Distributions and Fourier Analysis PPGM-UFPR

Fernando de Ávila Silva Federal University of Paraná - Brazil

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

For this class:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

For this class:

Basic notations;

Support of a function;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Test functions;
- Convolution.

Multi-index

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $\mathbb{N} = \{1, 2, \dots, n, \dots\}$ be the set of Natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Let N = {1,2,...,n,...} be the set of Natural numbers and N₀ = N ∪ {0}.
N₀ⁿ = {α = (α₁,..., α_n); α_j ∈ N₀}. Also, we can use de notation Zⁿ₊.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let N = {1, 2, ..., n, ...} be the set of Natural numbers and N₀ = N ∪ {0}.
N₀ⁿ = {α = (α₁,..., α_n); α_j ∈ N₀}. Also, we can use de notation Zⁿ₊.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given $\alpha \in \mathbb{Z}_+^n$ we set

Let N = {1, 2, ..., n, ...} be the set of Natural numbers and N₀ = N ∪ {0}.
N₀ⁿ = {α = (α₁,..., α_n); α_j ∈ N₀}. Also, we can use de notation Zⁿ₊.

Given $\alpha \in \mathbb{Z}_+^n$ we set

$$a! \doteq \prod_{j=1}^{n} \alpha_j! = \alpha_1! \cdot \ldots \cdot \alpha_n! |\alpha| \doteq \sum_{j=1}^{n} \alpha_j = \alpha_1 + \ldots + \alpha_n$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathbb{N} = \{1, 2, ..., n, ...\}$ be the set of Natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. $\triangleright \mathbb{N}_0^n = \{\alpha = (\alpha_1, ..., \alpha_n); \alpha_j \in \mathbb{N}_0\}$. Also, we can use de notation \mathbb{Z}_+^n .

Given $\alpha \in \mathbb{Z}_+^n$ we set

$$\bullet \ \alpha! \doteq \prod_{j=1}^{n} \alpha_j! = \alpha_1! \cdot \ldots \cdot \alpha_n! \qquad \bullet \ |\alpha| \doteq \sum_{j=1}^{n} \alpha_j = \alpha_1 + \ldots + \alpha_n$$

Remark

Given $\alpha, \beta \in \mathbb{Z}_+^n$ we say that $\beta \leq \alpha$ if $\beta_j \leq \alpha_j$, for each $j \in \{1, ..., n\}$. In particular, it is well defined the number

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \doteq \prod_{j=1}^n \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}, \text{ for } \beta \leq \alpha.$$

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_+$. We say that a function $f : \Omega \to \mathbb{C}$ belongs to $C^k(\Omega)$ if there exist

$$\partial^{\alpha} f \doteq (\partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}) f, \ \forall \alpha \in \mathbb{Z}_+^n, \ \text{ such that } |\alpha| \le k,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

and it is continuous.

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_+$. We say that a function $f : \Omega \to \mathbb{C}$ belongs to $C^k(\Omega)$ if there exist

$$\partial^{\alpha} f \doteq (\partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}) f, \ \forall \alpha \in \mathbb{Z}_+^n, \ \text{ such that } |\alpha| \le k,$$

and it is continuous. Also, we consider the space

$$C^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}^n_+} C^k(\Omega).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Let $\Omega \subset$ be an open set and $k \in \mathbb{Z}_+$. We say that a function $f : \Omega \to \mathbb{C}$ belongs to $C^k(\Omega)$ if there exist

$$\partial^{\alpha} f \doteq (\partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}) f, \ \forall \alpha \in \mathbb{Z}_+^n, \ \text{ such that } |\alpha| \le k,$$

and it is continuous. Also, we consider the space

$$C^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}^n_+} C^k(\Omega).$$

• If $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{Z}^n_+$, we define

$$x^{\alpha} \doteq \prod_{j=1}^{n} x_j^{\alpha_j} = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Apllications

Taylor's formula

$$f(x+h) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} \partial^{\alpha} f(x) h^{\alpha} + k \int_0^1 (1-t)^{k-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^{\alpha} f(x+th) h^{\alpha} dt.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Apllications

Taylor's formula

$$f(x+h) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} \partial^{\alpha} f(x) h^{\alpha} + k \int_0^1 (1-t)^{k-1} \sum_{|\alpha| = k} \frac{1}{\alpha!} \partial^{\alpha} f(x+th) h^{\alpha} dt.$$

Leibniz's rule

$$\partial^{\alpha}(f \cdot g) = \sum_{\beta=0}^{\alpha} \binom{\alpha}{\beta} \partial^{\beta} f \cdot \partial^{\alpha-\beta} g.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

If $u \in C(\Omega)$ then the support of u, written supp(u), is the closure in Ω of the set

 $x \in \Omega; \ u(x) \neq 0,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

If $u \in C(\Omega)$ then the support of u, written supp(u), is the closure in Ω of the set

 $x \in \Omega; \ u(x) \neq 0,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

that is, supp(u) is the smallest closed subset of Ω such that u = 0 in $\Omega \setminus supp(u)$.

If $u \in C(\Omega)$ then the support of u, written supp(u), is the closure in Ω of the set

$$x \in \Omega; \ u(x) \neq 0,$$

that is, supp(u) is the smallest closed subset of Ω such that u = 0 in $\Omega \setminus supp(u)$.

Definition (Test functions)

By $C_0^k(\Omega)$ we denote the space of all $u \in C^k(\Omega)$ with compact support. The elements of

$$C_0^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_+^n} C_0^k(\Omega)$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

are called test functions.

If $u \in C(\Omega)$ then the support of u, written supp(u), is the closure in Ω of the set

$$x \in \Omega; \ u(x) \neq 0,$$

that is, supp(u) is the smallest closed subset of Ω such that u = 0 in $\Omega \setminus supp(u)$.

Definition (Test functions)

By $C_0^k(\Omega)$ we denote the space of all $u \in C^k(\Omega)$ with compact support. The elements of

$$C_0^{\infty}(\Omega) \doteq \bigcap_{k \in \mathbb{Z}_+^n} C_0^k(\Omega)$$

are called test functions.

Remark

We may regard $C_0^k(\Omega)$ as a subspace of $C_0^k(\mathbb{R}^n)$.

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

Lemma (1)

Let $I \subset \mathbb{R}$ be an open interval and $a \in I$ be a fixed point. Consider $f : I \to \mathbb{R}$ satisfying the following conditions:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ f is continuous;
- f is differentiable on $I \setminus \{a\}$;
- $\blacktriangleright \quad \lim_{x \to a} f'(x) = 0$

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

Lemma (1)

Let $I \subset \mathbb{R}$ be an open interval and $a \in I$ be a fixed point. Consider $f : I \to \mathbb{R}$ satisfying the following conditions:

- ▶ f is continuous;
- f is differentiable on $I \setminus \{a\}$;
- $\blacktriangleright \quad \lim_{x \to a} f'(x) = 0 \ (x \neq 0).$

Under these hypotheses f is differentiable at a and f'(a) = 0.

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ with $\phi(0) > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof:

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

Proof:

Let P(t) ($P(t) \neq 0$ if |t| < 1) be a polynomial with real coefficients and set

$$f(t) = \begin{cases} P(1/t)e^{-1/t}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0, \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

Proof:

Let P(t) ($P(t) \neq 0$ if |t| < 1) be a polynomial with real coefficients and set

$$f(t) = \begin{cases} P(1/t)e^{-1/t}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0, \end{cases}$$

• it follows from Lemma (1) that f belongs to $C^1(\mathbb{R})$.

There exists a non-negative function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ *with* $\phi(0) > 0$ *.*

Proof:

Let P(t) ($P(t) \neq 0$ if |t| < 1) be a polynomial with real coefficients and set

$$f(t) = \begin{cases} P(1/t)e^{-1/t}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0, \end{cases}$$

- it follows from Lemma (1) that f belongs to $C^1(\mathbb{R})$.
- The function $\phi(x) = f(1 |x|^2)$ has the required properties.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• $supp(\phi) \subset \{x \in \mathbb{R}^n; |x| \le 1\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•
$$supp(\phi) \subset \{x \in \mathbb{R}^n; |x| \le 1\}.$$

• Let $p \in \mathbb{R}^n$ be fixed and $\delta > 0$. Then the function

$$\phi_p(x) = \phi\left(\frac{x-p}{\delta}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

fulfills the following properties:

•
$$supp(\phi) \subset \{x \in \mathbb{R}^n; |x| \le 1\}.$$

• Let $p \in \mathbb{R}^n$ be fixed and $\delta > 0$. Then the function

$$\phi_p(x) = \phi\left(\frac{x-p}{\delta}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

fulfills the following properties:

•
$$\phi_p(x) \in C_0^\infty(\mathbb{R}^n);$$

•
$$supp(\phi) \subset \{x \in \mathbb{R}^n; |x| \le 1\}.$$

• Let $p \in \mathbb{R}^n$ be fixed and $\delta > 0$. Then the function

$$\phi_p(x) = \phi\left(\frac{x-p}{\delta}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

fulfills the following properties:

▶
$$\phi_p(x) \in C_0^\infty(\mathbb{R}^n);$$

▶ $supp(\phi_p) \subset \{x \in \mathbb{R}^n; |x-p| \le \delta\}.$

If $1 \le p < \infty$ we define by $L^p_{loc}(\Omega)$ the spaces of all mensurable $f : \Omega \to \mathbb{C}$ such that for every compact set $K \subset \Omega$ we have $f|_K \in L^p_{loc}(K)$, namely,

$$\int_{K} |f(x)|^{p} dx < \infty$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

If $1 \le p < \infty$ we define by $L^p_{loc}(\Omega)$ the spaces of all mensurable $f : \Omega \to \mathbb{C}$ such that for every compact set $K \subset \Omega$ we have $f|_K \in L^p_{loc}(K)$, namely,

$$\int_K |f(x)|^p dx < \infty.$$

Exercise

Prove that if $f, g \in C(\Omega)$ *and*

$$\int_{\Omega} f(x)\varphi(x)dx = \int_{\Omega} g(x)\varphi(x)dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$

then f = g.

Theorem *If f*, $g \in L^1_{loc}(\Omega)$ and

$$\int_{\Omega} f(x)\varphi(x)dx = \int_{\Omega} g(x)\varphi(x)dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

then f = g almost everywhere (a.e.).

Theorem *If* $f, g \in L^1_{loc}(\Omega)$ and

$$\int_{\Omega} f(x)\varphi(x)dx = \int_{\Omega} g(x)\varphi(x)dx, \ \forall \varphi \in C_0^{\infty}(\Omega)$$

then f = g almost everywhere (a.e.).

Proof:

We make use of the following:

Theorem (Lebesgue Differentiation Theorem) If $h \in L^1_{loc}(\Omega)$ then

$$\lim_{t \to 0} \frac{1}{t} \int_{|x-y| < t} |h(x) - h(y)| dy = 0, \ a.e.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition (Convolution)

If *u* and *v* are in $C(\mathbb{R}^n)$ and either one has compact support, then the convolution product u * v is the continuous function defined by

$$u * v(x) \doteq \int_{\mathbb{R}^n} u(x-y)v(y)dy, \ x \in \mathbb{R}^n.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Definition (Convolution)

If *u* and *v* are in $C(\mathbb{R}^n)$ and either one has compact support, then the convolution product u * v is the continuous function defined by

$$u * v(x) \doteq \int_{\mathbb{R}^n} u(x - y)v(y)dy, \ x \in \mathbb{R}^n.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Prove that if u * v = v * u.

Definition (Convolution)

If *u* and *v* are in $C(\mathbb{R}^n)$ and either one has compact support, then the convolution product u * v is the continuous function defined by

$$u * v(x) \doteq \int_{\mathbb{R}^n} u(x - y)v(y)dy, \ x \in \mathbb{R}^n.$$

Prove that if u * v = v * u.

Theorem If u and v are in $C(\mathbb{R}^n)$ and either one has compact support, then

 $supp(u * v) \subset supp(u) + supp(v).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Convolution)

If *u* and *v* are in $C(\mathbb{R}^n)$ and either one has compact support, then the convolution product u * v is the continuous function defined by

$$u * v(x) \doteq \int_{\mathbb{R}^n} u(x - y)v(y)dy, \ x \in \mathbb{R}^n.$$

Prove that if u * v = v * u.

Theorem

If u and v are in $C(\mathbb{R}^n)$ and either one has compact support, then

 $supp(u * v) \subset supp(u) + supp(v).$

Theorem (Young's Inequality) Let $f \in L^1(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$. Then the integral

$$f * g(x) \doteq \int_{\mathbb{R}^n} f(x - y)g(y)dy$$

exists for almost everywhere $x \in \mathbb{R}^n$. Moreover, $f * g \in L^p(\mathbb{R}^n)$ and

 $\|f \ast g\| \leq \|f\|_1 \cdot \|g\|_p.$