CM 050 - Teoria Básica de Equações Diferenciais Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA - SISTEMAS - I

Exercício 1 Se Y_1, \ldots, Y_k são soluções de um sistema x'(t) = Ax(t), então $\alpha_1 Y_1 + \ldots + \alpha_k Y_k$ é solução deste mesmo sistema, para quaisquer escalares α_j .

Exercício 2 Mostre que conjunto das soluções do sistema homogêneo x'(t) = Ax(t) é um espaço vetorial de dimensão n.

Exercício 3 Demosntre os sequintes resultados:

- (a) $Ae^A = e^A A$;
- (b) se AB = BA, então $Be^A = e^AB$;
- (c) Se λ é autovalor de A, então e^{λ} é um autovalor de e^{A} .
- (d) A matriz inversa de e^{tA} é e^{-tA} , para cada $t \in \mathbb{R}$. Conclua que exponencial de uma matriz é sempre uma matriz invertível.

Exercício 4 Obtenha e^A , sendo A uma matriz nilpotente, isto \acute{e} , se existe algum $k \in \mathbb{N}$ tal que $A^k = 0$. Dica: comece com um exemplo:

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Exercício 5

Exercício 6 Suponha $A_{n\times n}$ uma matriz real que possui um autovalor real $\lambda < 0$. Mostre que a equação x' = Ax possui pelo menos uma solução não trivial x(t) tal que $\lim_{t\to\infty} x(t) = 0$.

Exercício 7 Utilizando o método dos autovalores e autovetores determine a solução do seguinte sistema:

$$\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 8y_1 + y_2 \end{cases}$$

Exercício 8 Seja $A_{n\times n}$ uma matriz real diagonalizável com n autovalores distintos. Obtenha condições sobre os autovalores de A tais que a solução x(t) de x' = Ax satisfaça uma das duas condições:

- (a) $\lim_{t\to\infty} |x(t)| = 0$;
- **(b)** $\lim_{t\to\infty} |x(t)| = \infty$.

Exercício 9 Sejam $A_{n\times n}$ uma matriz real e p um vetor em \mathbb{R}^n . Então o problema

$$\left\{ \begin{array}{l} F'(t) = AF(t), \\ F(0) = p, \end{array} \right.$$

possui como única solução a função $F(t) = e^{At}p$.

Exercício 10 Reescreva as equações abaixo na forma de sistemas e obtenha as soluções.

(a)
$$\begin{cases} y''(t) + y'(t) - 2y(t) = 0, \\ y(0) = 1, \ y'(0) = 1 \end{cases}$$
 (d)
$$\begin{cases} y''(t) + 2y'(t) + 2y(t) = 0, \\ y(\pi/4) = 2, \ y'(\pi/4) = -2 \end{cases}$$

(b)
$$\begin{cases} y''(t) + 4y'(t) + 3y(t) = 0, \\ y(0) = 2, \ y'(0) = -1 \end{cases}$$
 (e)
$$\begin{cases} 9y''(t) - 12y'(t) + 4y(t) = 0, \\ y(0) = 2, \ y'(0) = -1 \end{cases}$$

(c)
$$\begin{cases} y''(t) + 4y'(t) + 5y(t) = 0, \\ y(0) = 1, \ y'(0) = 0 \end{cases}$$
 (f)
$$\begin{cases} y''(t) + 4y'(t) + 4y(t) = 0, \\ y(-1) = 2, \ y'(-1) = 1 \end{cases}$$