Distributions and Fourier Analysis PPGM-UFPR

Fernando de Ávila Silva

Federal University of Paraná - Brazil

For this class:

For this class:

- Basic notations;
- Support of a function;
- Test functions;
- Convolution.
$L_{\text {Class } 1-M a r c h ~ 3 t h ~}$
$\square_{\text {Main (basic) notations }}$

Multi-index

$\square_{\text {Main (basic) notations }}$

Multi-index

Let $\mathbb{N}=\{1,2, \ldots, n, \ldots\}$ be the set of Natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

Multi-index

Let $\mathbb{N}=\{1,2, \ldots, n, \ldots\}$ be the set of Natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
$\checkmark \mathbb{N}_{0}^{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ; \alpha_{j} \in \mathbb{N}_{0}\right\}$. Also, we can use de notation \mathbb{Z}_{+}^{n}.

Multi-index

Let $\mathbb{N}=\{1,2, \ldots, n, \ldots\}$ be the set of Natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
$\checkmark \mathbb{N}_{0}^{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ; \alpha_{j} \in \mathbb{N}_{0}\right\}$. Also, we can use de notation \mathbb{Z}_{+}^{n}.

Given $\alpha \in \mathbb{Z}_{+}^{n}$ we set

- $\alpha!\doteq \prod_{j=1}^{n} \alpha_{j}!=\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!$

Multi-index

Let $\mathbb{N}=\{1,2, \ldots, n, \ldots\}$ be the set of Natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
$-\mathbb{N}_{0}^{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ; \alpha_{j} \in \mathbb{N}_{0}\right\}$. Also, we can use de notation \mathbb{Z}_{+}^{n}.

Given $\alpha \in \mathbb{Z}_{+}^{n}$ we set
$\triangleright \alpha!\doteq \prod_{j=1}^{n} \alpha_{j}!=\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!$
$-|\alpha| \doteq \sum_{j=1}^{n} \alpha_{j}=\alpha_{1}+\ldots \cdot+\alpha_{n}$

Multi-index

Let $\mathbb{N}=\{1,2, \ldots, n, \ldots\}$ be the set of Natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
$-\mathbb{N}_{0}^{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ; \alpha_{j} \in \mathbb{N}_{0}\right\}$. Also, we can use de notation \mathbb{Z}_{+}^{n}.

Given $\alpha \in \mathbb{Z}_{+}^{n}$ we set
$\triangleright \alpha!\doteq \prod_{j=1}^{n} \alpha_{j}!=\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!\quad \triangleright|\alpha| \doteq \sum_{j=1}^{n} \alpha_{j}=\alpha_{1}+\ldots \cdot+\alpha_{n}$

Remark

Given $\alpha, \beta \in \mathbb{Z}_{+}^{n}$ we say that $\beta \leq \alpha$ if $\beta_{j} \leq \alpha_{j}$, for each $j \in\{1, \ldots, n\}$. In particular, it is well defined the number

$$
\binom{\alpha}{\beta} \doteq \prod_{j=1}^{n}\binom{\alpha_{j}}{\beta_{j}}, \text { for } \beta \leq \alpha
$$

Definition

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_{+}$. We say that a function $f: \Omega \rightarrow \mathbb{C}$ belongs to $C^{k}(\Omega)$ if there exist

$$
\partial^{\alpha} f \doteq\left(\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}}\right) f, \forall \alpha \in \mathbb{Z}_{+}^{n}, \quad \text { such that }|\alpha| \leq k
$$

and it is continuous.

Definition

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_{+}$. We say that a function $f: \Omega \rightarrow \mathbb{C}$ belongs to $C^{k}(\Omega)$ if there exist

$$
\partial^{\alpha} f \doteq\left(\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}}\right) f, \forall \alpha \in \mathbb{Z}_{+}^{n}, \quad \text { such that }|\alpha| \leq k
$$

and it is continuous. Also, we consider the space

$$
C^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_{+}^{n}} C^{k}(\Omega)
$$

Definition

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_{+}$. We say that a function $f: \Omega \rightarrow \mathbb{C}$ belongs to $C^{k}(\Omega)$ if there exist

$$
\partial^{\alpha} f \doteq\left(\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}}\right) f, \forall \alpha \in \mathbb{Z}_{+}^{n}, \quad \text { such that }|\alpha| \leq k
$$

and it is continuous. Also, we consider the space

$$
C^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_{+}^{n}} C^{k}(\Omega)
$$

- If $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{Z}_{+}^{n}$, we define

$$
x^{\alpha} \doteq \prod_{j=1}^{n} x_{j}^{\alpha_{j}}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}
$$

Apllications

Taylor's formula

$$
f(x+h)=\sum_{|\alpha| \leq k} \frac{1}{\alpha!} \partial^{\alpha} f(x) h^{\alpha}+k \int_{0}^{1}(1-t)^{k-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^{\alpha} f(x+t h) h^{\alpha} d t
$$

Apllications

Taylor's formula

$$
f(x+h)=\sum_{|\alpha| \leq k} \frac{1}{\alpha!} \partial^{\alpha} f(x) h^{\alpha}+k \int_{0}^{1}(1-t)^{k-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^{\alpha} f(x+t h) h^{\alpha} d t
$$

Leibniz's rule

$$
\partial^{\alpha}(f \cdot g)=\sum_{\beta=0}^{\alpha}\binom{\alpha}{\beta} \partial^{\beta} f \cdot \partial^{\alpha-\beta} g .
$$

Definition (Support)

If $u \in C(\Omega)$ then the support of u, written $\operatorname{supp}(u)$, is the closure in Ω of the set

$$
x \in \Omega ; u(x) \neq 0
$$

Definition (Support)

If $u \in C(\Omega)$ then the support of u, written $\operatorname{supp}(u)$, is the closure in Ω of the set

$$
x \in \Omega ; u(x) \neq 0
$$

that is, $\operatorname{supp}(u)$ is the smallest closed subset of Ω such that $u=0$ in $\Omega \backslash \operatorname{supp}(u)$.

Definition (Support)

If $u \in C(\Omega)$ then the support of u, written $\operatorname{supp}(u)$, is the closure in Ω of the set

$$
x \in \Omega ; u(x) \neq 0
$$

that is, $\operatorname{supp}(u)$ is the smallest closed subset of Ω such that $u=0$ in $\Omega \backslash \operatorname{supp}(u)$.

Definition (Test functions)

By $C_{0}^{k}(\Omega)$ we denote the space of all $u \in C^{k}(\Omega)$ with compact support. The elements of

$$
C_{0}^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_{+}^{n}} C_{0}^{k}(\Omega)
$$

are called test functions.

Definition (Support)

If $u \in C(\Omega)$ then the support of u, written $\operatorname{supp}(u)$, is the closure in Ω of the set

$$
x \in \Omega ; u(x) \neq 0
$$

that is, $\operatorname{supp}(u)$ is the smallest closed subset of Ω such that $u=0$ in $\Omega \backslash \operatorname{supp}(u)$.

Definition (Test functions)

By $C_{0}^{k}(\Omega)$ we denote the space of all $u \in C^{k}(\Omega)$ with compact support. The elements of

$$
C_{0}^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_{+}^{n}} C_{0}^{k}(\Omega)
$$

are called test functions.

Remark

We may regard $C_{0}^{k}(\Omega)$ as a subspace of $C_{0}^{k}\left(\mathbb{R}^{n}\right)$.
-Support of a function

Theorem
 There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.

Lemma (1)

Let $I \subset \mathbb{R}$ be an open interval and $a \in I$ be a fixed point. Consider $f: I \rightarrow \mathbb{R}$ satisfying the following conditions:

- f is continuous;
- f is differentiable on $I \backslash\{a\}$;
- $\lim _{x \rightarrow a} f^{\prime}(x)=0$

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.

Lemma (1)

Let $I \subset \mathbb{R}$ be an open interval and $a \in I$ be a fixed point. Consider $f: I \rightarrow \mathbb{R}$ satisfying the following conditions:

- f is continuous;
- f is differentiable on $I \backslash\{a\}$;
- $\lim _{x \rightarrow a} f^{\prime}(x)=0(x \neq 0)$.

Under these hypotheses f is differentiable at a and $f^{\prime}(a)=0$.

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.
Proof:

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.
Proof:

- Let $P(t)(P(t) \neq 0$ if $|t|<1)$ be a polynomial with real coefficients and set

$$
f(t)=\left\{\begin{array}{l}
P(1 / t) e^{-1 / t}, \text { if } t>0 \\
0, \text { if } t \leq 0,
\end{array}\right.
$$

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.
Proof:

- Let $P(t)(P(t) \neq 0$ if $|t|<1)$ be a polynomial with real coefficients and set

$$
f(t)=\left\{\begin{array}{l}
P(1 / t) e^{-1 / t}, \text { if } t>0 \\
0, \text { if } t \leq 0
\end{array}\right.
$$

- it follows from Lemma (1) that f belongs to $C^{1}(\mathbb{R})$.

Theorem

There exists a non-negative function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(0)>0$.
Proof:

- Let $P(t)(P(t) \neq 0$ if $|t|<1)$ be a polynomial with real coefficients and set

$$
f(t)=\left\{\begin{array}{l}
P(1 / t) e^{-1 / t}, \text { if } t>0 \\
0, \text { if } t \leq 0
\end{array}\right.
$$

- it follows from Lemma (1) that f belongs to $C^{1}(\mathbb{R})$.
- The function $\phi(x)=f\left(1-|x|^{2}\right)$ has the required properties.

Remark

$\square_{\text {Support of a function }}$

Remark

- $\operatorname{supp}(\phi) \subset\left\{x \in \mathbb{R}^{n} ;|x| \leq 1\right\}$.

Remark

- $\operatorname{supp}(\phi) \subset\left\{x \in \mathbb{R}^{n} ;|x| \leq 1\right\}$.
- Let $p \in \mathbb{R}^{n}$ be fixed and $\delta>0$. Then the function

$$
\phi_{p}(x)=\phi\left(\frac{x-p}{\delta}\right)
$$

fulfills the following properties:

Remark

- $\operatorname{supp}(\phi) \subset\left\{x \in \mathbb{R}^{n} ;|x| \leq 1\right\}$.
- Let $p \in \mathbb{R}^{n}$ be fixed and $\delta>0$. Then the function

$$
\phi_{p}(x)=\phi\left(\frac{x-p}{\delta}\right)
$$

fulfills the following properties:

- $\phi_{p}(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$;

Remark

- $\operatorname{supp}(\phi) \subset\left\{x \in \mathbb{R}^{n} ;|x| \leq 1\right\}$.
- Let $p \in \mathbb{R}^{n}$ be fixed and $\delta>0$. Then the function

$$
\phi_{p}(x)=\phi\left(\frac{x-p}{\delta}\right)
$$

fulfills the following properties:

- $\phi_{p}(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$;
$-\operatorname{supp}\left(\phi_{p}\right) \subset\left\{x \in \mathbb{R}^{n} ;|x-p| \leq \delta\right\}$.

Definition

If $1 \leq p<\infty$ we define by $L_{l o c}^{p}(\Omega)$ the spaces of all mensurable $f: \Omega \rightarrow \mathbb{C}$ such that for every compact set $K \subset \Omega$ we have $\left.f\right|_{K} \in L_{l o c}^{p}(K)$, namely,

$$
\int_{K}|f(x)|^{p} d x<\infty
$$

Definition

If $1 \leq p<\infty$ we define by $L_{l o c}^{p}(\Omega)$ the spaces of all mensurable $f: \Omega \rightarrow \mathbb{C}$ such that for every compact set $K \subset \Omega$ we have $\left.f\right|_{K} \in L_{l o c}^{p}(K)$, namely,

$$
\int_{K}|f(x)|^{p} d x<\infty
$$

Exercise

Prove that iff, $g \in C(\Omega)$ and

$$
\int_{\Omega} f(x) \varphi(x) d x=\int_{\Omega} g(x) \varphi(x) d x, \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

then $f=g$.

Theorem

Iff,$g \in L_{l o c}^{1}(\Omega)$ and

$$
\int_{\Omega} f(x) \varphi(x) d x=\int_{\Omega} g(x) \varphi(x) d x, \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

then $f=g$ almost everywhere (a.e.).

Theorem

$I f f, g \in L_{l o c}^{1}(\Omega)$ and

$$
\int_{\Omega} f(x) \varphi(x) d x=\int_{\Omega} g(x) \varphi(x) d x, \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

then $f=g$ almost everywhere (a.e.).
Proof:

- We make use of the following:

Theorem (Lebesgue Differentiation Theorem)
If $h \in L_{\text {loc }}^{1}(\Omega)$ then

$$
\lim _{t \rightarrow 0} \frac{1}{t} \int_{|x-y|<t}|h(x)-h(y)| d y=0, \text { a.e. }
$$

Definition (Convolution)

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then the convolution product $u * v$ is the continuous function defined by

$$
u * v(x) \doteq \int_{\mathbb{R}^{n}} u(x-y) v(y) d y, x \in \mathbb{R}^{n}
$$

Definition (Convolution)

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then the convolution product $u * v$ is the continuous function defined by

$$
u * v(x) \doteq \int_{\mathbb{R}^{n}} u(x-y) v(y) d y, x \in \mathbb{R}^{n}
$$

Prove that if $u * v=v * u$.

Definition (Convolution)

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then the convolution product $u * v$ is the continuous function defined by

$$
u * v(x) \doteq \int_{\mathbb{R}^{n}} u(x-y) v(y) d y, x \in \mathbb{R}^{n}
$$

Prove that if $u * v=v * u$.

Theorem

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then

$$
\operatorname{supp}(u * v) \subset \operatorname{supp}(u)+\operatorname{supp}(v)
$$

Definition (Convolution)

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then the convolution product $u * v$ is the continuous function defined by

$$
u * v(x) \doteq \int_{\mathbb{R}^{n}} u(x-y) v(y) d y, x \in \mathbb{R}^{n}
$$

Prove that if $u * v=v * u$.

Theorem

If u and v are in $C\left(\mathbb{R}^{n}\right)$ and either one has compact support, then

$$
\operatorname{supp}(u * v) \subset \operatorname{supp}(u)+\operatorname{supp}(v)
$$

Theorem (Young's Inequality)

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Then the integral

$$
f * g(x) \doteq \int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

exists for almost everywhere $x \in \mathbb{R}^{n}$. Moreover, $f * g \in L^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\|f * g\| \leq\|f\|_{1} \cdot\|g\|_{p}
$$

