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The main goal:

To present sufficient conditions for the local solvabillity of equation

Pu=f. (1)
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Remark

We recall that equation (1) is said to be locally solvable, at a point xy € R", if
there is a neighborhood V of xq such that for every function f € C2°(V) there
is a distribution u in 'V satisfying (1)

Remark

Here, P is a linear partial differential operator of order m, with smooth
coefficients. The leading symbol p(x, &) is a homogeneous polynomial in
&= (&,...,&) of degree m, where x = (x1,...,xp).

Remark
Also, we are assuming that:

(a) P is a principal type operator, namely,

p(x0,60) =0, and & #0 = Vep(xo,%0) # 0;

(b) the real and imaginary parts of p are real analytic.
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|
Condition 9

Definition
If p(x,&) = A+ iB and if VA # 0 in a neighborhood of a point (xg, &), the
bicharacteristics of A are the oriented curves

d d
disc = VeA(x,§) and d—f =~V A(x,§)

The curves on which A vanishes are called the null-bicharacteristics of A

Condition §

On every null-bicharacteristics I' of R p the function & p does not change
sign, that is, we always have Sp > 0or Sp <OonT.
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The main results
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The main results

Theorem (1)

Let P be a partial differential operator of principal type with analytic leading
coefficients. If condition § holds for x in a neighborhood of x, then xq has a
neighborhood Q) such that for every f € L>(Qq) there is a solution u of (1) in
H™ ! (Qo)

v

Theorem (2)

In order that Pu = f be locally solvable at every point, it is necessary and
sufficient that condition § hold. (P is partial differential operator of principal
type with analytic leading coefficients).

Theorem (5)

Under the conditions of Theorem 1, assume that f belongs to H¥, k a positive
integer; then there exists a neighborhood Q’é of xo in which there is a solution
u of (1) belonging to H*m=1,
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Theorem (3)

Condition 9§ is equivalent to each of the following:

(a) Every point xy has a neighborhood Q) such that, for some constant C > 0,

llullo < C||"Pulli_m forall ue C°(Qp) (3)

(b) Every point xy has a neighborhood €y such that, for some constant C > 0,

ullm—1 < C||"Pullo forall ue C() (4)

(c) Given € > 0, any point xq has a neighborhood ). such that, for some constant
C>0,

llullm—1 < €||'Pullo forall ue C(Q) (5)

Furthermore, in any of these statements the operators P and'P may be interchanged
or replaced by p(x, D), the leading part of P.
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Some remarks
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Some remarks

@ The essential point in the proofs of Theorems 1 and 3 is the proof that the
condition ¥ implies condition c) of Theorem 3.

@ By Bruno’s seminars we know that if condition § implies
[ullm—1 < €l"Pullo forall u € C(Q), (5)

then we obtain the proofs of Theorems 1, 3 and 5.

@ By Alexandre’s seminars we know that condition § is invariant by a
product of non vanishing functions.

(UFPR-BRAZIL) 6/14



Condition § implies c)

The proof of this statement consists of three main steps:

(Step 1) In this step the authors reduce (5) to a similar estimate for a first
order ¥.D.O. satisfying §. Namely, in a neighborhood of a
point (xo, &) where p vanishes, assuming, say, dp/0g, # 0
there, we may factor

p = Q(X,E) ’ (é.n - )‘(xagl) s 7§n71))7

with g # 0 in the neighborhood. The problem is then reduced
to one of an estimate of the form

llullo < €||Lullp, for u € C°(£2), (7)

where
L:Dn - /\(X,D],...,Dn_1>.
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(Step 2) This step consists in making a transformation to eliminate the
real part a of A = a + ib, tha is, reducing R A to &,,.

(Step 3) In this step the idea is to show (7) in case A is pure imaginary.
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.
We will show how to reduce the proof of (5) to (7)
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.
We will show how to reduce the proof of (5) to (7)

...the proof is somewhat tedious...

Partition of unity on the sphere [£| = 1.

o Letgi(¢),j=1,...,rbenon-negative C* function of £ on [¢| = 1, with
> g = 1. Extending g; as a C* function to all {-space which is
homogeneous of degree zero for |£] > 1/2.
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.
We will show how to reduce the proof of (5) to (7)

...the proof is somewhat tedious...

Partition of unity on the sphere [£| = 1.

o Letgi(¢),j=1,...,rbenon-negative C* function of £ on [¢| = 1, with

> g = 1. Extending g; as a C* function to all {-space which is
homogeneous of degree zero for |£] > 1/2.

@ Consider the ¥.D.O. (of order zero)

g (D)u(x) = (2m)™" / g (©N(E), u € CO(RY).

e We have ) g;(D) = I an infinitely smooth operator.
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.
We will show how to reduce the proof of (5) to (7)

...the proof is somewhat tedious...

Partition of unity on the sphere [£| = 1.

o Letgi(¢),j=1,...,rbenon-negative C* function of £ on [¢| = 1, with

> g = 1. Extending g; as a C* function to all {-space which is
homogeneous of degree zero for |£] > 1/2.

@ Consider the ¥.D.O. (of order zero)

g (D)u(x) = (2m)™" / g (©N(E), u € CO(RY).

e We have ) g;(D) = I an infinitely smooth operator.

e For any u € C5°(R") we have

lullm—1 <> llgj(P)ullm—1 + Cllaellm—2. (1.5)
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@ Locally, we may assume that the coefficients of p have compact support;
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@ Locally, we may assume that the coefficients of p have compact support;

@ We may then consider the commutators

[p(x, D), g;(D)]

which are W.D.O.’s of order < m — 1.
o It follows that

> llp(x, D)g;(D)ullo < [Ip(x, Dullo + Cllufl—1- (1.6)

@ For now on we shall assume xo = 0.
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The key point now is to show:

@ the decomposition
p(x, &) = (& — A(x.€)) - q(x,€), (locally)

with g # 0, and{’ = (f],... 7€n—1)-
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The key point now is to show:

@ the decomposition
p(x, &) = (& — A(x.€)) - q(x,€), (locally)

with q 7é Os and €/ = (517 s 75’1—1)-
o that g and \(x, ¢’) defines ¥.D.O.’s.
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From now on we will assume xo = 0. In particular, if p(0, &) = 0, then:
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From now on we will assume xo = 0. In particular, if p(0, &) = 0, then:

e we may assume |§p| = 1,

Vep(0,6) # 0 and 2:’(0,5@ £0,

n
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From now on we will assume xo = 0. In particular, if p(0, &) = 0, then:

e we may assume |§p| = 1,

Vap(0.6) #0 and 5L (0.6) £0.

e we will denote &' = (&1,...,&—1).

o By the analyticity of p, there is an analytic function
Ax, &) in X x U,

where
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From now on we will assume xo = 0. In particular, if p(0, &) = 0, then:

e we may assume |§p| = 1,

Vep(0,6) # 0 and 25(0,»50) £0,

e we will denote &' = (&1,...,&—1).
o By the analyticity of p, there is an analytic function
Ax, &) in X x U,

where

e X is a neigh. of the origin in R”
o U'is aneigh. of & in the (n — 1)-dimensional space ¢£'.
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This function X satisfies A(0,&’) = &y, and

p(x,&) = (& — Ax, &) - q(x,€)
where g # 0in X x U, where U is a neigh. of &.
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-
This function X satisfies A(0,&’) = &y, and
p(x,8) = (& — A(x, &) - q(x,§)
where g # 0in X x U, where U is a neigh. of &.
Remark

We point out that if the coefficients of p are merely C*°, then there is such a
C® factorization since p is analytic in €.
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-
This function X satisfies A(0,&’) = &y, and
p(x¢ f) = (gn - )‘(x7 5,)) ’ Q<x7 £>
where ¢ # 01in X x U, where U is a neigh. of &.
Remark

We point out that if the coefficients of p are merely C*°, then there is such a
C® factorization since p is analytic in €.

Remark

By homogeneity, we see that &, # 0.
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This function X satisfies A(0,&’) = &y, and
p(x¢ f) = (gn - )‘(x7 5,)) ’ Q<x7 £>
where ¢ # 01in X x U, where U is a neigh. of &.

Remark
We point out that if the coefficients of p are merely C*°, then there is such a
C® factorization since p is analytic in €.

Remark

By homogeneity, we see that &, # 0.

Remark
Extending )\ and q to conical neigh. T (£'-space) and T" (£-space), resp., for
€] > 1/2, we get

@ )\ is homogeneous of degree 1.

@ g is homogeneous of degree m — 1.

o for €| < 1/2 we them extend to be smooth.
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For X sufficiently small we can achieve that, for some ¢y > 0,
g(x,€)| = colé/™ " in X xT

and
Ip(x, &) = colé|™ in X x T

where Iy is the cone in & space over U.
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