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Abstract Conservation biological control relies on

modification of the environment or management

practices to protect and encourage natural enemies

that are already present within the system, thereby

enhancing and improving their ability to control pest

populations in a reliable way. Such strategies are only

possible when based on a strong understanding of the

ecology of the species concerned at the individual,

community and landscape scale. Conservation bio-

logical control with entomopathogenic fungi includes

the manipulation of both the crop environment and

also habitats outside the crop. Further investment in

conservation biological control with entomopatho-

genic fungi could make a substantial contribution to

sustainable crop production either as stand alone

strategies or, more importantly, in support of other

biological and integrated pest management strategies.
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Introduction

Unlike other biological control strategies, conserva-

tion biological control does not require the introduc-

tion or augmentation of natural enemies. Instead, it

relies on modification of the environment or man-

agement practices to protect and encourage natural

enemies that are already present within the system.

This improves their ability to control pest populations

in a reliable way and is only possible if the biology,

behaviour and ecology of both the pests and their

natural enemies are understood (Eilenberg et al.

2001; Hajek 2004; Pell 2007; Pimentel 2008).

Unfortunately, for most entomopathogenic fungi,

our understanding of their ecology and epizootiology

is incomplete. The majority of examples of conser-

vation biological control to date have been for

arthropod natural enemies (e.g. Barbosa 1998; Gurr

et al. 2004; Fiedler et al. 2008; Griffiths et al. 2008;

Jonsson et al. 2008; Wade et al. 2008). However,

similar approaches are relevant to entomopathogenic

fungi where fungi are principal enemies of the target

pest and where their ecology and epizootiology are

understood (Fuxa 1998; Pell et al. 2001; Pell 2007;

Tscharntke et al. 2008).
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The entomopathogenic fungi are a diverse assem-

blage of fungi with one thing in common: they infect

and cause disease in insects and other arthropods.

Most are found within two main groups: the order

Hypocreales within the phylum Ascomycota (sub-

kingdom Dikarya) and the order Entomophthorales

(Hibbett et al. 2007; Blackwell 2009).

Natural control by entomopathogenic fungi

Entomopathogenic fungi play major roles in the

natural regulation of many insect and mite species. It

is well known that they can develop dramatic

epizootics that lead to rapid declines in host popu-

lations. In these systems the regularity and intensity

of epizootics could be enhanced through conservation

biological control and should be a primary target.

However, in systems where fungi currently appear to

have little regulatory impact on pest populations,

there remains the possibility that this is as a result of

management practices and could still be improved

through conservation biological control.

Without doubt, the monetary value of un-manip-

ulated, natural control of pests exerted by fungi

worldwide is already substantial. Examples from the

Entomophthorales include Entomophaga grylli that is

capable of reducing destructive grasshopper out-

breaks to negligible proportions in some years

(MacLeod 1963). Gypsy moth (Lymantria dispar)

populations in North America are regularly controlled

by outbreaks of Entomophaga maimaiga (Hajek

1999), cotton aphid (Aphis gossypii) populations by

Neozygites fresenii (Steinkraus 2007; Abney et al.

2008), various aphid populations by Pandora neoa-

phidis (Pell et al. 2001) and spider mite (Tetranychus

spp.) populations on soybean by Neozygites floridana

(Klubertanz et al. 1991). Examples from the Hypo-

creales are more commonly associated with hosts that

spend some or all of their time in the soil, where

hypocrealean fungi are ubiquitous. Epizootics of

Beauveria bassiana in the scarab beetle Costelytra

zealandica can reduce the host population by 99%

(Townsend et al. 1995). Nomuraea rileyi has been

shown to greatly reduce populations of Pseudoplusia

gemmatalis overwintering in soil (Carruthers and

Soper 1987) and Tolypocladium cylindrosporum

severely reduces populations of Agrotis segetum

dormant in soil (Steenberg and Ogaard 2000).

Although our understanding of the ecology and

epizootiology of entomopathogenic fungi is often

incomplete (Vega et al. 2009), a conservation

biological control approach could have significant

potential if we identified and filled the gaps in our

ecological knowledge. By understanding the factors

that promote or inhibit epizootic development, strat-

egies can be identified that ensure favourable condi-

tions for entomopathogenic fungi, and consequently

reliable epizootics (Pell et al. 2001; Pell 2007). This

is a significant challenge requiring an understanding

of the persistence, transmission, dispersal and host

range of fungi in cropped and semi-natural areas

within managed ecosystems. Furthermore, these

factors will vary considerably depending on the

species of fungus and its life history strategy. As

described by Hesketh et al. (2009) entomophthora-

lean and the anamorphic stages of hypocrealean fungi

have contrasting life history attributes (with few

exceptions). Entomophthoralean fungi are generally

associated with foliar insect hosts, they are biotrophic

and have limited host ranges. The soil is purely a

reservoir environment in which their conidia and

resting spores must persist, often when hosts are

absent in the foliar environment above. In contrast,

many hypocrealean fungi are hemibiotrophic, have

broad host ranges and are associated with hosts that

spend at least some of their life cycle in or on the soil.

The soil is not just a reservoir environment in which

they persist but also the habitat in which much of

their lifecycle occurs, including multiplication within

hosts and also, potentially, saprophytic growth. These

differences have important implications for the

conservation biological control approaches used.

Conservation biological control strategies applied

within the crop; factors for consideration

Abiotic environment

Without doubt, high relative humidity is the most

essential criterion for fungal activity. Ambient

humidities in excess of 90% are usually required

for germination, sporulation and infection (Tanada

and Kaya 1993). Increasing the relative humidity

through crop irrigation can, therefore, significantly

enhance the activity of many entomopathogenic

fungi. Clear examples of this come from species in
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the Entomophthorales, but the principle also applies

to species in the Hypocreales where increasing

humidity has been used widely to improve their

efficacy in inundative control. Irrigation increased the

prevalence of P. neoaphidis in aphid populations in

alfalfa, field beans, pecan and spinach (Hall and Dunn

1957; Wilding et al. 1986; Pickering et al. 1989;

McLeod and Steinkraus 1997). Prevalence of Erynia

ithacensis in mushroom gnats was greatly increased

by spraying water in the mushroom houses (Huang

et al. 1992). Increasing relative humidity by water

mists, irrigation and sprinkler systems is a relatively

simple method that could be applicable for a wide

range of crops, but can prove too costly if the value of

the crop is low.

There are also methods to increase humidity without

application of water. In crops that are harvested more

than once, such as alfalfa, appropriate timing of the first

cut allows manipulation of humidity and associated

enhanced pest control by fungi. An early first cut

concentrated weevil pests in the humid windrows

where they were more likely to become infected by the

fungal pathogen Zoophthora phytonomi. Although the

profit from the first cut was reduced using this method,

because the harvest was early, the resulting weevil

control improved the yield from the second cut

significantly (Nordin 1984; Brown and Nordin 1986).

All entomopathogenic fungi spend some part of

their life cycle outside of their hosts, as conidia or

resting structures (resting spores, chlamydospores,

hyphal bodies), on leaf surfaces, bark and soil. In the

phylloplane, conidia of all fungi are particularly

susceptible to UV degradation (e.g. Furlong and Pell

1997; Fargues et al. 1996). Reducing the row spacing

of crops, thereby increasing canopy cover, is one

relatively simple method for improving protection

from UV while simultaneously elevating ambient

relative humidity. In the soybean system, Sprenkel

et al. (1979) found higher prevalence rates of N. rileyi

in lepidopteran larvae from plots that had been

planted early, in narrow rows and at a high seed

density compared to conventionally planted plots. If

higher density plantings are compatible with other

agronomic/economic aspects of soybean production,

this represents a simple way to increase control by

entomopathogenic fungi in soybean and may be

applicable in other crops. Intercropping with plant

species that increase canopy cover may also prove

useful by raising ambient humidity.

Soil composition and disturbance

Soil structure, temperature, pH and water availability

will all influence the species diversity and abundance

of entomopathogenic fungi in soil and indeed which

species may predominate in a given field or region

(Klingen and Haukeland 2006; Meyling and Eilen-

berg 2007). Although it is important to recognize

these influences, they are not open to easy manipu-

lation for conservation biological control. However,

physical and chemical perturbations due to tillage

practices are open to manipulation within conserva-

tion biological control (Pell et al. 2001; Meyling and

Eilenberg 2007; Pell 2007).

Any fungal propagule could be affected by tillage

practices. This could have negative effects if fungal

structures are buried deep within the soil where they

would no longer be able to contact potential hosts or

positive if they are moved closer to hosts at the

surface, or if dispersal to new host populations is

facilitated. Such factors can only be understood by

detailed evaluation of each system and examples of

this are scarce. However, Bing and Lewis (1993)

found that B. bassiana infected more Ostrinia

nubilalis in no-till corn crops than in corn from

conventionally ploughed fields. In a different study,

B. bassiana, Metarhizium anisopliae, and Isaria spp.

were all more abundant in pest populations in no-till

compared to tilled plots (Sosa-Gomez and Moscardi

1994). Furthermore, in a study in vegetable crops, the

number of G. mellonella that became infected by B.

bassiana and M. anisopliae, when used as bait on the

soil, was significantly greater when they were

exposed to soil from no-till rotations compared to

soil that had been tilled (Hummel et al. 2002). In

soybean crops in Brazil, selective media were used to

compare the abundance of entomopathogenic fungi

from tilled and no-till soils. This study found

significantly more colony forming units (a measure

of fungal abundance) in soil that had not been tilled

compared to tilled soil. However, the number of

colony forming units of the same pathogens in the

canopy was not significantly different in the two

systems. The reduced quantity of inoculum in the soil

did not, therefore, translate into reduced exposure of

insects inhabiting plants in the same field (Sosa-

Gomez et al. 2001). Conservation tillage practices are

now widely available and could enhance the level of

control provided by entomopathogenic fungi above
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and below ground in a number of cropping systems,

although this requires further evaluation. Within-crop

strategies already employed to encourage arthropod

natural enemies, such as mulching and beetle banks,

may also have the potential to enhance the efficacy of

entomopathogenic fungi, although this is as yet

unproven (Meyling and Eilenberg 2007).

Pesticide applications

Applications of insecticides, fungicides and herbi-

cides are a common component of crop management

and these could impact entomopathogenic fungi in

both the soil and foliar environment directly (by

killing or inhibiting fungal propagules) and indirectly

(by removing hosts) (Wekesa et al. 2008; Klingen

and Haukeland 2006; Mochi et al. 2005; Morjan et al.

2002; Chandler et al. 1998; Lagnaoui and Radcliffe

1998; McLeod and Steinkraus 1997; Mietkiewski

et al. 1997). Some of the effects are not easy to

interpret, particularly when many studies have been

done in vitro (Meyling and Eilenberg 2007). How-

ever, overall, Klingen and Haukeland (2006) sug-

gested that insecticides and herbicides were less

harmful than fungicides, although this was dependent

on particular circumstances; insecticides may not be

damaging directly but can remove hosts for sub-

sequent transmission. Interestingly, the importance of

entomopathogenic fungi for the control of pests is

sometimes revealed in studies with fungicides. In a

study on the green peach aphid (Myzus persicae), on

potato, Ruano-Rossil et al. (2002) found that when

fungicides were applied, extremely high aphid pop-

ulations developed. They found that the fungicides

were disrupting the natural control provided by

P. neoaphidis, Entomophthora planchoniana, and

Conidiobolus obscurus.

Reducing or targeting pesticide applications is the

simplest way to mitigate any potential negative

impacts and can be achieved by identifying and

monitoring the activity of beneficial fungi in the crop,

predicting their efficacy and thereby recommending

when insecticides need not be applied (Pell et al.

2001; Pell 2007). The best example of this is for the

entomophthoralean fungus Neozygites fresenii and

cotton aphid control in the southern states of the USA.

Studies in the USA showed that N. fresenii epizootics

in Aphis gossypii occurred annually between June and

August over wide areas of cotton production and that

their occurrence could be predicted by diagnosis of

aphid samples (Hollingsworth et al. 1995; Steinkraus

et al. 1995). When fungus prevalence reached 15% in

the aphid samples tested, declines caused by epizo-

otics were certain within the week (within days if

prevalence reached 50%) and recommendations could

be made to farmers not to spray insecticides. Because

this approach not only conserved fungal and insect

natural enemies but also saved farmers money it has

been widely adopted. An extension-based service to

determine fungal prevalence and provide advice was

established in 1993 in Arkansas and eventually

covered Alabama, Florida, Georgia, Louisiana, Mis-

sissippi, Missouri, North Carolina, South Carolina and

Tennessee (Steinkraus et al. 1998; Steinkraus and

Zawislak 2005). Aphid samples submitted by farmers,

extension agents, crop consultants and others were

diagnosed and reports on prevalence provided to the

senders. The diagnosis service provided detailed

information via a website (http://www.uark.edu/

misc/aphid) so that farmers could follow the spread

of the fungus in their area and rationalise their pesti-

cide use in response (Steinkraus et al. 1996, 1998;

Steinkraus and Boys 1997).

Burning of crop residues

Very little research exists on the effects of fire on

entomopathogenic fungi. However, it is likely that

they could be important in areas where burning crop

residues is still used as a management tool. Unfor-

tunately, with such a limited body of literature on the

topic, we can only make speculative hypotheses. Fire

is known to reduce the activity of many plant

pathogenic fungi (Hardison 1976). Some Entomoph-

thorales, like N. fresenii, produce resting structures

that persist on plant material, including crop stubble

(Byford and Ward 1968). Presumably, in areas where

fire is used to clear stubble, these resting structures

would be destroyed. In Australia, aphid populations

increased following controlled burns, suggesting

either a direct positive effect of fire on aphid

population growth or negative effects on their natural

enemies, such as entomopathogenic fungi (Briese

1996). Fire could also have impacts on the soil

environment, thereby indirectly affecting entomo-

pathogenic fungi. After fire, soil can become hydro-

phobic (MacDonald and Huffman 2004), its pH rises

(Hennig-Sever et al. 2001), and the soil nutrient
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composition changes (Kaufmann et al. 1994). There

is some evidence that M. anisopliae may become

more abundant in the soil from forests which have

been burned (Bastias et al. 2008).

Extending conservation biological control

strategies beyond the crop; the importance

of reservoirs and complexity

Biological control must be effective in the crop

environment and so conservation strategies that can

be applied within the crop are an obvious first target.

However, while some aspects of crop management can

be modified to improve the efficacy of entomopatho-

genic fungi, many are not easy to modify. The soil

structure and profile on a farm are controlled princi-

pally by the geology of the site, some level of tillage is

essential and pesticides will need to be applied, even

when integrated pest management strategies are prac-

ticed. Entomopathogenic fungi also need populations

of hosts for their multiplication and, when these hosts

are pests, a delicate balance between host and pathogen

populations on the crop must be achieved. For these

reasons, conservation biological control strategies that

manage areas outside of the crop to encourage natural

enemies have advantages. These semi-natural habitats

can provide alternative hosts for multiplication of

enemies and will not receive pesticide applications.

Ensuring appropriate humidity and UV protection

through canopy management could be easier and

furthermore, they are semi-permanent and not tilled.

However, the entomopathogenic fungi utilizing these

resources must have the capacity to disperse from the

reservoirs into adjacent crops. The value of dispersal

potential has been identified for F. virescens infecting

Pseudaletia unipuncta on undisturbed fescue. The

same insect in surrounding wheat crops never became

infected suggesting that the fungus may have been

unable to disperse between habitats (Steinkraus et al.

1993). Although research in this area has been led by

studies on arthropod natural enemies, as described

previously, they are also extremely relevant for

entomopathogenic fungi.

Alternative hosts as inoculum sources

Using a modelling approach to understand the

parameters influencing epizootic development of

Entomophthora muscae in the onion fly, Delia

antiqua, the presence of a secondary host (the seed

corn maggot, D. platura) in field border plants

significantly increased the prevalence of E. muscae

in D. antiqua on onions (Carruthers et al. 1985;

Carruthers and Soper 1987). Elegant observational

studies have also shown that hedgerows are important

for the persistence and spread of E. muscae and E.

schizophorae in other dipteran populations, e.g.

carrot root fly, Chamaepsila rosae (Eilenberg 1985,

1988). The prevalence of fungus was always greater

in carrot flies from hedges than from carrot fields.

Hedges were the preferred sites for flies to rest and

where infected flies died. This made the hedges

important sites for transfer of conidia from one host

to the next (Eilenberg 1987). Similar observations

have been made in aphid populations in Switzerland

(Keller and Suter 1980). Large populations of eco-

nomically unimportant aphid species developing in

meadows (lucerne and alfalfa) in the spring, were

correlated with P. neoaphidis and C. obscurus rapidly

achieving levels sufficient to regulate aphid popula-

tions in adjacent fields of annual crops. When aphids

were scarce in the spring this did not happen

suggesting that the presence of alternative aphid

hosts in nearby meadows was critical. Grass and

legume rich field margins and woodlands are also

thought to have great potential as reservoirs for the

aphid pathogen P. neoaphidis in South Africa (Hat-

ting et al. 1999a, b). Other aphid pathogenic species,

such as Zoophthora aphidis, Z. phalloides and E.

planchoniana, are also known to overwinter in hosts

in hedges and forest borders (Keller 1987a, b; Nielsen

et al. 2001).

All the studies described above demonstrate the

potential that managed habitats outside crops could

have for pest control within the crop. However, the

underpinning ecological data that would allow opti-

mization in these systems is often incomplete and,

where it is available, demonstrates the levels of

ecological complexity that must be considered. An

interesting case study on the potential utility of

managed field margins to encourage P. neoaphidis is

currently receiving significant attention and practical

and ecological data sets in support of this are being

collected and integrated. In Europe farmers receive

subsidies for planting a diversity of field margins to

encourage biodiversity. Some of these schemes have

demonstrable benefits for particular arthropod natural
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enemy abundance, and in some cases relationships

between arthropod natural enemy abundance in

margins and pest suppression in adjacent crops has

also been demonstrated (Collins et al. 2002; Powell

et al. 2003; Holland 2007; Pell 2007). These margins

could also be useful reservoirs of P. neoaphidis (and

potentially other entomopathogens) if they contain

plants that support alternative, susceptible aphid hosts

throughout the season and if virulent isolates of the

fungus could disperse from the margin into adjacent

crops and initiate infection.

Pandora neoaphidis is an aphid specialist and has

been recorded from numerous aphid species on crops,

weeds and wildflowers (Pell et al. 2001). Laboratory

bioassays against a range of pest aphid species

identified considerable variability in susceptibility

(e.g. Shah et al. 2004a). In these studies the pea

aphid, Acyrthosiphon pisum, was the most susceptible

pest aphid evaluated. Many non-crop legume plants

are common in existing non-crop habitat mixes and

also support A. pisum suggesting that the pea aphid

could be a useful source of fungal inoculum when

feeding in non-crop habitats and also a relatively easy

target when on the crop. As a large species it would

also produce more inoculum when dead than smaller

species (Baverstock et al. 2005). In contrast Rhopal-

osiphum padi, an aphid pest on cereals, was far less

susceptible than A. pisum and may therefore be less

useful as a reservoir for P. neoaphidis in non-crop

habitats and a harder target in the crop. It should be

noted that these results were for a limited number of

isolates and single biotypes of each aphid species.

Biotypes of A. pisum can vary significantly in their

susceptibility to P. neoaphidis (Ferrari et al. 2001),

and infected R. padi have been recorded in the field

(Pell et al. 2001) highlighting the complexity of the

interactions (Pell 2007).

To avoid encouraging pest aphid species at field

boundaries, non-pest aphids as sources of P. neoa-

phidis infection would be valuable. Ekesi et al.

(2005) demonstrated that some non-pest aphids were

also susceptible to infection: Microlophium carnosum

a specialist on the perennial stinging nettle (Urtica

dioica) was very susceptible. Furthermore, isolates of

P. neoaphidis from field collected M. carnosum were

virulent against a number of pest aphid species,

indicating the potential for transmission from non-

pest aphid reservoirs to pest aphids on crops (Shah

et al. 2004a). This was confirmed by molecular

studies that found no relationship between the aphid

host from which an isolate originated and its host

range (Tymon et al. 2004; Tymon and Pell 2005).

Microlophium carnosum populations peak very early

in the season (Perrin 1975) providing a source of

P. neoaphidis for infection of adjacent crop aphids

before their populations reach damaging levels. In

food web studies of aphids and their fungal enemies

in a natural meadow, aphids on nettles were identified

as an important source of P. neoaphidis for infection

of other aphid species (van Veen et al. 2008). Other

hedgerow plants that support non-pest aphids

throughout the season include hogweed (Heraclium

sphondylium), teasel (Dipsacus fullonum) and bram-

ble (Rubus fruticosus) and, therefore, also have

potential as reservoirs for P. neoaphidis (Shah et al.

2004b). Such habitats could also be important for

overwintering of P. neoaphidis as they are undis-

turbed and protected. Pandora neoaphidis is likely to

persist in overwintering anholocyclic aphids via

continuous cycles of infection and as conidia on the

soil (Nielsen et al. 2007). Pandora neoaphidis

remains able to infect aphids under simulated winter

conditions and preliminary studies suggest that

managed non-crop habitats with dense canopies also

improve inoculum survival (Baverstock et al. 2008a).

Dispersal into crops from reservoirs

The studies above have identified plants that could be

useful in supporting alternative hosts for P. neoaphi-

dis and circumstantial evidence for the ability of

P. neoaphidis to transmit between aphids in semi-

natural habitats and crops. However, concrete evi-

dence is required to confirm that this actually

happens—a challenge in any conservation biological

control approach. As with other entomophthoralean

fungi, P. neoaphidis produces conidia that are

actively discharged, leaving the boundary layer and

entering the airstream (Hemmati et al. 2001a, b).

Field studies have shown that they travel at least

20 m in the air, and probably considerably further,

giving them the potential to move between distant

habitats (Hemmati 1999). Sentinel aphids placed

downwind from sources in the field and in polytunnel

experiments became infected, demonstrating that

conidia remained viable in the airstream, at least

over short distances (Shah et al. 2004b; Ekesi et al.

2005). However, this mechanism of dispersal is
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entirely passive, diminishing chances of landing on a

suitable host. More directed and long distance

dispersal can occur through the movement of infected

winged (alate) aphids between plants in response to

overcrowding or during dispersal between primary

and secondary host plants (e.g. Feng and Chen 2002;

Feng et al. 2004). Of course, the movement of pest

aphids from margins into crops, even if they are

infected, is a significant trade off and would require

careful consideration. Furthermore, there are other

mechanisms of targeted dispersal that do not rely on

the movement of aphids. In both laboratory and field

studies, predators such as the ladybird C. septem-

punctata, become contaminated with conidia of

P. neoaphidis while foraging on aphids on both crop

and non-crop plants and are able to carry sufficient

conidia to healthy aphid populations to initiate

infection (Pell et al. 1997; Roy et al. 2001; Ekesi

et al. 2005). As ladybirds also use non-crop habitats

as reservoirs, particularly nettles, early in the year

before moving into the crop, this represents a very

important targeted mechanism of dispersal for

P. neoaphidis both within and between non-crop

and crop habitats as they will be carried with the

predator that is actively seeking out aphid prey.

Considering the wider natural enemy community

Entomopathogenic fungi do not occur in isolation but

within diverse guilds of natural enemies. The impor-

tance of considering the entire guild when developing

conservation biological control is important but has

not always been considered. For example, the pred-

atory ladybird C. septempunctata will consume P.

neoaphidis—infected aphids, inhibiting transmission

(Pell et al. 1997; Roy et al. 1998, 2003). However,

they can simultaneously significantly increase local

transmission from sporulating cadavers which greatly

outweighs the detrimental effect of feeding (Roy et al.

1998; Ekesi et al. 2005). This enhanced transmission

in conjunction with passive vectoring of inoculum, as

described previously, is likely to benefit P. neoaphidis

significantly (Roy et al. 2001). Parasitoid wasps also

enhance local transmission of P. neoaphidis although

they do not contribute significantly to passive vector-

ing of inoculum (Fuentes-Contreras et al. 1998;

Baverstock et al. 2008b, 2009a). However, in contrast

to the fungus/ predator interaction, P. neoaphidis and

parasitoids compete within individual aphid hosts:

parasitoids take longer to develop than the fungus and

so are often outcompeted in aphids that are already

infected by fungi (Powell et al. 1986; Fuentes-

Contreras et al. 1998; Furlong and Pell 2005).

Parasitoids are also detrimentally affected by intra-

guild predation by predators such as ladybirds

although some parasitoid species can recognise

chemical trails produced by the predator and so avoid

oviposition in aphid populations in which predators

are foraging (Nakashima et al. 2004).

These outcomes are context specific, continually

co-evolving and can be variable both for the enemies

themselves and for overall aphid population control

(Sunderland et al. 1998; Brodeur and Boivin 2006).

From the point of view of aphid management, field

studies demonstrate that different natural enemy

groups are responsible for aphid control in different

years (Sunderland et al. 1998) and, in the laboratory,

that a combination of predators, parasitoids and P.

neoaphidis has the greatest impact on aphid popula-

tion suppression, although it can also lead to exclu-

sion of some natural enemy species in the short term

(Baverstock et al. 2009a). Furthermore, we know that

susceptibility to P. neoaphidis varies amongst aphid

species and biotypes (Shah et al. 2004a; Ferrari et al.

2001) but that the pathogen—resistant forms are

attacked by predators and parasitoids. For these

reasons it is a widely accepted belief that, for long

term and resilient pest management, a diversity of

natural enemies with contrasting requirements is

required to deliver pest management in a constantly

changing environment (Tscharntke et al. 2005, 2008;

Pell 2007).

Conclusions and considerations for the future

Development of entomopathogenic fungi within

conservation biological control strategies has

received far less attention than their development

for augmentation (Pell 2007). In the cases where

conservation approaches have been considered, the

focus has often been with the Entomophthorales

because their epizootiology is generally better under-

stood than the Hypocreales. Understanding the ecol-

ogy of hypocrealean fungi in their favoured habitats

and their relationships with above and below ground

hosts would be a major step forward in untapping

their potential (Bruck 2009; Cory and Ericsson 2009).
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For example, B. bassiana is ubiquitous in soil but has

recently been shown also to be common in the plant

canopy, active against plant pathogens and even

systemically active within plants, providing further

opportunities for exploitation (Meyling and Eilenberg

2007; Pell 2007; Vega et al. 2009; Ownley et al.

2009). These aspects of their ecology would certainly

improve the opportunities for exploitation in conser-

vation biological control but should also underpin

their use in other strategies (Roy et al. 2009; Jackson

et al. 2009; Jaronski 2009; Hajek and Delalibera

2009; Baverstock et al. 2009b). It is certainly likely

that if conservation approaches were used in con-

junction with augmentation that the effectiveness of

the augmentation strategy would be improved. There

remain significant gaps in ecological understanding

and examples of ‘proof of concept’ for conservation

biological control with entomopathogenic fungi are

rare. It is clear that for us to advance, greater

investment in long-term, in depth studies, aimed at

understanding the most important factors governing

survival and spread of entomopathogenic fungi are

essential. These studies should be coupled with

replicated experimentation at the field and landscape

scale to evaluate the strategies robustly.

A key factor for further study is the dispersal

capability of entomopathogenic fungi between host

populations and has particular relevance for conser-

vation strategies in which the fungus multiplies

outside of the crop and moves into the crop to be

effective. Such studies would benefit from insights

from theory, particularly metapopulation theory that

considers populations linked by dispersal (Meyling

and Hajek 2009) and modeling studies that seek to

understand the role of reservoirs in pathogen popu-

lation dynamics (Hesketh et al. 2009).

The implications of interactions between fungal

and arthropod enemies and the requirement for

diverse enemy guilds for resilient pest control should

also receive more attention. When enemy interactions

are complex and can have both positive and negative

impacts, it is a challenge for conservation biological

control but one that could be achieved by manipu-

lating habitat diversity at a landscape scale. The

particular requirements of each enemy group must be

considered alongside the aspect and location of

managed non-crop habitats and farm practices. The

quantity and distribution of the various alternative

habitats could have a significant effect on natural

enemy diversity and pest management function and

all these aspects require further study to link function

at the individual level through to populations and

communities at the field, farm and landscape scale.

Such studies will become increasingly important as

crop ecosystems respond to changes in climate and as

new crops are introduced for other purposes (e.g.

bioenergy).

The value of biodiversity in delivering a particular

ecosystem function applies more generally than

described above. There are undoubtedly many iso-

lates and/or species of fungi that play as yet unknown

roles in the regulation of pest populations. This may

be because the systems in which they are active are

understudied or because they are considered unim-

portant based on our existing knowledge of their

ecology—but this could change as our climate and

cropping landscapes change.

Conservation biological control with entomopath-

ogenic fungi could make a substantial contribution to

sustainable crop production, either as a stand alone

strategy or, more importantly, in support of other

biological and integrated management strategies. Its

development and implementation must be under-

pinned by fundamental ecological understanding of

the fungi concerned and their complex interactions

with their hosts and the wider community at the

individual to landscape scale. Although, like any

control strategy, uptake will rely on economics and

incentives (Gelernter 2005; Pell 2007; Cullen et al.

2008; Griffiths et al. 2008) the potential is there and

warrants further investment.
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