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A recent paper (Ecological Economics 69, 2010, pp. 1604-1609) has addressed the issues of dimensional homo-
geneity of equations and non-linear transformations of variables in economic and ecological economic models.
The authors argued that logarithmic transformation cannot be used when variables are dimensional, presented
several examples of purportedly incorrect use in applied economics and ecological economics publications, and
concluded that these applications “make no sense.”

In this paper we show that this view goes against well established theory and practice of many disciplines
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Ecological economics including physics, statistics, biology, and economics, and rests on an inadequate understanding of dimensional
Methodology homogeneity and the nature of empirical modeling in applied sciences. We believe that it is important to clarify

that the use of dimensional variables in transcendental functions is in fact in accordance with the established
scientific consensus so as to prevent further confusion from arising in ecological economics where addressing
complex problems requires the synthesis of insights from many diverse disciplines to further our understanding
of the environment-economy interface.

We also provide novel applications of dimensional methods to ecological economics and useful methodological
references from several strands of scientific literature, not previously systematically consolidated, that should be

Dimensional analysis

of interest to every applied researcher.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

To further our understanding of the interdependence between the
economy and the environment, ecological economics often seeks math-
ematical relationships among quantities that describe the phenomena
under investigation. These quantities, variables and constants in our
models, will often be dimensional in nature, i.e., their numerical value
depends on the unit of measurement chosen. In a recent paper, pub-
lished in this journal (Ecological Economics 69, 2010, pp. 1604-1609),
Mayumi and Giampietro, hereinafter referred to as M&G, using argu-
ments based on the Taylor's theorem of calculus, argued that exponen-
tial and logarithmic functions can only be applied to dimensionless
numbers. They then reviewed several economics and ecological
economics papers published over the past 50 years where this precept
is purportedly not followed, resulting in applications that, according
to the authors, “make no sense,” and concluded that “it is unfortunate
that many empirical and theoretical studies in economics, as well as in
ecological economics, use dimensional numbers in exponential or loga-
rithmic functions” and that “economists concerned with the biophysical
and monetary aspects of ecological and economic interactions must
understand the importance of dimensional homogeneity.”
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These are extraordinary claims that, if correct, would imply that
most applications of statistics, economics, econometrics, and a consid-
erable number of application in physics, which routinely employ loga-
rithmic transformations of dimensional variables to model observed
phenomena, simplify expressions, gain compliance with common
statistical assumptions, estimate model parameters, and test hypothe-
ses against observed data, among other things, are, using the authors'
own words, “unacceptable.” Relationships that capture the essence of
ecological economics such as the stochastic IPAT (see, e.g., Dietz and
Rosa, 1994; York et al,, 2003) and the environmental Kutznets curve
(see, e.g., Grossman and Krueger, 1993; Stern, 2010), where logarithms
of dimensional variables are an essential part of the analysis, would also
be unacceptable.

In this paper we show that the use of dimensional variables as argu-
ments to transcendental functions in the examples criticized by M&G is
in fact in accordance with the established scientific consensus. In the
next section we review the concept of homogeneity of equations with
physical quantities within traditional dimensional analysis and its
extension to social sciences and economics. In Section 3 we apply
dimensional analysis to economics and ecological economics problems
and show how it can be useful in defining key variables, helping to
construct models, and checking the “physical” validity of equations. In
Section 4 we look at why often, logarithmic transformations of dimen-
sional quantities that appear to be violate homogeneity, are actually
part of a homogeneous expression. We also discuss, within an example
from ecological economics, the role of dimensional constants. In
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Section 5 we look at nonhomogeneous models and empirical equations,
their usefulness, and their correct interpretation. We show that, be-
cause of the complexity of the environment economic interactions, it
is a misuse of dimensional analysis to insist that homogeneity rules
must be rigidly and uncritically applied. We conclude with Section 6.

As M&G ignored the whole of the vast literature on dimensional
analysis, we will try to amend this important omission, by providing
useful references to a large body of literature scattered in various dis-
ciplines. The standard reference in dimensional analysis remains
Bridgman (1931). Useful treatments of the topic include Langhaar
(1951), Palacios (1964), de St. Q. Isaacson and de St. Q. Isaacson
(1975), and Barenblatt (1996). For a historical account of the method
see Macagno (1971) and Roche (1998). In economics, the earliest
treatment is Jevons (1888). Several authors of economic books,
acknowledging its importance, dedicate a chapter on dimensional
analysis. They include Allen (1938), Shone (2002), and Neal and
Shone (1976). The most authoritative exposition in the field of
economics remains the book by De Jong (1967). Useful papers pub-
lished on the subject in economics include De Jong and Kumar
(1972) and Okishio (1982). Other, more specific references, will be
provided in later sections.

2. Dimensional Variables and Their Homogeneous Equations

In order to avoid the mistakes in Mayumi and Giampietro (2010)
and to apply dimensional methods to ecological economics correctly,
we need to better understand the concept of dimensional homogene-
ity which has its roots in the fundamental theory of measurement in
physics. Central to this understanding is the concept of “physical quan-
tity.” Note that in this context this terminology could be the source of
some confusion, as in green accounting and ecological economics,
“physical” is synonymous with “material” or “embodied energy” usually
contrasted with monetary values as in Weisz and Duchin (2006). It is
better to think of physical quantity as cardinally measurable property
so that it becomes clear that it can include economic quantities such
as "goods" and "money."

We need to address the following questions.

» What kind of numerical values representing physical properties can
be considered a physical quantity, and

» what kind of restrictions apply to equations between physical
quantities.

Most physical quantities have several units of measurement that are
routinely employed in applications. We will use the expression dimen-
sional quantity, to refer to a quantity whose numerical value depends
on a specific unit of measurement. Following a well established conven-
tion, we will keep the concepts of dimensions and units distinct. A unit
of physical quantities will be a standard for measurement of the same
physical quantity, in the usual sense, like a meter or a kilogram. Dimen-
sions can be regarded as generalized units. For example, anything that
could be measured in mass units, such as kilograms, is considered to
have the dimensions of mass, that we will denote with the symbol [M].!

2.1. Base Quantities

Physical quantities are classified into two types: base quantities
and derived quantities. The dimensions of basic quantities in classical
mechanics are usually length [L], mass [M], and time [T]. The base
quantities form a complete set of basic components for an open-
ended system of “derived” quantities. This triplet LMT can be

! This square bracket notation dates back to Maxwell (see, e.g., Macagno, 1971) and
will be used here to denote equivalence class as in Langhaar (1951) and De Jong
(1967). Alternatively, it can be interpreted as a function meaning “dimension of.”

considered a system of units if it is sufficient to express all other quan-
tities of interest in a specific field. It is important to stress that a given
system of units is, to some extent arbitrary, and defined by conven-
tion. The base quantities are defined in entirely physical terms. Two
physical quantities of the same kind, xo and x;, are comparable if
the following “ratio” is operationally and uniquely defined,

; )

where A is a numerical value indicating that x; is A times greater than
Xo.2 This “axiom” is at the basis of the process by which physicists assign
numbers to properties of objects. If we take the quantities xo to be a
“standard unit,” we say that the process of measurement produces the
numerical value A, the number of measurement. If we change units, say
from xg to xp, though the number of measurement will change, the
quantity itself remains “physically” unaffected. Also, the ratio of any
two samples of a base quantity remains constant when the base unit
size is changed. In statistics and social sciences, quantities satisfying
this property are said to be measured on a ratio scale (see, e.g., Hand,
2004; Stevens, 1946). When fundamental quantities of the same type
are physically equated or added together, their corresponding numbers
of measurement satisfy equations of the same form,

X; =X, = AM=N
Xy +X3 =X, = A+ A3 =7,
| — [ ——

Physical operations
(comparison and
concatenation) on
physical quantities
of the same type

Math operations
(equality and addi—
tion) on numbers of
measurement

with x;/xg giving \;, for i=1,...,4. Note that if the unit of measure is
changed, so that x;/x produces A}, for i=1,...,4, the form of the equa-
tions remain unchanged: A} = A5 and A5 + A5 =A4. If the above ratio
is not defined, equalities might become inequalities by a simple change
of units. In that case, the equation will be valid only for the particular
choice of units. It is taken for granted that only quantities measured
on a ratio scale are amenable to dimensional analysis (see, e.g.,
Bridgman, 1931; Krantz et al., 1971).

Outside basic physics, the choice of fundamental dimensions to
adopt is far less clear and will depend on the area of application. For
example, in macroeconomics, time [T], money [$], goods [R], and utility
[U], might be sufficient to derive all other quantities. See De Jong (1967)
and Neal and Shone (1976) for a more detailed discussion. To apply di-
mensional analysis, we choose to treat many economic and social mea-
surements as ratio scales, though they involve substantial pragmatic
consideration. Many quantities that appear in ecological economics
models are more appropriately measured on other scales, such as,
following the well-known classification in Stevens (1946), the nominal,
ordinal, and interval scales. As an example, though sums of money can
be considered ratio scales, it does not follow that money, say, as a
measure of utility in the exchange of goods, is also a ratio scale. In
fact, research by Kahneman and Tversky (1979) has shown that zero
is not an absolute reference point for monetary measurement, which
would make the scale an interval one. There is a long debate in econom-
ics on cardinal and ordinal utility (see, e.g., Allen, 1956). Other variables
used in ecological economics that are measured on the interval scale
such as temperature (degrees Celsius, and Fahrenheit, but not with
the Kelvin scale which has an “absolute” zero),> ordinal scale, such as
“intelligence” in a growth model (as an example, IQ as in Morse,
2006), and on nominal scales, such as the political variables in a

2 The division symbol here should be interpreted as a physical operation.
3 Differences in temperature could be used instead.
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relationship between environmental quality and income (for example,
“signatory of an environmental treaty,” “Democratic Country,” and “Cap-
italist Country” as in Congleton, 1992), cannot be part of a dimensionally
homogeneous equations as “ratios” are not invariant to changes in units.

2.2. Derived Quantities

Once a system of base quantities has been chosen, “derived” quan-
tities can be introduced as necessary from these base quantities using
definition linking the quantities involved.* For instance, in economics,
the derived quantity of price is formed by “dividing” money [$] by goods
[R]. It is important to keep in mind, that the operations of “division” and
“multiplication” applied to physical quantities have no physical signifi-
cance. No material entity is produced from dividing “money” with
“goods.” To symbolize this, we ignore the numerical values and, using
the formal rules of multiplicative algebra, formulae involving physical
quantities are transformed into expressions involving the dimensional
symbols for these quantities. This allows as, to keep track of dimensions
and units, with calculations involving physical quantities. For instance,
price has dimension [MR™!']. Bridgman (1931) argued that not all
numbers obtained by inserting numerical values of base quantities
into formulae can be considered physical quantities, only those that are
ratio scales themselves can. For example, if we take LMT as our funda-
mental dimensions, it can be shown that only combination that take
the power-law form [MML "], where the exponents g, A, and T are ratio-
nal numbers, are allowed (see, e.g., Barenblatt, 1996; Bridgman, 1931;
Langhaar, 1951; Palacios, 1964). A quantity is said to be dimensionless
if all dimensional exponents are zero in which case we will say it has di-
mension [1]. No other functional form can represent “physical” quanti-
ties. This implies that transcendental functions, which cannot be
expressed in terms of a finite sequence of basic algebraic operations, re-
quire dimensionless arguments to be part of a dimensionally homoge-
neous expression.

Not all “theoretically” valid derived dimensions obtained using this
algebra are useful in practice. For example, if we take quantities of
dimension mass [M] and length [L], whilst we cannot add them we
can, for example, multiply them to obtain [ML], a measure of productiv-
ity in the transport sector such as the “ton-kilometer” units or divide
them to obtain [ML™!], a measure of linear density such as the “ton
per kilometer” units. Random combination such as [M~“%L?] or
[M°L~3], though legitimate dimensions, have not yet been found useful.
As we already seen, there is no physical concept for dividing mass by
length. The fact the “ton per kilometer” has dimension [ML™ '] simply
signifies that the numerical value of any measure defined in that way
is increased by a factor mi~! when the mass and length units are
decreased by a factor m and I, respectively.

2.3. Physical Equations

Within physics, where the variables and constants are all assumed to
be ratio scales, an equation is said to be dimensionally homogeneous if it
is invariant to the choice of fundamental units of measurement. The
study of these generalized homogeneous functions is the subject of
dimensional analysis (see, e.g., Barenblatt, 1996; Birkhoff, 1960;
Bridgman, 1931; Langhaar, 1951; Murphy, 1950; Palacios, 1964). The
same definition is adopted in other disciplines such as statistics (see,
e.g., Finney, 1977, p. 285), biology (see, e.g., Stahl, 1961, p. 359) and
economics (see, e.g., De Jong, 1967, p. 28).

4 An algebraic approach to dimensional analysis, has been developed by, among
others, Drobot (1953), Thun (1960), and Whitney (1968). As will be clear from later
discussions, this approach is generally too narrow to be used in ecological economics
models.

There are several useful consequences of this definition that can
be used to check for dimensional homogeneity.

« Right hand side and left hand side of an equation must have the
same dimensions,

« if sums appear in the equation its terms must have the same
dimension.®

Equality of units and terms that appear in an equation can be used to
check for homogeneity. Often, it is not readily apparent if an equation is
dimensionally homogeneous. In such cases, the celebrated I'1 theorem
of dimensional analysis of Buckingham (1914) provides an operational
definition. The theorem loosely states that an unknown function® of
several physical variables is dimensionally homogeneous if it can be
rewritten in terms of a smaller set of dimensionless products of powers
the original physical quantities. In physics, by postulating homogeneity
of equations, this definition can be used to produce "laws" just from
knowing the dimension of all variables involved in a relationship. In
the next section, we will illustrate an application of this theorem to eco-
logical economics in a simple setting where a strong physical under-
standing of the processes is available.

2.4. “Homogeneous” Equations with Non-physical Quantities

The idea of homogeneity for equations with scale ratio variables has
been extended to more general numerical statements using a wider set
of scales by the concept of meaningfulness developed within the Repre-
sentational Theory of Measurement (RTM) which is the dominant
theory of measurement in the social science (see, e.g., Luce et al,
1990). Roughly, a numerical statement” is considered empirically mean-
ingful if it is invariant under legitimate scale transformations of the
underlying variables (see, e.g., Adams et al., 1965; Suppes and Zinnes,
1963). We can apply the idea of meaningfulness to the logarithms of
dimensional variables. Consider the following equation,

logy = ax. (2)

At first, let us assume that variables are measured on ratio scales,
for instance, with y denoting emission measured in units of mass
and x denoting GDP, measured in currency units. Ratio scales can be
expressed in different units by multiplying them by some numerical
factor. If we change units, Eq. (2) becomes,

log(ky) = a(mx), 3)
ie.,
logy = &x— logk (4)

with & = ma. Eq. (4) cannot be reduced to the original form because
of the logk term so that Eq. (2) is empirically “meaningless.” Of
course, this result agrees with dimensional analysis. On the other
hand, if y is a variable unique up to a power transformation, i.e., mea-
sured on a so-called log interval scale such as utility (see, e.g., Stevens,
1957), then Eq. (2), after changing units, becomes,

log(y") = amy) (5)
which reduces to

logy = ax (6)

5 See Langhaar (1951, p. 50) for an explanation of why using this as a definition of
dimensional homogeneity is mathematically unsatisfactory.

6 Depending on the proof the function needs to satisfy a number of differentiability
conditions.

7 It does not have to be an equation, but other mathematical statements including,
say, inequalities.
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with @ =% Thus, Eq. (2), in this context, is invariant under the

admissible transformations and is therefore “meaningful.” We can
see from these examples that whether or not it is legitimate to use
logarithms of dimensional variables depends not only on the mea-
surement scale but also on the nature of the statement. For a more
detailed discussion of meaningfulness see Suppes and Zinnes (1963)
and Narens (1984). For a discussion within statistics see Hand
(2004). For a recent collection of applications of RTM in economics
see the book edited by Boumans (2007).

3. Illustrative Applications of Dimensional Analysis to Ecological
Economics

If we assume all variables are physical quantities, dimensional
analysis can be used to aid modeling mainly in order to,®

* check ex post for internal consistency of relationships, or
* ex post constrain functional relationship between physical
quantities.

In economics and related disciplines, checking equations seems to
be the most frequent use of dimensional analysis. However, in physics,
dimensional analysis arguments are more often been used to arrive at
physical laws without an a priori knowledge of the functional forms. Di-
mensional analysis can be a powerful tool in ecological economics. Just
from basic principles, by choosing the appropriate physical quantities,
we can appreciate the key elements driving a result without the need
of a more formal analysis. As an example, dimensional analysis applied
to the study of alternative energy sources can tell us, that in the case of
wind turbines, if we double the size of the blades we might expect to
quadruple the power output, whereas if the wind speed is doubled
the power output is increased by a factor of 8 (see, e.g., Andrews and
Jelley, 2007).

3.1. Production Function

For example, to apply this to a production function using strong
physical grounding, let us consider an extremely simplified production
function with one input and one output of a steel container. Input will
be steel, x, and output the capacity of the container y. Since these are
physical quantities, initially we can assume the monomial relationship
between input and output,

y=AX (7)

where A is an unknown constant. Since input is proportional to the area
of the container, and output to the volume, x will have a dimension of
[L?] and y of [L3]. In terms of dimensions the equation is

] =[] ®)

To balance the equation for homogeneity, it is required that
3=2b, so that b = 3/,. This gives

y=Ax. 9)

If we double inputs, output increases by a factor of 1.5, production
increases more than the increase in inputs. We have managed to
frame the classic argument to justify increasing returns for some pro-
ductions using dimensional considerations. This application clearly

8 In practice, as modeling is an iterative process where empirical tests and observa-
tions are used to improve models, this distinction is less clearcut. The role of dimen-
sional analysis can be far more critical in experimental sciences. For example,
Gibbings writes that in physical sciences “Dimensional analysis is a powerful means
in the design, the ordering, the performance and the analysis of experiment and also
the synthesis of the resulting data” (Gibbings, 2011, p. 3).

illustrates the power and limitations of dimensional homogeneity
arguments. We indeed obtained a functional relationship between
physical quantities, however, to assume homogeneity a priori, we
need to include all relevant variables, which requires a detailed under-
standing of the problem, and results need to be empirically verified.
Failing to do so will produce nonsensical results (see, e.g., Barenblatt,
1996; Bridgman, 1931; Langhaar, 1951; Murphy, 1950; Palacios, 1964).

3.2. IPAT Identity

Consider the central equation in ecological economics, proposed
by Commoner (1972) and Ehrlich and Holdren (1972), known as
the IPAT equation, based on dimensional analysis arguments. IPAT is
an identity stating that environmental impact (I) is the product of
population (P), affluence (A), and technology (T), i.e., I=P-A'T.
Waggoner and Ausubel (2002, p. 7860) stated that “Dimensions pro-
vide an ironclad audit of forces proposed for an index of impact, and
the simplicity guarantees wide applicability.” The identity helps also
to define indicators of technology, and is an indispensable tool in
the quantitative accounting of environmental/population/economic
interactions (see, e.g., Chertow, 2000, p. 14). For dimensional checks
purposes, let us consider using emissions [E], population [N], money
[$], and time [T] as our primary dimensions.® Impact I is a flow vari-
able'® with dimension of emissions per unit of time [ET~ '], popula-
tion size P is a stock variable!' with dimension [N], affluence A is
also a flow variable, which can be interpreted as the value of goods
and services produced over a given time period per capita, with dimen-
sion [$ N~ ! T~ '], and technology T can be interpreted as emissions per
unit of output measured in monetary units, with dimension [E$ ™ !]. The
IPAT identity is, trivially, dimensionally homogeneous,

[$T‘1] [ET‘1
N] - [sT!)”

[

[ET”} = N] (10)

that is, if we change the units in which the variables are measured, the
form of the relationship remains unchanged. The simplicity of this
model should be a reminder that dimensional homogeneity by itself
can not guarantee its validity and usefulness.

3.3. Environmental Kuznets Curve

There is an important class of homogeneous equations that has
many applications in understanding dimensional homogeneity in re-
gression analysis and in empirical ecological economics models such
as the environmental Kuznets curve (EKC). In general, a mathematical
equation will be homogeneous if it is amenable to a geometric

9 Quantities which are simply counted, such as the number of people or the number
of occurrences of an event, are in general considered dimensionless (see, e.g., Taylor
and Thompson, 2008 p. 12). Note that there are several well known cases of complete-
ly different physical quantities that are either dimensionless or have identical dimen-
sions. In this case, it is meaningless to compare or add them. A classic example in
physics is that of torque and energy that share the same dimension [ML?T~?] (for other
examples, see e.g., Szirtes, 2006, p. 42). In economics, both “interest rate” and “velocity
of money” have dimensions [T~ !] though they are clearly not additive (see, e.g., De
Jong, 1967, pp. 16-17). The same is true for dimensionless quantities. It is not accept-
able to add, say, angles to proportions. In fact, to make dimensional checks feasible we
should attempt to assign dimensions to every variable in our equations. That is why
here we use a population [N] dimension (cf. Ewing, 1973).

10 See, e.g., Common and Stagl (2005, pp. 88-104). In general, a stock is a quantity
existing at a point in time. A stock quantity does not involve the time dimension [T].
A flow, on the other hand, is a quantity over a period of time. A flow variable must in-
clude the dimension [T~ '] (see, e.g., Shone, 2002, pp. 8-12). The fact that quantities in
the IPAT equation tend to be flows is typically ignored.

1 Population can also be defined as a flow variable as its change over a defined period
[N T~ 1] (see, e.g., Chertow, 2000, p. 16).
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interpretation (see, e.g., de St. Q. Isaacson and de St. Q. Isaacson, 1975,
pp. 40-42). Consider a quadratic function,

y:ax2+bx+c. (11)

This function can be interpreted geometrically as the graph of a
parabola in a euclidean space. In this case, the y and x coordinates,
interpreted as distances from the horizontal and vertical axis, have
both dimensions of length [L], c represents the y-intercept, i.e., the
value of y when x=0, which therefore has also dimension [L], b is
the slope at x=0 with dimension [d y/d x] =[L/L], a is the second de-
rivative of y with respect to x with dimension [d %/d x*] =[L/L?] =
[L™']. The equation is homogeneous, as is easily verified

1= L] 1+ [, (12)

The equation of a parabola could for example describe the trajectory
of a thrown object if we measure height and distance in meters. M&G's
statement that 4m?+4m?> “does not make any sense” (p. 1608), left
unqualified is wrong, as the authors ignore the likely presence of
dimensional constants. In fact, if m represents a length quantity and
the dimensions of the coefficients are [1] and [L™ ] respectively, this
equation could describe the vertical and horizontal location measured
in meters of a cubic curve.'?

This approach can be used to determine dimensions of the popular
environmental Kuznets curve at the core of the relationship between
environment and socio-economic activities. Considerer the following
simple version in levels, !>

Y = Bo + Brx + X’ (13)

with y having dimension of emission per period [ET~ '], and x of
money per period [$T~']. The dimensional analysis approach for
more standard log-transformed version of the EKC will be discussed
in Sections 4 and 5. Based on the geometric interpretation, 3y has di-
mension of [ET '], 3; of [E$~ '] and 3, of [E$™2].

3.3.1. Problems with Arguments Based on the Taylor's Expansion
Central to M&G's analysis is what they call a re-visitation of expo-
nential and logarithmic functions. They produce four Taylor expansions
to justify the fact that arguments of transcendental functions have to be
dimensionless. For example, M&G show the expansion of e*,

X X2 X3

e":l+ﬂ+j+§+m. (14)

M&G write: “to make sense, each element x/k! [should be x*/k 1
(k=0, 1,...) must either have the same dimension or be a dimen-
sionless pure number.” Note that the terms, being increasing powers
of x, cannot possibly have the same dimension, they can only be di-
mensionless. M&G then continue by concluding that “If neither of
these two conditions are satisfied, the summation cannot be done.”
We will show that their arguments, as presented in the paper, are
fundamentally flawed. In particular, they ignore the presence of di-
mensional constant in their analysis, and misunderstand the concept
of derived dimensions.

12 In fact, even with dimensionless constants, 4m? 4+ 4m> could be dimensionally ho-
mogeneous. Consider the case where m is a 2x2 matrix with dimensions

M
( [IV[[’]]} [[1]] > by the rule of matrix multiplication, the dimensions of m, m?, m> and

so on, are all the same. If this sounds like an artificial example, consider the case of input
output analysis where the Leontief inverse can be defined as (I—A) ™ '=1+A+A%+
A3+ (see, e.g., Miller and Blair, 2009, pp. 31-34), where the technology matrix
(A)j=a; has dimension of good i over good j [RiR; ']. This shows that the ele-
ments of the Leontief inverse have the same dimension as elements of A.

13 Omitting “per capita,” to simplify notation. See also footnote 9.

3.4. Dimensional Constant

In their example, M&G ignored the impact of a dimensional quan-
tity that they themselves introduced. To illustrate that it is “absurd to
put a dimensional number into a logarithmic function” (p. 1605),
M&G showed the expansion of log(1 + x),

W] >,

2
log(1 + %) :x—%+ —. (15)

and stated “Suppose now we assign to x the value of 0.5 U.S. dollars.”
Again they concluded the equation “would not make any sense.” Notice
that to add a quantity x measured in a monetary unit to the constant “1”,
it must be the case that the constant has also a dimension of money. The
authors failed to incorporate this aspect into their analysis. If we rewrite
the expansion making this explicit, considering log(1+x) as a spe-
cial case of log(a+x), it becomes clear that dimensional homoge-
neity is maintained,

P X

1 —1 log(1+%) = loga +%—
og(a+x) = loga + og( +a) = oga—i-a 2@
in fact, for a=1, all terms are now dimensionless,'* as dimensions
cancel out.

There is a more general issue with the use of transcendental func-
tions in applied fields. There are many instances in fields such as
applied mathematics and statistics of transcendental functions applied
to apparently dimensional arguments. Consider the continuous proba-

bility density f(x) :;—Oe*x/w, from the standard statistics book by

Miller and Miller (2008, p. 101), where x>0 is a random variable mea-
sured in thousands of km, thus of dimension length [L]. Its density must
have dimension [L ™ !], so that when multiplied by dx gives a dimension-
less probability (see, e.g., Finney, 1977), together with the requirement
that the argument of the exponential function has to be dimensionless,
this implies that both constants 1/30 have to be of dimension [L™].
Consider the equation of a catenary y = 10e"/2+10e~"/2 from an exer-
cise in the calculus textbook by Stewart (2007, p. 260), where x and y
are reportedly measured in meters. Again, we have to assume that con-
stants are dimensional. The important point is that the argument of any
transcendental function, such as e®, when x is dimensional, is made im-
plicitly dimensionless by assuming that the dimension of the constant is
the reciprocal of that of x. We need to keep in mind that the constant
will change value if the units are changed. Taking logarithms of dimen-
sional variables does not produce “meaningless” results but results that
depend on the units of measurement used.

3.5. Derived Quantities

Another serious problem affecting M&G's analysis is their misun-
derstanding the basic concept of derived dimensions. They imply
that using dimensional quantities in the nonlinear terms of the Taylor
expansion is itself not permissible. To illustrate the “nonsense” of this
operation they write (p. 1605),'°

1U0S$ + 1 US$ = 2 US$
1 US§ x 1 US$ = 1“square”US$? (17)
1 US§ x 1“square”US$? = 1“cubic’US$?

4 Note that “zero,” log(1) = 0, is considered having no dimension in standard dimen-
sional analysis axiomatization (see, e.g., Krantz et al.,, 1971, p. 461).

15 They also present a very confusing and worrying “pictorial” representation of a
Taylor expansion of an “exponential function with US$” that seems to imply that the
authors think that mathematical functions can have real objects as arguments instead
of real numbers.
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The authors claim that “one dollar plus one dollar makes perfect
sense, but one dollar times one dollar does not make any sense at
all.” The first part of the statement referring to a fundamental unit
is self-evidently true, whereas the second part, on a derived unit, is
absurd.'® We have seen in Section 2 that even though operations,
such as the multiplication and division of fundamental physical quan-
tities, have in no sense physical meanings, they often produce useful
quantities and relationships. For example, in the EKC, income
squared, with dimension of money squared, is interpreted as a term
that captures factors impacting the environment that vary with the
level of income.

4. Hidden Homogeneity and Dimensional Constants

Dimensional homogeneity of equations with physical quantities
can be masked by mathematical manipulation of logarithms. See, as
authoritative examples, Ipsen (1960, pp. 118-119), Bridgman (1931,
p. 73), Palacios (1964, p. 52), de St. Q. Isaacson and de St. Q.
I[saacson (1975, p. 34), and Hand (2004, p. 210). In physical sciences
there are many equation that appear to be nonhomogeneous such
as the physical chemistry equation in Bridgman (1931, p. 74) and
de St. Q. Isaacson and de St. Q. Isaacson (1975, p. 34). Another
example is British physicist G.I. Taylor's famous scaling law (see,
e.g., Barenblatt, 1996, p. 6).

As pointed out by de St. Q. Isaacson and de St. Q. Isaacson (1975,
p. 34), if we consider a velocity defined as space s of dimension [L]
over time t of dimension [T], i.e., v=s/t, the logged form log(v)=
log(s) —log(t), though actually homogeneous by Buckingham's IT
theorem, as it can be reduced to a function of a dimensionless product,

log (%t) = 0, would not normally be used in practice. For most applica-

tions in statistic and economics, the log transformation is instrumental
in obtaining the parameter of the models for estimation and testing,
the transformed variables are of no interest. There are many examples
of statistical and econometric regression equations derived from
deterministic dimensionally homogeneous models by allowing for
stochastic components and using logarithms of dimensional variables
in order to incorporate non-linearities, to estimate model parameter,
and to quantify and test theoretical models. Worked out examples
can be found in Seber and Lee (2003, p. 4), Wooldridge (2008,
pp. 212-215), and Baltagi (2011, p. 80). The logarithmic form allows
parameters to acquire the convenient interpretation of dimensionless
elasticity (see, e.g., Wooldridge, 2008, pp. 212-215).

Consider, as an example in ecological economics, the more general
version of the IPAT relationship, which leads to the stochastic IPAT,
introduced by Dietz and Rosa (1994) and York et al. (2003),

I=aPPAYT’. (18)

This and analogous modications of IPAT allow for less trivial and
possibly more relevant indicators of Technology.!” For this equation
to be dimensionally homogeneous, the “scaling” constant a has to
have dimension [E' ~°N” ~F$®~7]. Note that the presence of a dimen-
sional constant allows the choice of an arbitrary unit for .'® The inclu-
sion of dimensional constants raises a few important issues. The main
problem is that it appears that every equation can be made dimension-
ally homogeneous with the introduction of an ad hoc dimensional
constant. In physics, constants have often dimensions that can be
deduced from fundamental principles, though it is generally accepted

16 This is reminiscent of James Thomas' complaint made in 1878 quoted by (Porter,
1946, p. 6): “a second squared, the square of a second, and the second power of a sec-
ond of a second of time are all of them essentially meaningless conjunctions of words.”

17 In fact, as shown in Waggoner and Ausubel (2002) and Steinberger and Krausmann
(2011), T and A as measured by IPAT are often not analytically independent variables.

18 For a similar treatment of the production function, see De Jong (1967), De Jong and
Kumar (1972) and Szirtes (2006)).

that not all dimensional constants can be explained that way (see, e.g.,
de St. Q. Isaacson and de St. Q. Isaacson, 1975, p. 36). This does not
cause any particular problems as long as the dimensions of all quantities
except for the constants are known (de St. Q. Isaacson and de St. Q.
Isaacson, 1975, p. 36).1°

Other disciplines, to make dimensional analysis operational, have to
include dimensional constants that might be harder to justify a priori.
We take the view that the “ad hoc” dimensions of the scale parameter
reflect the self-evident truth that this model is a very crude approxima-
tion of reality. We should not be surprised that the coefficient's dimen-
sion reflects in part our ignorance of the processes involved and the
limitations of the model. To distinguish equations that require the
dimensions of the coefficients to be considered in checking for homoge-
neity from other homogeneous equations that more likely to be
encountered in physics, Murphy (1950, p. 18) and Johnson (1972)
suggested the expression restricted homogeneous.

This example also illustrates another important difference between
equations that we are likely to encounter in ecological economics as
opposed to physics. In practice, because none of the values for the “eco-
logical elasticities” 3, y or 6 are theoretically given for any specific IPAT re-
lation, unlike analogous equations in physics, like Newton's gravitational
equation, where exponents are given by the quantity's definitions, they
must be estimated. Taking logs, Eq. (18) can be expressed in the form,

logl = loga + 3 logP + ylogA + 6logT (19)

which can be fitted to data by conventional least squared methods, to
obtain estimates of the parameters of the model. It is reasonable to
expect a wide range of values that depend on the application, samples,
definition of variables, method used, and so on. Variables in economics
and related fields cannot be defined and measured as precisely as in
physics and their relationship, in environment-economic interactions
as well as in complicated physical systems, may not be known precisely
or expected to be simple.

M&G present a version of the formula for intensity of sound
measured in decibels (dB) that suits their view, where the logarithm
is applied on a dimensionless argument (p. 1605),

P
Lgs = 201l0g;o <P71]) (20)

where Ps have dimension of power and Pp=2x10"> N/m?. A quick
glance at a compendium of physics formulae (see, e.g., Menzel, 1960)
reveals that many equations regularly employed in fields such as ther-
modynamics, acoustics, chemistry, and astrophysics, include logarithms
of dimensional quantities. These formulae include several measures
used in environmental sciences such as the moment magnitude scale
for earthquakes, M,, = 2/3 log 1Mo — 10.7, where M is the magnitude
of the seismic moment (10~ Nm), tsunami intensity scales such as,
I=1/2+1log,H, where H is the average wave height on the shore
nearest to the source (m), and the measure of the acidity, pH=
—log 1oc, where ¢ is concentration (m~> mol). As Gibbings writes
about the intensity of sound equation, these are: “perfectly valid as
representations of physical events and as bases of calculation”
(Gibbings, 2011, p. 37). All these equation can be rearranged in loga-
rithms of dimensionless arguments.

In contrast, M&G proceeded by “proving” that manipulating loga-
rithmic functions of dimensional quantities is nonsense, by arguing
that (p. 1605):

“it seems that the following expression could be accepted even if a
and b were numbers with the same dimension: Ina—Inb = In{.
But the following formula must hold as well: In a+In b=In ab.

19 In empirical modeling, these constants become part of the intercept in regressions
which are seldom useful mostly because of the problems in estimating them.
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If a and b are numbers with the same dimension, three terms in
[the second Eq.] do not make any sense. To repeat, in logarithmic
formulae, all the terms must be dimensionless pure numbers.”

To show the absurdity of their argument we can just assume that a
and b have both dimensions of length [L]. It is clear that the two equa-
tion represent the natural log of two completely different derived
physical quantities. Note that, a/b, is a dimensionless quantity
[LL~']=[1], such as an angle, whereas, ab, could be an area [L?].
This means that the first equation will be independent of the units
chosen, the second will lead to the introduction of a constant. It is
not the intended contradiction that justifies the authors claim.

4.1. Application to Economics and Ecological Economics

M&G commented on the specification by Richmond and
Kaufmann (2006, Eq. (8), p. 178)

In(Yy) = o+ BIn(Xy) + dIn(Zy) + e,

where Y;; denotes per capita energy use (BTU/Pop) or per capita carbon
emissions (CO,/Pop); X;; denotes per capita GDP; Z;; represents a vector
of fuel shares; py; is the regression error. First, note that there are errors
in the equation, which M&G simply reproduce in their own paper.*° For
the sake of simplicity, as it does not alter the main conclusions, let us
consider only one variable Z;; and omit the error term

In(Y;) = @+ BIn(X;) + $In(Z;),

where Y;; has dimension of energy or emission per capita [EN"'], X;; has
dimension of money per capita [$N~'], and Z; is dimensionless [1]. M&G
write that “This form of specification with Y; and X;; cannot be accept-
ed.” However, it is elementary to show that the equation can be
obtained by taking the log of the nonlinear model

3
Yie = fotz?i,

where y=exp(«).?! This is a (restricted ) homogeneous equation. Obvi-
ously, we are interested in the slope coefficient, 3 and ¢, which are not
affected by changes in units. See also Baltagi (2011, p. 71) for a similar
example in an basic econometrics textbook.

M&G also compared the following two specification in Arrow et al.
(1961, p. 228):

%:c+dw+n (21

log% = loga + blogW + e, (22)

where V denotes value added in thousands of USD, L is labor input in
man-years, and W denotes money wage rate. M&G concluded that re-
lation (22) “cannot be used judging by the dimensions V/L and W
which they used.” In fact, both equations are homogeneous. It is
worth noting that the form of the equation in levels is quite rare as
both coefficients are dimensionless since ¥ and W have same dimen-
sions of money per labor input. In Eq. (22) the key parameter of inter-
est, the elasticity of substitution between labor and capital is
dimensionless. In fact, consider the constant elasticity of substitution
(CES) production function

V = (kK + L), (23)

29 There is an undefined vector valued In function, which is not how it is usually
interpreted, and its coefficient is not a vector. The correct approach is to define Z; as
a vector of log-transformed variables, ¢ a vector of coefficient with the same size,
and use ¢'Z;,.

21 Since y = Y;/(XiiZ#), the dimension of 7y has to be [E$~NF—1].

Table 1

Variables and constants in CES production function.
Variable Symbol Dimension
Stock of capital K [Ri]
Flow of labor L [RT ']
Flow of goods % [$T71]
Technical parameter L [} [$°Rz ]
Technical parameter K cx [$PRg PT—P]

with definition of variables and dimensions presented in Table 1. This
model is (restricted) homogeneous (see also De Jong and Kumar,
1972). Eq. (22) can be derived using standard economic optimization.
Note that the Arrow et al. models in Egs. (21) and (22) are analogous
to the following models with physical justification in the statistical
literature as presented in Atkinson (1985, 1994),

y1/3 =Bo +B1X1 +BoXy te (24)

logy = By + 31 logx; + 3, logx, + ¢, (25)

where y consists of measurements of the volume, x; of the diameter
and x, of the height of 31 cherry trees. In the level model, both
sides have the dimension of length [L] whereas the logged model is
dimensionless (Atkinson, 1994, p. 307).

M&G also discussed the model by Pindyck (1979),

logPy = ot + 2_ o logP; + 3 3 vy, logP; logP;
i ij

where P is an aggregate price index of energy and P; are the factor
prices. Again, M&G concluded “this specification cannot be used for
P.” Two points are important here. First of all, prices are indices,
and therefore dimensionless. However, as the choice of dimensions
is, as pointed out above, arbitrary, to make dimensional analysis pos-
sible, we can assign a dimension to every variable capable of such an
assignment.??> We do so to show that, for all practical purposes, the
model is homogeneous. In such cases, we can apply the concept of ho-
mogeneous functions directly. We can apply chenges in units of mea-
surement, by multiplying variables by constants, and check whether
the equation remains invariant. This is shown in Felipe (1998)
where it is also shown that all relevant tests are unaffected by the
transformation.

5. Nonhomogeneous Models and Empirical Equations

Physicists themselves admit that there is “more to physics” than
what is permitted by dimensional homogeneity. Two related issues
have been discussed in the dimensional analysis literature that are
important to consider carefully when modeling in ecological econom-
ics and related fields: the role of nonhomogeneous and empirical
models.

5.1. Nonhomogeneous Models

Many physicists argue that there is no logical reason why physical
laws should be dimensionally homogeneous in the first place (see,
e.g., Palacios, 1964, p. 45). In fact, Birkhoff pointed out that if we
look at special relativity and quantum mechanics it is obvious that
“not all physical laws are dimensionally homogeneous” (Birkhoff,
1960, p. 98). Certainly, there no reasons to assume a priory that a
model is dimensionally homogeneous, unless we know that our

22 See De Jong (1967, p. 23-25) for the argument applied to economics. See also
Krantz et al. (1971, 482-483) for an analogous discussion on the increased “power”
of dimensional analysis if we “choose” to consider angles dimensional quantities, as
opposed to the usual view that being the ratio of two lengths, they are dimensionless.
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model includes all relevant variables to start with (see Langhaar,
1951, p. 14). Inadequate knowledge of a field cannot be fixed by
dimensional analysis (see, e.g., Langhaar, 1951, pp. 14-15). For exam-
ple, the so called non-Newtonian fluids?> include constants that vary
from substance to substance (see, e.g., Palacios, 1964, pp. 45-46). We
must agree with Luce when referring to dimensional invariant types
of laws argued that “is adequate for classical physics, but it is too
restrictive for modern physics ... and probably for other sciences”
(see Luce, 1978, p. 15). It is worth reminding ourselves that, if an
equation is nonhomogeneous it does not mean that “it does not
make any sense” as M&G would like us to believe, by definition, it
means that it is valid only in one set of units. In physics you often
read that an equation “does not have any physical sense” to capture
the latter meaning (see, e.g., Georgescu-Roegen, 1971, p. 402).

5.2. Empirical Equations

In many areas of physics, when an equation is suggested mostly by
observations rather than by theory, there is no reason why homogene-
ity should hold (see, e.g., de St. Q. Isaacson and de St. Q. Isaacson, 1975,
p. 37-38). In many other applied sciences, theoretical support can also
be limited. According to Lindsey (1999, p. 36) as much as 95% of the
work of statisticians is of an exploratory nature (see also Box and Cox,
1964, p. 231).%* In economics as well, theory can only suggest the
importance of a limited set of variables within a particular model.
Often there will be several competing models of the same economic
phenomenon. The choice of which model performs better, which is
the appropriate functional form to use and which variables to include,
other than the one suggested by a particular theory, are all considered
empirical questions. With potentially every variable endowed with its
own dimension, room for dimensional analysis is limited (cf.
Bridgman, 1931).

M&G commented on the specification by Morse (2006, p. 82),

log,o(GDP/capita) = 0.772 + 0.0342 national IQ,

and concluded that “his [log] transformed regression cannot be
accepted.” Here becomes important to understand the meaning of
homogeneity and from where it originates. Do we really believe
that 1Q is the only determinant of GDP per capita? If not, there is no
reason to expect homogeneity. Also, we have to remember that any
physical quantity used in dimensional analysis is measured on a ratio
scale. Economists are also aware of this basic principle (see, e.g., Allen,
1938, pp. 13-14; De Jong, 1967, pp. 6-12; Georgescu-Roegen, 1971,
pp. 97-99). 1Q, assuming it measures intelligence, it is an ordinal scale.
There is an arbitrary zero,?> which does not mean absence of intelli-
gence but a zero score on some standardized test. Also, the ratio
between two values is not independent of the test used to measure
intelligence, so that a country with a score of 90 is not “twice as intelli-
gent” as a country with 45. Since there is no scale invariance of the vari-
ables to start with, why should we insist they be part of a dimensionally
homogeneous relationship? Failure to understand the meaning of di-
mensional homogeneity can lead to an incorrect interpretation of the
results. It is clear that this estimated relationship cannot be considered
a “fundamental law of nature,” where a complete set of well defined
and precisely measured variables are bound together in an unchanging
equation explaining how average national intelligence determines per
capita income, but should be regarded as merely a descriptive relation-
ship. As such, it will not be invariant to the units chosen to measure the

23 Familiar examples of non-Newtonian fluids include chilled caramel topping and
Ketchup.

24 In regression studies, it is sometimes necessary to take an entirely empirical ap-
proach to the choice of a relation. In other cases, physical laws, dimensional analysis,
etc., may suggest a particular functional form.

25 S0 even if amount of difference is assumed to matter, they can only be promoted to
an interval scale.

variables involved and to the sample used to estimate its parameters
(see also Hand, 2004, pp. 211-215; Johnson, 1972, pp. 1004-1005;
Murphy, 1950, p. 19) In the Kuznets curve literature alone, besides
scale ratios, variables that are measured on different scales, such as
nominal (geographical dummy variables indicating common borders,
linguistic links, and “landlocked” status as in Frankel and Rose, 2005,
ordinal (e.g., education, democracy), and interval (e.g., temperature)
have been used fruitfully in regression models. As Stevens once said
(1946, p. 680): “physical addition, even though it is sometimes possible,
is not necessarily the basis of all measurement. Too much measuring
goes on where resort can never be had to the process of laying things
end-to-end or of piling them up in a heap.” It is precisely because of
the freedom allowed by empirical models, that ecological economics
can explore the relationship between economics and the environment
with contributions from several, potentially very different, disciplines.

5.3. Noncomparable R?

M&G quoted Morse (2006) writing that transforming “the GDP/
capita data increases the R? from 54% to 70%, suggesting a significant
improvement in the model.” The reason why the authors argue that
“it is worthwhile to investigate the issue of whether or not using log-
arithmic functions as a dependent variable really improves the least
square norm” seems irrelevant here. In fact, ironically, they fail to rec-
ognize that it is meaningless to compare models with differently
transformed dependent variables, as the two R? measure the propor-
tion of explained variations of different variables: levels GDP/capita,
and transformed log(GDP/capita). This elementary observation can be
found in most books on statistical regression (see, e.g., Draper and
Smith, 1998, p. 246) and basic econometrics (see, e.g., Wooldridge,
2008, p. 192).

6. Conclusion

In this paper we have shown how M&G's conclusions that many
papers in economics and ecological economics have serious analytical
errors are based on flawed logic, incorrect mathematical proofs, and
on a misunderstanding of dimensional homogeneity and the nature of
empirical models in applied sciences. If ecological economics wants to
promote truly interdisciplinary research it “must go well beyond the
fusion of ecology and economics alone. The complex problems of
today require a correspondingly complex synthesis of insights and
tools from the social sciences, natural sciences, and humanities” (Daly
and Farley, 2004, p. xxii). To apply dimensional methods successfully
to ecological economics, the traditional perspective of physics needs
to be modified to acknowledge fundamental methodological differ-
ences in all the relevant contributing disciplines. The authors claim
that their criticism is levied in the hope that it “will orient future quan-
titative analyses toward more constructive ends,” however their
misguided and narrow application of the dimensional homogeneity
principle would actually undermine applied and interdisciplinary
research. It is clear that dimensional analysis has to be applied judi-
ciously and requires considerable knowledge of the field of application.
Results from nonhomogeneous models are not unacceptable. In fact,
they can provide empirical models essential for prediction and
decision-making and can be the precursors of future theoretical devel-
opments aimed at understanding the surrounding environment.
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