $p(x,\xi) = A + iB$ and if $\nabla A \neq 0$ in a neighborhood of a point (x_0,ξ_0) , the bicharacteristics of *A* are the oriented curves

$$\frac{dx}{ds} = \nabla_{\xi} A(x,\xi)$$
 and $\frac{d\xi}{ds} = -\nabla_{x} A(x,\xi)$

The curves on which A vanishes are called the null-bicharacteristics of A

Condition ¶

On every null-bicharacteristics Γ of $\Re p$ the function $\Im p$ does not change sign, that is, we always have $\Im p \ge 0$ or $\Im p \le 0$ on Γ .

The main results

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへの

(UFPR-BRAZIL)

The main results

Theorem (1)

Let P be a partial differential operator of principal type with analytic leading coefficients. If condition \P holds for x in a neighborhood of x_0 , then x_0 has a neighborhood Ω_0 such that for every $f \in L^2(\Omega_0)$ there is a solution u of (1) in $H^{m-1}(\Omega_0)$.

Theorem (2)

In order that Pu = f be locally solvable at every point, it is necessary and sufficient that condition \P hold. (*P* is partial differential operator of principal type with analytic leading coefficients).

Theorem (5)

Under the conditions of Theorem 1, assume that f belongs to H^k , k a positive integer; then there exists a neighborhood Ω_0^k of x_0 in which there is a solution u of (1) belonging to H^{k+m-1} .

Theorem (3)

Condition ¶ *is equivalent to each of the following:*

(a) Every point x_0 has a neighborhood Ω_0 such that, for some constant C > 0,

$$\|u\|_0 \le C \|^t P u\|_{1-m} \text{ for all } u \in C_c^\infty(\Omega_0)$$
(3)

(b) Every point x₀ has a neighborhood Ω₀ such that, for some constant C > 0,
 ||u||_{m-1} ≤ C||^tPu||₀ for all u ∈ C[∞]_c(Ω₀) (4)

(c) Given ε > 0, any point x₀ has a neighborhood Ω_ε such that, for some constant C > 0,

 $\|u\|_{m-1} \le \epsilon \|^{t} P u\|_{0} \text{ for all } u \in C_{c}^{\infty}(\Omega_{\epsilon})$ (5)

Furthermore, in any of these statements the operators P and ${}^{t}P$ may be interchanged or replaced by p(x, D), the leading part of P.

Some remarks

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

(UFPR-BRAZIL)

Some remarks

- The essential point in the proofs of Theorems 1 and 3 is the proof that the condition ¶ implies condition c) of Theorem 3.
- By Bruno's seminars we know that if condition ¶ implies

$$\|u\|_{m-1} \le \epsilon \|^t P u\|_0 \text{ for all } u \in C_c^{\infty}(\Omega_{\epsilon}),$$
(5)

then we obtain the proofs of Theorems 1, 3 and 5.

• By Alexandre's seminars we know that condition ¶ is invariant by a product of non vanishing functions.

Condition \P implies c)

The proof of this statement consists of three main steps:

(Step 1) In this step the authors reduce (5) to a similar estimate for a first order Ψ .D.O. satisfying ¶. Namely, in a neighborhood of a point (x_0, ξ_0) where *p* vanishes, assuming, say, $\partial p / \partial_{\xi_n} \neq 0$ there, we may factor

$$p = q(x,\xi) \cdot (\xi_n - \lambda(x,\xi_1,\ldots,\xi_{n-1})),$$

with $q \neq 0$ in the neighborhood. The problem is then reduced to one of an estimate of the form

$$\|u\|_0 \le \epsilon \, \|Lu\|_0, \text{ for } u \in C_c^\infty(\Omega_\epsilon), \tag{7}$$

where

$$L = D_n - \lambda(x, D_1, \dots, D_{n-1}).$$

- (Step 2) This step consists in making a transformation to eliminate the real part *a* of $\lambda = a + ib$, that is, reducing $\Re \lambda$ to ξ_n .
- (Step 3) In this step the idea is to show (7) in case λ is pure imaginary.

イロト イロト イヨト イヨト

(UFPR-BRAZIL)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

9/14

... the proof is somewhat tedious...

Partition of unity on the sphere $|\xi| = 1$.

 Let g_j(ξ), j = 1,..., r be non-negative C[∞] function of ξ on |ξ| = 1, with ∑ g_j ≡ 1. Extending g_j as a C[∞] function to all ξ-space which is homogeneous of degree zero for |ξ| ≥ 1/2.

... the proof is somewhat tedious...

Partition of unity on the sphere $|\xi| = 1$.

- Let g_j(ξ), j = 1,..., r be non-negative C[∞] function of ξ on |ξ| = 1, with ∑ g_j ≡ 1. Extending g_j as a C[∞] function to all ξ-space which is homogeneous of degree zero for |ξ| ≥ 1/2.
- Consider the Ψ .D.O. (of order zero)

$$g_j(D)u(x) = (2\pi)^{-n} \int e^{ix\xi} g_j(\xi)\widehat{u}(\xi), \ u \in C_c^\infty(\mathbb{R}^n).$$

• We have $\sum g_j(D) \equiv I$ an infinitely smooth operator.

... the proof is somewhat tedious...

Partition of unity on the sphere $|\xi| = 1$.

- Let g_j(ξ), j = 1,..., r be non-negative C[∞] function of ξ on |ξ| = 1, with ∑ g_j ≡ 1. Extending g_j as a C[∞] function to all ξ-space which is homogeneous of degree zero for |ξ| ≥ 1/2.
- Consider the Ψ .D.O. (of order zero)

$$g_j(D)u(x) = (2\pi)^{-n} \int e^{ix\xi} g_j(\xi)\widehat{u}(\xi), \ u \in C_c^\infty(\mathbb{R}^n).$$

• We have $\sum g_j(D) \equiv I$ an infinitely smooth operator.

• For any $u \in C_0^{\infty}(\mathbb{R}^n)$ we have

$$\|u\|_{m-1} \le \sum \|g_j(D)u\|_{m-1} + C\|u\|_{m-2}.$$
(1.5)

• Locally, we may assume that the coefficients of *p* have compact support;

・ロト ・四ト ・ヨト ・ヨト

- Locally, we may assume that the coefficients of *p* have compact support;
- We may then consider the commutators

$$[p(x,D),g_j(D)]$$

which are Ψ .D.O.'s of order $\leq m - 1$.

• It follows that

$$\sum \|p(x,D)g_j(D)u\|_0 \le \|p(x,D)u\|_0 + C\|u\|_{m-1}.$$
(1.6)

• For now on we shall assume $x_0 = 0$.

イロト 不得 とくき とくき とうき

The key point now is to show:

• the decomposition

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi), \text{ (locally)}$$

with $q \neq 0$, and $\xi' = (\xi_1, \dots, \xi_{n-1}).$

2

イロト イロト イヨト イヨト

The key point now is to show:

• the decomposition

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi), \text{ (locally)}$$

with
$$q \neq 0$$
, and $\xi' = (\xi_1, ..., \xi_{n-1})$.

• that q and $\lambda(x,\xi')$ defines Ψ .D.O.'s.

イロト イポト イヨト イヨト

<ロ> <四> <四> <四> <四> <四> <四</p>

• we may assume $|\xi_0| = 1$,

$$abla_{\xi} p(0,\xi_0)
eq 0 ext{ and } rac{\partial p}{\partial_{\xi_n}}(0,\xi_0)
eq 0.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

• we may assume $|\xi_0| = 1$,

$$abla_{\xi} p(0,\xi_0)
eq 0 \ \ ext{and} \ \ rac{\partial p}{\partial_{\xi_n}}(0,\xi_0)
eq 0.$$

• we will denote
$$\xi' = (\xi_1, ..., \xi_{n-1}).$$

• By the analyticity of *p*, there is an analytic function

 $\lambda(x,\xi')$ in $X \times U'$,

where

• we may assume $|\xi_0| = 1$,

$$abla_{\xi} p(0,\xi_0)
eq 0 \ \ ext{and} \ \ rac{\partial p}{\partial_{\xi_n}}(0,\xi_0)
eq 0.$$

• we will denote
$$\xi' = (\xi_1, ..., \xi_{n-1}).$$

• By the analyticity of *p*, there is an analytic function

$$\lambda(x,\xi')$$
 in $X \times U'$,

where

- *X* is a neigh. of the origin in \mathbb{R}^n
- U' is a neigh. of ξ'_0 in the (n-1)-dimensional space ξ' .

イロン 不得 とくほ とくほう 一日

This function λ satisfies $\lambda(0,\xi') = \xi_{0,n}$ and

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi)$$

where $q \neq 0$ in $X \times U$, where U is a neigh. of ξ_0 .

< □ > < @ > < E > < E > < E</p>

This function λ satisfies $\lambda(0,\xi') = \xi_{0,n}$ and

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi)$$

where $q \neq 0$ in $X \times U$, where U is a neigh. of ξ_0 .

Remark

We point out that if the coefficients of p are merely C^{∞} , then there is such a C^{∞} factorization since p is analytic in ξ .

This function λ satisfies $\lambda(0,\xi') = \xi_{0,n}$ and

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi)$$

where $q \neq 0$ in $X \times U$, where U is a neigh. of ξ_0 .

Remark

We point out that if the coefficients of p are merely C^{∞} , then there is such a C^{∞} factorization since p is analytic in ξ .

Remark

By homogeneity, we see that $\xi'_0 \neq 0$.

This function λ satisfies $\lambda(0, \xi') = \xi_{0,n}$ and

$$p(x,\xi) = (\xi_n - \lambda(x,\xi')) \cdot q(x,\xi)$$

where $q \neq 0$ in $X \times U$, where U is a neigh. of ξ_0 .

Remark

We point out that if the coefficients of p are merely C^{∞} , then there is such a C^{∞} factorization since p is analytic in ξ .

Remark

By homogeneity, we see that $\xi'_0 \neq 0$.

Remark

Extending λ and q to conical neigh. $\Gamma'(\xi'$ -space) and $\Gamma(\xi$ -space), resp., for $|\xi| > 1/2$, we get

- λ is homogeneous of degree 1.
- q is homogeneous of degree m 1.
- for $|\xi| < 1/2$ we them extend to be smooth.

For *X* sufficiently small we can achieve that, for some $c_0 > 0$,

$$|q(x,\xi)| = c_0 |\xi|^{m-1}$$
 in $X \times \Gamma$

and

$$|p(x,\xi)| \ge c_0 |\xi|^m$$
 in $X \times \Gamma_0$

where Γ_0 is the cone in ξ space over U.