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a b s t r a c t

Fungi produce various mixtures of gas-phase, carbon-based compounds called volatile

organic compounds (VOCs) that due to their small size are able to diffuse through the

atmosphere and soils. Despite some methodological and technological constraints,

researchers have detected and characterized approximately 250 fungal VOCs, many of

which have characteristic odors and are produced during primary and secondary metabo-

lism. Fungal VOCs may contribute to a controversial medical diagnosis called “sick building

syndrome” and may also be important in the success of some biocontrol species of Tricho-

derma. VOCs also play important signaling roles for fungi in their natural environments.

Many ecological interactions are mediated by VOCs, including those between fungi and

plants, arthropods, bacteria, and other fungi. The diverse functions of fungal VOCs can

be developed for use in biotechnological applications for biofuel, biocontrol, and mycofu-

migation. Volatiles represent a new frontier in bioprospecting, and the study of these

gas-phase compounds promises the discovery of new products for human exploitation

and will generate new hypotheses in fundamental biology.

ª 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
1. Introduction to fungal volatile organic can diffuse through the atmosphere and soil, they are ideal
compounds

Volatile organic compounds (VOCs) are carbon-based solids

and liquids that readily enter the gas phase by vaporizing at

0.01 kPa at a temperature of approximately 20 �C (Pagans

et al., 2006). Most are lipid soluble and thus have low water

solubility. Approximately 250 VOCs have been identified

from fungi where they occur as mixtures of simple hydrocar-

bons, heterocycles, aldehydes, ketones, alcohols, phenols, thi-

oalcohols, thioesters and their derivatives, including, among

others, benzene derivatives, and cyclohexanes (Chiron and

Michelot, 2005; Korpi et al., 2009; Ortiz-Castro et al., 2009).

Fungal VOCs are derived from both primary and secondary

metabolism pathways (Korpi et al., 2009), and because VOCs
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“infochemicals” (Table 1).

Many VOCs have distinctive odors so it is not surprising

that interest in fungal VOCs began with the fungi that

humans can smell. For example, the distinct bouquets of

macrofungi such as mushrooms and truffles, highly valued

in the culinary arts, include mixtures of different VOCs, of

which alcohols, aldehydes, terpenes, aromatics and thiols

dominate (Breheret et al., 1997; Tirillini et al., 2000; Splivallo

et al., 2007b; Cho et al., 2008; Fraatz and Zorn, 2010). Moreover,

the musty odor of fungal VOCs emitted from microscopic

fungi is easily recognized in damp moldy buildings and has

provided a foundation for studies that investigate the possible

negative effects of molds on human health, in what is often

referred to as “sick building syndrome”. Predominate in this
y. Published by Elsevier Ltd. All rights reserved.
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Table 1 e Structures, functions and odors of selected common volatile compounds produced by fungi.

Molecule Structure Potential Function(s); odors

1-Octen-3-ol Semiochemical; earthy, “mushroomy” odor

1-Butanol-3-, methyl-, acetate Antifungal; banana odor

Sabinene

HO

Unknown; peppery odor

6-Pentyl-a-pyrone Antibiotic; coconut odor

b-Caryophyllene Plant-growth promoting; woody-spicy odor

Isobutyric acid Antifungal; rancid cheese-like odor

Benzyl aldehyde Anti-microbial; almond odor

1,8-Cineole

O

Antifungal; camphor-like odor
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Table 1 e (continued)

Molecule Structure Potential Function(s); odors

2-Methyl-1-propanol Fungivore attractant; mild alcohol odor

2-Heptanone Unknown; cheese odor

3-Methyl-butanol Unknown; component of truffle odor
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musty odor are eight carbon compounds such as 1-octen-3-ol

and 3-octanone (Morey et al., 1997). Chemical ecologists have

elucidated the role of many fungal VOCs as semiochemicals

that function as attractants and deterrents to insects and

other invertebrates. In agriculture, fungal VOCs have been

used as part of biological control strategies to prevent the

growth of plant pathogens. Additionally, there is increasing

interest in the study of the plant-growth promoting effects

of these VOC mixtures. In the food industry, the same biolog-

ical control properties are used to prevent post-harvest fungal

growth, in what is termed “mycofumigation”. Most recently,

fungal VOCs have been studied for their potential role as

fuel sources, popularly referred to as “mycodiesel”.

A single review cannot do justice to the enormous scientific

literature that has contributed to our current knowledge about

fungal VOCs (see Fig 1). Therefore, this paper will focus on

recent improvements in our ability to isolate and identify

VOCs, as well as on provocative new findings in toxicology

and biocontrol from the study of endophytes that highlight

the physiological potency of these small gas-phase molecules

and their potential for exploitation in biotechnology. For an

overview of the contributions of fungal VOCs to food and fla-

vor research see (Chiron and Michelot, 2005; Fraatz and

Zorn, 2010; Styger et al., 2011).
Fig 1 e Subdisciplines that have contributed to our knowl-

edge of fungal VOCs.
2. Fungal VOC collection and detection

The study of fungal volatiles has lagged behind the study of

other fungal metabolites due to methodological and techno-

logical constraints. Moreover, VOC production is biologically

dynamic. The VOC profile of a given species or strain will

vary depending on the substrate, duration of incubation,

type of nutrients, temperature, and other environmental

parameters (Pasanen et al., 1997; Nilsson et al., 2004; Fiedler

et al., 2005). With these constraints in mind, the methods

currently in use are summarized briefly here.

Over the last half-century, there has been significant prog-

ress in “separation science”. Currently, gas chromatogra-

phyemass spectrometry (GCeMS), due to its powerful

separation and highly sensitive detection capabilities, is the

main method for detecting fungal VOCs (Matysik et al., 2009).

The culture headspace can be concentrated using solid adsor-

bents such as Tenax, followed by thermal desorption into the

GCeMS. Compounds are then identified using a library or

database of mass spectra, or by comparison of retention times

and spectra with those of known standards. Another method

of adsorbing and desorbing VOCs in culture headspace is via

solid-phase microextraction (SPME), where desorption occurs

in the GC injector itself. SPME has become increasingly

popular in recent years because it reduces preparation time

by combining extraction, concentration and introduction

into one step while increasing sensitivity over other extrac-

tion methods (Zhang and Li, 2010). Additionally, Headspace-

SPME GCeMS can be automated for direct profiling of living

fungal cultures (Stoppacher et al., 2010). However, one limita-

tion of GCeMS is that it cannot be used for the identification of

novel compounds.

Using activated charcoal filters, Matysik et al. (2009)

demonstrated a proficiency in adsorbing hydrocarbons,

esters, ethers, alcohols, ketones, glycol ethers and haloge-

nated hydrocarbons. However, less volatile compounds and

reactive compounds such as amines, phenols, aldehydes,

and unsaturated hydrocarbons were not recovered efficiently

due to their strong adsorption. The VOCs were desorbed from
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the activated charcoal pads with 1.5 mL carbon disulfide and

the extract decanted into the GC vials for GCeMS analysis

(Matysik et al., 2009). This passive sampling method combined

with GCeMS was applied for the detection of microbial vola-

tile organic compounds (MVOCs) emitted by fungal species

in the genera Penicillium, Aspergillus, and Cladosporium

(Matysik et al., 2009).

The more traditional method of simultaneous distillation

extraction (SDE) combines vapor distillation and solvent extrac-

tion. SDE has been used to examine the VOCs of Penicillium

roqueforti and to compare the method to SPME (Jele�n, 2003).

However, an earlier study comparing methods of analyzing

theVOCs of Penicillium vulpinum found that SDEwas inadequate

to determine a full volatile profile when compared to methods

sampling headspace (Larsen and Frisvad, 1995).

Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS)

provides rapid, broad-spectrum detection of trace VOCs in

moderately complex gas mixtures. SIFT-MS quantifies VOCs

to low part-per-billion (ppb) levels in whole air (i.e. without

preconcentration) in real time (Senthilmohan et al., 2001).

This technique has been used to study the VOCs produced

by Aspergillus, Candida, Mucor, Fusarium, and Cryptococcus

species (Scotter et al., 2005).

Proton transfer reaction-mass spectrometry (PTR-MS)

ionizes organicmolecules in the gas phase through their reac-

tion with H3O
þ, forming mostly MHþ molecules (where M is

a neutral organic molecule), which can then be detected by

a standard quadrupole/multiplier mass analyzer (Lindinger

and Jordan, 1998). PTR-MS can be used to quantify fungal

VOCs since it has a fine detection capability and a fine scale

time response (Ezra et al., 2004). Additionally, analyses can

be run in real timewithout sample preparation, derivatization

or concentration with the advantage of having sensitivities

comparable to GCeMS. This technique has been used to quan-

tify the VOCs of Muscodor albus (Ezra et al., 2004).

Booth et al. (2011) described a technique that rapidly traps

and collects fungal VOCs that may have fuel potential.

The trapping materials, Carbotrap A and B (Supelco) and

bentonite-shale, were placed in a stainless steel column and

the trapped fungal VOCs were recovered via controlled heating

of the column followed by passage of the gases through a liquid

nitrogen trap at a recovery rate of approximately 65e70%. This

method allows the recovery of mg quantities of compounds

normally present in the gas phase that may be used for bioas-

says, further separation, and analyses (Booth et al., 2011), and

potentially for nuclear magnetic resonance (NMR) spectros-

copy to identify novel compounds produced by fungi.

The “Electronic nose”, or “E-nose”, is a promising new

development in the detection of fungal volatile compounds.

These instruments comprise arrays of electronic chemical

sensorswith appropriate pattern recognition systems, capable

of recognizing simple or complex odors (Gardner and Bartlett,

1992; Wilson and Baietto, 2009). A typical E-nose system

combines a multi-sensor array, an information processing

unit, pattern recognition software, and a reference library

(Wilson and Baietto, 2009, 2011). Sensing technology provides

a qualitative assessment of the variations in mass, optical or

electrical properties of the sensor material after exposure to

volatile compounds. This technology yields “electronic finger-

prints” that can be detected without the need to separate the
mixture into its components. Dedicated instrumentation has

been developed for medical, military, pharmaceutical, and

regulatory applications. For example, fungal VOC fingerprints

can be used to noninvasively discriminate medically relevant

fungi (Sahgal et al., 2006; Sahgal andMagan, 2008), and todeter-

mine the efficacy of and buildup of fungal resistance to anti-

fungal drugs (Naraghi et al., 2010; Pont et al., 2012). In the food

safety industry, this technology provides a means of early

detection of mycotoxin-producing fungi in grains, fruit and

meat products (Magan and Evans, 2000; Sahgal et al., 2007;

Caba~nes et al., 2009; Leggieri et al., 2010). Additionally, the

E-nose shows promise in agricultural applications through

determination of overall soil health in response to environ-

mental factors or soil inputs (Bastos and Magan, 2007).
3. Early research on fungal volatiles and envi-
ronmental health sciences

Microbial growth in damp indoor environments has been

correlated with adverse impacts on human health. In partic-

ular, occupants of damp, moldy buildings, both residential

and commercial, are at increased risks of respiratory symp-

toms, respiratory infections and exacerbation of asthma

(IOM, 2004;WHO, 2009). In addition, symptoms related to occu-

pancy in moldy buildings may include fatigue, headache,

dermatological symptoms, gastrointestinal tract problems,

reproductive effects as well as rheumatologic and other

immune diseases (Apter et al., 1994; Redlich et al., 1997;

Hodgson et al., 1998; Hodgson, 2000). The terms “mold related

illness” or “sick building syndrome” commonly are used to

describe this spectrum of ill-defined clinical conditions and

complaints. Based on data from epidemiological studies and

a limited number of laboratory toxicological studies, mostly

on rodents, both the Institute of Medicine committee on

Damp Indoor Spaces and Health (2004) and the World Health

Organization committee on Dampness and Mould (2009)

concluded that evidence from the published studieswas insuf-

ficient to support a causal relationship between molds and

most of the disease symptoms reported; however, evidence

was sufficient to support an association between molds and

upper respiratory tract symptoms, asthma symptoms in sensi-

tized asthmatic persons, and hypersensitivity pneumonitis in

susceptible persons. Moreover, there was suggestive evidence

of association between molds and lower respiratory illness in

otherwise healthy children (IOM, 2004; WHO, 2009). On the

other hand, the postulated link between mold exposure and

the less common human health effects is a controversial

subject, fueled in part because many scientific studies have

been conducted as part of the considerable litigation in the

USA surrounding “sick building syndrome” (Apter et al., 1994).

Themost intensive research on building related illness and

“sick building syndrome” has focused on the possible role of

mycotoxins, especially trichothecenes, as the etiological

agents (Yang and Johanning, 1996; Robbins et al., 2000; Jarvis

and Miller, 2005). Nevertheless, even high concentrations of

spores andmycelial fragments rarely contain sufficientmyco-

toxins to induce the wide array of reported symptoms (Peraica

et al., 1999; Straus, 2009). Mold VOCs have received less atten-

tion than mycotoxins, however a few groups have
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hypothesized that they may be the etiological agents associ-

ated with “sick building syndrome” (Mølhave et al., 1993;

Mølhave, 2009). Indeed, exposure to VOCs from molds has

been associatedwith symptoms including lethargy, headache,

as well as irritation of the eyes andmucousmembranes of the

nose and throat. Respiratory tract symptoms include nasal

congestion, sore throat, cough, phlegm production, and

wheezing (Araki et al., 2010).

When “indoor molds” such as species of Aspergillus, Penicil-

lium, and Stachybotrys are grown on building materials under

controlled laboratory conditions, complex and highly variable

profiles of different VOCs can be generated that vary with

species, substrate, length of incubation and other environ-

mental parameters (Sunesson et al., 1995; Claeson et al.,

2002; Claeson and Sunesson, 2005; Matysik et al., 2008).

When monitored outside of the laboratory, VOC profiles are

even more changeable. The types and concentrations of

VOCs in the indoor air of mold-infested buildings vary with

the ventilation rate, moisture level, substrate, composition

of mold population, area of the building/room, and other

parameters (Morey et al., 1997; Schleibinger et al., 2008).

Among the highest reported concentration for a single VOC

found in problem buildings was for 1-octen-3-ol (900 mg/m3

or 0.16 ppm) (Morey et al., 1997).

The cytotoxicity of several microbial VOCs administered in

fluid form directly into the culture media was evaluated in

tissue culture assays, and concentrations of 1-octen-3-ol as

low as 0.6 mM were found to be toxic (Kreja and Seidel,

2002a, b). Human volunteers exposed to 10 mg/m3 of volatil-

ized 1-octen-3-ol for 2 h reported minor irritation of eye,

nose, and throat (W�alinder et al., 2008). In our laboratory, we

have shown that low concentrations of gas-phase 1-octen-3-

ol are neurotoxic in a Drosophila melanogaster model

(Inamdar et al., 2010) aswell as to human embryonic stem cells

(Inamdar et al., 2011). For a review of the toxicological poten-

tial of microbial VOCs see Korpi et al. (2009). Further research

on the toxicological effects of fungal VOCs, especially

1-octen-3-ol, seems warranted.
4. Biocontrol and plantemicrobe interactions

Volatiles are important in the functioning of both atmospheric

(“above-ground”) and soil (“below-ground”) ecosystems. There

is potential of fungal VOCs for biotechnological applications

in agriculture, industry and medicine. In agriculture, the

interest in fungal VOCs is for their potential as biological

control (biocontrol) agents to control fungal pests to employ

a more environmentally sound pest management strategy by

reducing fungicide use on crop plants.
Belowground interactions

Soil fungistasis, the failure of fungal propagules to germinate

or the inhibition of fungal hyphal growth under favorable

temperature and moisture conditions (Watson and Ford,

1972), has been hypothesized to occur because of either

competition for nutrients or release of inhibitory compounds

in the soil. Recent data suggest a broader and more integrated

theory of fungistasis, which includes the importance of
volatile compounds. For an excellent review on soil biostasis,

see Garbeva et al. (2011). Fungistatic soils contained the VOCs,

trimethylamine, 3-methyl-2-pentanone, dimethyl disulfide,

methyl pyrazine, 2,5-dimethyl-pyrazine, N-dimethyloctyl-

amine and nonadecane, while soils which showed no fungi-

stasis did not (Xu et al., 2004). These volatile compounds

inhibited three fungal species, Paecilomyces lilacinus, Pochonia

chlamydospora, and Clonostachys rosea, suggesting that the

occurrence of volatile fungistasis may not need the direct

competition between soil microorganisms, and may have

a different mechanism than direct fungistasis (Xu et al., 2004).

VOCs can permeate air-filled pores of soils and can travel

long distances, depending on the properties of the habitat

(Aochi and Farmer, 2005). This property may make fungal

VOCs a useful addition to biocontrol strategies. For example,

without any direct contact between the strains, the volatiles

of wild-type antagonistic Fusarium oxysporum and its bacterial

consortium inhibited the fungal growth of a plant pathogenic

strain of F. oxysporum (Minerdi et al., 2009). The VOCs of the

endophyte M. albus also can be used to control soil-borne

diseases. When M. albus was added to soil mixtures, it

provided control of the pathogens Rhizoctonia solani, which

causes damping-off of broccoli, and Phytophthora capsici,

which causes root rot of bell pepper (Mercier and Manker,

2005). In addition to the inhibitory effects of certain VOCs on

deleterious soil-borne organisms, stimulation or enhance-

ment of soil-borne biocontrol agents may be another desired

effect (Wheatley, 2002). When studied for their potential to

be used together as biological control agents of plant patho-

gens, the volatiles emitted by Trichoderma atroviride increased

the expression of a primary biocontrol gene of Pseudomonas

fluorescens (Lutz et al., 2004).

Fungal VOCs of soil-borne fungi may benefit plants by acti-

vating defense responses and priming them against future

pathogen attack, as well as by providing growth promotion

of nearby plants. Mixtures of bacterial VOCs can induce

a defense response in plants (Ryu et al., 2003). For example,

when Arabidopsis thaliana was exposed to 1-octen-3-ol

(“mushroom alcohol”), a major fungal VOC, the defense genes

were up-regulated and provided protection from the attack of

a pathogen, Botrytis cinerea (Kishimoto et al., 2007). Exposure to

allo-ocimene and a C-6 aldehyde activated similar defense

responses in A. thaliana (Kishimoto et al., 2006a, b). The VOCs

of a strain of F. oxysporum (MSA 35) and its bacterial consor-

tium, shown to be antagonistic to a pathogenic F. oxysporum

strain, significantly enhanced the growth of lettuce (Lactuca

sativa), with b-caryophyllene identified as one of the volatiles

that generated the plant-growth promotion effect (Minerdi

et al., 2011).

On the other hand, fungal VOCs may negatively impact

plant growth. Volatiles emitted by truffles (Tuber spp.)

inhibited the growth of A. thaliana (Splivallo et al., 2007a),

which may be indicative of an ability of mycorrhizal fungi to

create dead zones, potentially removing the competitors of

their hosts (Splivallo et al., 2011).

Aboveground interactions

As novel endophytic fungal species are isolated from tissues

beneath the plant’s epidermal cell layers, researchers have
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begun to identify and study their bioactive volatile metabo-

lites. Endophytic fungi live within their hosts and cause no

apparent harm (Bacon and White, 2000). They produce

a mixture of numerous VOCs, and it is becoming apparent

that the ecological role of these volatile compounds is far

more complex than many researchers have previously appre-

ciated. Furthermore, the VOCs of endophytic fungi may

benefit the host plant by providing additional lines of defense

against pathogens of their host plant (Macias-Rubalcava et al.,

2010). For example, M. albus, produced VOCs that inhibit and

kill plant pathogenic fungi and bacteria (Strobel et al., 2001).

Additionally, the VOCs produced by Muscodor yucatanensis,

Muscodor fengyangensis, and a second isolate of M. albus all

inhibited pathogenic species of bacteria, fungi and oomycota

(Atmosukarto et al., 2005; Macias-Rubalcava et al., 2010;

Zhang et al., 2010). Lastly, cultures of Muscodor crispans

produce amixture of VOCs that inhibited awide range of plant

pathogens, including the fungi Mycosphaerella fijiensis (the

black sigatoka pathogen of bananas), and the serious bacterial

pathogen of citrus, Xanthomonas axonopodis pv. citri (Mitchell

et al., 2010).

The VOC profiles of the Muscodor species included esters,

alcohols, acids, lipids and ketones (Strobel et al., 2001), while

a Phomopsis sp. produced a unique mixture of VOCs including

sabinene (a monoterpene with a peppery odor) only previ-

ously known from higher plants. Some of the other more

abundant VOCs recorded by GC/MS from the Phomopsis

sp. were 1-butanol, 3-methyl; benzeneethanol; 1-propanol,

2-methyl and 2-propanone (Singh et al., 2011). Mixtures of

commercially available compounds, such as bulnesene,

valencene, and synthesized compounds, such as propanoic

acid, 2-methyl, 3-methylbutyl ester, and 1-butanol,

3-methyl-, acetate were tested against the pathogens and

yielded similar inhibitory effects to the M. albus-produced

VOCs (Strobel et al., 2001). Nevertheless, when that mixture

of VOCs was broken down into several classes of compounds,

the same inhibitory effects were not achieved, suggesting that

it is the suite of VOCs that contributes to the antifungal

activity (Strobel et al., 2001).

Along with providing defenses against pathogens of their

host, certain endophytic fungi may aid in the plant’s survival

in certain habitats. A Phoma sp. isolated from creosote bush

emits VOCs that may contribute to the ability of this shrub

to survive harsh desert habitats (Strobel et al., 2011). This

Phoma sp. produces a unique mixture of VOCs, including

trans-caryophyllene, a series of sesquiterpenoids, some alco-

hols and several reduced naphthalene derivatives. These

VOCs inhibited or killed a range of plant pathogens, including

Verticillium, Ceratocystis, Cercospora and Sclerotinia, while Tricho-

derma, Colletotrichum and Aspergillus were not greatly affected

(Strobel et al., 2011).

Additionally, fungal VOCsmay contribute to or may enable

their host plant to outcompete neighboring plants. For

example, the VOCs produced by M. yucatanensis were toxic to

the roots and inhibited seed germination of amaranth, tomato

and barnyard grass (Macias-Rubalcava et al., 2010). The VOCs

were also toxic to other endophytic fungi, possibly enhancing

growth of their host plants, and potentially minimizing the

nutrients the plant provides to its endophytes (Macias-

Rubalcava et al., 2010).
5. Mycofumigation and other antibiotic effects

The VOCs ofM. albus are useful for the control of post-harvest

plant diseases, in what has been termed “mycofumigation”

(Stinson et al., 2003). In in vitro experiments, the VOCs of

M. albus were toxic to the peach pathogens, Penicillium

expansum, B. cinerea and Monilinia fructicola, furthermore, the

volatiles prevented fungal contamination of post-harvest

peaches over 7 d of storage (Mercier and Jim�enez, 2004).

M. albus volatiles also could be used for non-agricultural bio-

fumigation andwere investigated for their potential to control

building molds.M. albus VOCs significantly reduced growth of

common building fungi (Mercier and Jim�enez, 2007). Addition-

ally, the VOCs of Oxyporus latemarginatus EF069, an endophyte

isolated from red peppers, inhibited the mycelial growth of

several plant pathogens known to damage post-harvest fruit

(Lee et al., 2009).O. latemarginatus EF069 could be used inmyco-

fumigation as the VOCs reduced post-harvest decay of apples

caused by B. cinerea and Rhizoctonia root rot ofmoth orchid (Lee

et al., 2009).

The antibiotic effects of fungal VOCs eventually may

provide an addition to the arsenal of antibiotics used in

managing human disease, though this remains to be seen in

the future. Indeed, the VOCs of M. crispans killed several

human pathogens, including Yersinia pestis, Mycobacterium

tuberculosis and Staphylococcus aureus. M. crispans produces the

VOC propanoic acid, 2-methyl-, 3-methylbutyl ester, which

when tested alone was also inhibitory to a number of human

pathogens, including three drug-resistant strains of M. tuber-

culosis (Mitchell et al., 2010). Another endophyte, M. fengyan-

gensis, killed the pathogen Escherichia coli (Zhang et al., 2010).
6. Semiochemicals: VOCs and arthropods

Fungal volatiles can serve as signaling molecules (“infochem-

icals” or “semiochemicals”) that affect organisms within

a species, among species, and across kingdoms. Entomolo-

gists have discovered that fungal VOCs have properties as

pheromones, allomones, kairomones etc. (Rohlfs et al., 2005;

Mburu et al., 2011). A few examples are given below.

Emission of VOCs by fungi may be an efficient way of

defending against fungal feeders. For example, 1-octen-3-ol

produced by the mushroom Clitopilus prunulus deterred

banana slugs (Ariolimax columbianus) from consuming the

mushrooms (Wood et al., 2001). On the other hand, some

fungal VOCs provide location cues for host selection in fun-

givorous arthropods (Hedlund et al., 1995). 1-octen-3-ol

produced by the wood-rotting white rot fungus Trametes gib-

bosa serves as an attractant for fungus-eating beetles (Coleop-

tera) (Thakeow et al., 2008). Another species of white rot,

Trametes versicolor, produced sesquiterpenes such as d-cadi-

nene, followed by b-guaiene, isoledene and g-patchoulene,

that attracted fungivorous beetles in behavioral experiments

(Drilling and Dettner, 2009). An interesting side note: an

earlier study found that after degradation of European Beech

(Fagus sylvatica) lignin and cell structures by T. versicolor,

sesquiterpenes were the only volatiles produced (Holighaus

and Sch€utz, 2006).
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Fungal VOCs also function to attract insects to other food

sources. For example, 1-octen-3-ol when emanated from

human skin serves as a host odor cue that attracts blood-

sucking insects, such as the mosquito Anopheles gambiae

(Kline et al., 2007). Additionally, fungi can produce pseudo-

flowers that mimic real flowers in sight and smell by

producing volatile compounds that are used in pollinator

attraction to facilitate pollen transfer (Ngugi and Scherm,

2006). In the Puccinia monoica-crucifer pathosystem, these

scents aremade up primarily of aromatic alcohols, aldehydes,

and esters (Raguso and Roy, 1998). The most abundant vola-

tiles in Puccinia arrhenatheri-infected Berberis vulgaris include

indole, methyl nicotinate, a-phellandrene, carvacryl methyl

ether, and jasmine lactone (Naef et al., 2002). Additionally, Bot-

anophila flies act as gamete vectors for the endophytic fungal

genus Epichlo€e, commonly found in pooid grasses, and are

attracted by a volatile sesquiterpenoid alcohol named chokol

K (Schiestl et al., 2006), and a methyl ester, methyl (Z )-3-

methyldodec-2-enoate (Steinebrunner et al., 2008), both

emitted by the fungus. In addition to attracting ‘pollinators’,

bioassays have shown that chokol K can reduce the spore

germination and growth ofmycoparasitic fungi at ecologically

relevant concentrations (0.014, 0.023 and 0.045 mM), indi-

cating the putative defensive role of VOCs produced by

epiphytic fungi (Steinebrunner et al., 2008).

Fungal VOCS also are being investigated for their insecti-

cidal activity. For example, the VOCs produced by Muscodor

spp., including nitrosoamide, have been shown to kill insects

(Strobel et al., 2010). Muscodor vitigenus produces naphthalene,

formerly used in “mothballs”, and functions as an effective

insect repellent (Daisy et al., 2002). In addition, VOC profiles

have been correlated with varying levels of pathogenicity of

entomopathogenic fungi, Beauveria bassiana and Metarhizium

anisopliae, studied for their potential as biocontrol agents to

reduce termite populations (Hussain et al., 2010). The volatile

profile of the virulent inocula contained n-tetradecane and

alkenes, while the non-virulent strains contained many

branched alkanes (Hussain et al., 2010).
7. Potential biotechnological applications of
fungal VOCs

The search for new plant and microbial species in hopes of

finding novel biotechnological products is termed “bio-

prospecting”. Most of this search has focused on the discovery

of secondary metabolites of potential pharmacological,

industrial or other commercial value, especially from soil

microorganisms. Moreover, there are 300,000 species of

vascular plants, most of which are likely to be harboring hith-

erto undescribed endophytes (Bacon and White, 2000). These

fungal endophytes may produce a wealth of novel bioactive

metabolites that have yet to be discovered. The endophytic

species that we discussed above were discovered via bio-

prospecting, leading to the identification and study of some

interesting new bioactive metabolites and VOCs with biofuel

potential.

It is likely thatmany hitherto overlooked and undiscovered

VOCs with biotechnological potential remain to be developed.

Biocontrol strategies are a case in point. For example,
Trichoderma spp. have been used as biological control agents

since the 1930s (Howell, 2003), and many field experiments

have demonstrated that applications of Trichoderma spp.

promotes the growth of plants and limits the growth of plant

pathogens (Altomare et al., 1999). Trichoderma spp. are effective

biofungicides, enzymatically degrading other fungi, producing

anti-microbial compounds that kill pathogenic fungi, and out-

competing pathogenic fungi for space and nutrients (Verma

et al., 2007; Vinale et al., 2008). Additionally, Trichoderma spp.

may induce systemic resistance, priming plants for pathogen

attack and allowing them to protect themselves, as do other

soil-dwelling microbes, such as rhizobacteria (Van Wees

et al., 2008). Work in our laboratory has shown that

A. thaliana seedlings, grown in the presence of fungal VOCs

without physical contact between the plants and the fungus,

showed increased biomass and chlorophyll concentration

(Hung et al., in press). Because Trichoderma species are known

to produce numerous VOCs (Wheatley et al., 1997; Stoppacher

et al., 2010), and because other VOC-producing soil organisms

benefit plants (Van Loon et al., 1998), further studies on the

benefits of Trichoderma-produced VOCs are warranted.

Most of the research on fungi and biofuel has focused on

finding efficient enzymes for degrading biomass into ferment-

able substrates. In addition, fungal VOCs may have implica-

tions for utilization of biologically based energy sources by

converting plant waste directly into diesel (Strobel et al.,

2011). VOC production by Ascocoryne sarcoides, Ascocoryne

cylichium and Ascocoryne solitaria, saprophytes isolated from

deadwood, generated VOC profiles including alkanes, alkenes,

alcohols, ester, ketones, acids, benzene derivatives and

terpenes, some of which are similar to biofuel target mole-

cules (Griffin et al., 2010). Further, many of the Ascocoryne

strains produced sesquiterpenes (Griffin et al., 2010), which

are a potential source of diesel or jet fuel alternatives due to

their cyclic and branched nature (Rude and Schirmer, 2009).

The monoterpene 1,8-cineole, an octane derivative, also has

potential use as a fuel additive, as do the other VOCs produced

by Hypoxylon sp. (Tomsheck et al., 2010). In addition to alkanes

and long-chain HCs, many fungal species produce other

potential biofuel targets, such as ethylene, ethane, propane

and propylene (Ladygina et al., 2006). Some fungi also produce

terpenes and isoprenoids, another diverse family of

compounds that may be used as fuels (Grigoriev et al., 2011).

In summary, fungi are an excellent platform for exploiting

biosynthetic routes to hydrocarbon biofuels or biofuel precur-

sors (Grigoriev et al., 2011).

It is likely that fungal VOCs are a chemical classwith poten-

tial biotechnological applications with greater market value

beyond those in the food or agricultural industries. Available

studies have only scratched the surface. Nevertheless, road-

blocks remain before their biotechnological potential can be

exploited. Fungal VOCs are produced in small quantities,

making them difficult to characterize and study. Little is

known about their biosynthesis, although genomic, transcrip-

tomic andmetabolomic studies are beginning to correlate gene

expression to volatile production (Gianoulis et al., 2012). Ulti-

mately, by using genetically modified fungi with impaired

volatile formation, the suite of volatiles that fungi produce

under different culture conditions will be determined. This is

an essential step in linking genes to compounds and to
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defining the biosynthetic pathways that lead to the production

of important compounds. Because fungal VOCs cannot be used

directly as a fuel source, understanding these genetic path-

ways is paramount. With this knowledge, the necessary genes

can be overexpressed in producing species or transferred to

industrially tractable heterologous hosts for the large-scale

production of compounds of human interest.

For most of the 20th century, fungal bioprospecting has

focused on the search for traditional secondary metabolites

with drug value (e.g. penicillin, lovastatin) or for enzymes

with new applications (e.g. biomass degrading enzymes

from thermophiles). A concerted search for new biotechnolog-

ical products among VOCs will require a paradigm shift in the

scientific community.

Volatiles represent a new frontier in bioprospecting. When

coupled with the power of “omics” technologies, the study of

these gas-phase compounds promise the discovery of new

products for human exploitation and will generate new

hypotheses in fundamental biology.
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