CM 095 - Análise I

Fernando de Ávila Silva

Departamento de Matemática - UFPR

TERCEIRA PROVA - 29/12/17

 Resultados provados em sala podem ser utilizados. Você deve deixar claro onde está usando cada um destes resultados;

Exercício 1 (2 pontos) Verifique a validade das afirmações abaixo (se for verdadeira exiba uma prova e, caso seja falsa, um exemplo.

- (a) Uma função que é diferenciável num ponto x_0 de seu domínio é contínua neste ponto;
- (b) Uma função que é contínua num ponto x_0 de seu domínio é diferenciável neste ponto;

Exercício 2 (2 pontos) Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \left\{ \begin{array}{l} x^2, \ se \ x \in \mathbb{Q}, \\ 0, \ se \ x \notin \mathbb{Q}. \end{array} \right.$$

- (a) Mostre que f só pode ser derivável em x = 0;
- (b) Calcule f'(0).

Exercício 3 (2 pontos) Considere a_1, a_2, \ldots, a_n números reais e a função f definida em $\mathbb R$ por

$$f(x) = \sum_{j=1}^{n} (a_j - x)^2.$$

- (a) Mostre que existe $f'(x), \forall x \in \mathbb{R}$;
- (b) Mostre que $x_0 = n^{-1} \sum_{i=1}^n a_i$ é ponto de mínimo de f.

Exercício 4 (2 pontos) Esboce o gráfico da função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = 1/(x^2 + 1)$. (Você deve usar argumentos relacionados a diferenciabilidade).

Exercício 5 (2 pontos) Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita par se

$$f(-x) = f(x)$$
, para todo $x \in \mathbb{R}$.

Por outro lado, f é dita ímpar se

$$f(-x) = -f(x)$$
, para todo $x \in \mathbb{R}$.

Mostre que se f é impar e derivável então, sua derivada $f': \mathbb{R} \to \mathbb{R}$ é uma função par.