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Class 1 - March 3th

Main (basic) notations

Multi-index

Let N = {1, 2, . . . , n, . . .} be the set of Natural numbers and N0 = N ∪ {0}.
I Nn

0 = {α = (α1, . . . , αn);αj ∈ N0}. Also, we can use de notation Zn
+.

Given α ∈ Zn
+ we set

I α!
.
=
∏n

j=1 αj! = α1! · . . . · αn! I |α| .=
∑n

j=1 αj = α1 + . . . ·+αn

Remark
Given α, β ∈ Zn

+ we say that β ≤ α if βj ≤ αj, for each j ∈ {1, . . . , n}. In
particular, it is well defined the number(

α

β

)
.
=

n∏
j=1

(
αj

βj

)
, for β ≤ α.
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Main (basic) notations

Definition
Let Ω ⊂ be an open set and k ∈ Z+. We say that a function f : Ω→ C belongs to
C k(Ω) if there exist

∂αf .
= (∂α1

x1 . . . ∂
αn
xn )f , ∀α ∈ Zn

+, such that |α| ≤ k,

and it is continuous.

Also, we consider the space

C∞(Ω)
.
=
⋂

k∈Zn
+

C k(Ω).

I If x ∈ Rn and α ∈ Zn
+, we define

xα .
=

n∏
j=1

xαj
j = xα1

1 · . . . · x
αn
n .
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Main (basic) notations

Apllications

Taylor’s formula

f (x + h) =
∑
|α|≤k

1
α!
∂αf (x)hα + k

∫ 1

0
(1− t)k−1

∑
|α|=k

1
α!
∂αf (x + th)hαdt.

Leibniz’s rule

∂α(f · g) =

α∑
β=0

(
α

β

)
∂β f · ∂α−βg.
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Support of a function

Definition (Support)
If u ∈ C(Ω) then the support of u, written supp(u), is the closure in Ω of the set

x ∈ Ω; u(x) 6= 0,

that is, supp(u) is the smallest closed subset of Ω such that u = 0 in Ω \ supp(u).

Definition (Test functions)
By Ck

0(Ω) we denote the space of all u ∈ Ck(Ω) with compact support. The elements
of

C∞0 (Ω)
.
=
⋂

k∈Zn
+

C k
0 (Ω)

are called test functions.

Remark
We may regard Ck

0(Ω) as a subspace of Ck
0(Rn).
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Support of a function

Theorem
There exists a non-negative function φ ∈ C∞0 (Rn) with φ(0) > 0.

Lemma (1)
Let I ⊂ R be an open interval and a ∈ I be a fixed point. Consider f : I → R
satisfying the following conditions:

I f is continuous;

I f is differentiable on I \ {a};
I limx→a f ′(x) = 0 (x 6= 0).

Under these hypotheses f is differentiable at a and f ′(a) = 0.



Class 1 - March 3th

Support of a function

Theorem
There exists a non-negative function φ ∈ C∞0 (Rn) with φ(0) > 0.

Lemma (1)
Let I ⊂ R be an open interval and a ∈ I be a fixed point. Consider f : I → R
satisfying the following conditions:

I f is continuous;

I f is differentiable on I \ {a};
I limx→a f ′(x) = 0

(x 6= 0).

Under these hypotheses f is differentiable at a and f ′(a) = 0.



Class 1 - March 3th

Support of a function

Theorem
There exists a non-negative function φ ∈ C∞0 (Rn) with φ(0) > 0.

Lemma (1)
Let I ⊂ R be an open interval and a ∈ I be a fixed point. Consider f : I → R
satisfying the following conditions:

I f is continuous;

I f is differentiable on I \ {a};
I limx→a f ′(x) = 0 (x 6= 0).

Under these hypotheses f is differentiable at a and f ′(a) = 0.



Class 1 - March 3th

Support of a function

Theorem
There exists a non-negative function φ ∈ C∞0 (Rn) with φ(0) > 0.

Proof:

I Let P(t) (P(t) 6= 0 if |t| < 1) be a polynomial with real coefficients and set

f (t) =

{
P(1/t)e−1/t, if t > 0,
0, if t ≤ 0,

I it follows from Lemma (1) that f belongs to C1(R).

I The function φ(x) = f (1− |x|2) has the required properties.
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Support of a function

Remark

I supp(φ) ⊂ {x ∈ Rn; |x| ≤ 1}.
I Let p ∈ Rn be fixed and δ > 0. Then the function

φp(x) = φ
( x− p

δ

)
fulfills the following properties:

I φp(x) ∈ C∞
0 (Rn);

I supp(φp) ⊂ {x ∈ Rn; |x− p| ≤ δ}.
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Some results concerning the spaces Lp

Definition
If 1 ≤ p <∞ we define by Lp

loc(Ω) the spaces of all mensurable f : Ω→ C such that
for every compact set K ⊂ Ω we have f |K ∈ Lp

loc(K), namely,∫
K
|f (x)|pdx <∞.

Exercise
Prove that if f , g ∈ C(Ω) and∫

Ω

f (x)ϕ(x)dx =

∫
Ω

g(x)ϕ(x)dx, ∀ϕ ∈ C∞0 (Ω)

then f = g.
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Some results concerning the spaces Lp

Theorem
If f , g ∈ L1

loc(Ω) and∫
Ω

f (x)ϕ(x)dx =

∫
Ω

g(x)ϕ(x)dx, ∀ϕ ∈ C∞0 (Ω)

then f = g almost everywhere (a.e.).

Proof:

I We make use of the following:

Theorem (Lebesgue Differentiation Theorem)
If h ∈ L1

loc(Ω) then

lim
t→0

1
t

∫
|x−y|<t

|h(x)− h(y)|dy = 0, a.e.
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Convolution

Definition (Convolution)
If u and v are in C(Rn) and either one has compact support, then the convolution product u ∗ v
is the continuous function defined by

u ∗ v(x) .
=

∫
Rn

u(x− y)v(y)dy, x ∈ Rn.

Prove that if u ∗ v = v ∗ u.

Theorem
If u and v are in C(Rn) and either one has compact support, then

supp(u ∗ v) ⊂ supp(u) + supp(v).

Theorem (Young’s Inequality)
Let f ∈ L1(Rn) and g ∈ Lp(Rn), 1 ≤ p ≤ ∞. Then the integral

f ∗ g(x) .
=

∫
Rn

f (x− y)g(y)dy

exists for almost everywhere x ∈ Rn. Moreover, f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖ ≤ ‖f‖1 · ‖g‖p.
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